Monascus Red Pigment Liposomes: Microstructural Characteristics, Stability, and Anticancer Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MRPL
2.3. Characterization of MRPL
2.3.1. Microstructural Characteristic
2.3.2. PDI and Zeta Potential
2.4. Stability of MRPL
2.4.1. Degradation Rate
2.4.2. pH Stability
2.4.3. Temperature Stability
2.4.4. Light Stability
2.4.5. Metal Ions Stability
2.4.6. Storage Stability
2.5. Stimulated Gastrointestinal Digestion In Vitro
2.6. Anticancer Activity to MKN-28 and HepG-2 Cells
2.6.1. Cells Culture
2.6.2. Cells Cytotoxicity
2.6.3. Cells Morphology
2.7. Statistical Analysis
3. Results and Discussion
3.1. Particle Size and Morphology
3.2. PDI and Zeta Potential
3.3. Stability of MRPL
3.3.1. pH Stability
3.3.2. Temperature Stability
3.3.3. Light Stability
3.3.4. Metal Ions Stability
3.3.5. Storage Stability
3.3.6. In Vitro Release
3.4. Cytotoxicity to MKN-28 and HepG-2 Cells
3.4.1. Cell Viability
3.4.2. Cells Morphology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
MRPL | Monascus red pigment liposomes |
MRPs | Monascus red pigments |
DR | Degradation rate |
PBS | Phosphate buffer solution |
IR | Inhibition rates |
SEM | Scanning electron microscopy |
TEM | Transmission electron microscopy |
PDI | polydispersity indexes |
UV | Unilamellar vesicles |
SGF | Simulated gastric fluid |
SIF | Simulated intestinal fluid |
References
- Chen, W.P.; Chen, R.F.; Liu, Q.P.; He, Y.; He, K.; Ding, X.L.; Kang, L.J.; Guo, X.X.; Xie, N.N.; Zhou, Y.X.; et al. Orange, red, yellow: Biosynthesis of azaphilone pigments in Monascus fungi. Chem. Sci. 2017, 8, 4917–4925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufossé, L.; Galaup, P.; Yaron, A.; Arad, S.M.; Blanc, P.; Chidambara Murthy, K.N.; Ravishankar, G.A. Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends Food Sci. Technol. 2005, 16, 389–406. [Google Scholar] [CrossRef]
- Agboyibor, C.; Kong, W.B.; Chen, D.; Zhang, A.M.; Niu, S.Q. Monascus pigments production, composition, bioactivity and its application: A review. Biocatal. Agric. Biotechnol. 2018, 16, 433–447. [Google Scholar] [CrossRef]
- Chen, M.H.; Johns, M.R. Effect of pH and nitrogen source on pigment production by Monascus purpureus. Appl. Microbiol. Biotechnol. 1993, 40, 132–138. [Google Scholar] [CrossRef]
- Kurokawa, H.; Taninaka, A.; Shigekawa, H.; Matsui, H. The cytotoxicity of cyclophosphamide is enhanced in combination with monascus pigment. J. Clin. Biochem. Nutr. 2021, 69, 131–136. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Kim, C.; Jung, H.; Kim, Y.O.; Ju, J.Y.; Shin, C.S. Development of lipase inhibitors from various derivatives of monascus pigment produced by Monascus fermentation. Food Chem. 2007, 101, 357–364. [Google Scholar] [CrossRef]
- Chen, X.J.; Yan, J.; Chen, J.; Gui, R.Y.; Wu, Y.Q.; Li, N. Potato pomace: An efficient resource for Monascus pigments production through solid-state fermentation. J. Biosci. Bioeng. 2021, 132, 167–173. [Google Scholar] [CrossRef]
- Xu, D.X.; Zheng, B.Y.; Che, Y.X.; Liu, G.R.; Yuan, Y.M.; Wang, S.J.; Cao, Y.P. The stability, microstructure, and microrheological properties of monascus pigment double emulsions stabilized by polyglycerol polyricinoleate and soybean protein Isolate. Front. Nutr. 2020, 7, 543421. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, L.; Li, J.; Oliveira, H.; Yang, N.; Jin, W.P.; Zhu, Z.Z.; Li, S.Y.; He, J.R. Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. LWT-Food Sci. Technol. 2020, 123, 109097. [Google Scholar] [CrossRef]
- Shaddel, R.; Hesari, J.; Azadmard-Damirchi, S.; Hamishehkar, H.; Fathi-Achachlouei, B.; Huang, Q. Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. Int. J. Biol. Macromol. 2018, 107, 1800–1810. [Google Scholar] [CrossRef]
- Sun, Y.; Chi, J.P.; Ye, X.Q.; Wang, S.; Liang, J.; Yue, P.X.; Xiao, H.; Gao, X.L. Nanoliposomes as delivery system for anthocyanins: Physicochemical characterization, cellular uptake, and antioxidant properties. LWT-Food Sci. Technol. 2020, 139, 110554. [Google Scholar] [CrossRef]
- Dhiman, N.; Sarvaiya, J.; Mohindroo, P. A drift on liposomes to proliposomes: Recent advances and promising approaches. J. Liposome Res. 2022, 32, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.M.; Yao, J.Y.; Liu, L.; Lu, S.J.; Lin, L.Y.; Pan, X.Y.; Hao, G.J.; Shen, J.Y. Preparation of liposome-encapsulated interferon alpha (IFN-α) vaccine and anti-grass carp reovirus effect. Aquac. Res. 2019, 50, 2600–2607. [Google Scholar] [CrossRef]
- Chi, J.P.; Ge, J.; Yue, X.Y.; Liang, J.; Sun, Y.; Gao, X.L.; Yue, P.X. Preparation of nanoliposomal carriers to improve the stability of anthocyanins. LWT 2019, 109, 101–107. [Google Scholar] [CrossRef]
- Caddeo, C.; Pucci, L.; Gabriele, M.; Carbone, C.; Fernàndez-Busquets, X.; Valenti, D.; Pons, R.; Vassallo, A.; Fadda, A.M.; Manconi, M. Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int. J. 2018, 538, 40–47. [Google Scholar] [CrossRef]
- Isailović, B.D.; Kostić, I.T.; Zvonar, A.; Đorđević, V.B.; Gašperlin, M.; Nedović, V.A.; Bugarski, B.M. Resveratrol loaded liposomes produced by different techniques. Innov. Food Sci. Emerg. Technol. 2013, 19, 181–189. [Google Scholar] [CrossRef]
- Song, F.F.; Yang, G.L.; Wang, Y.H.; Tian, S.J. Effect of phospholipids on membrane characteristics and storage stability of liposomes. Innov. Food Sci. Emerg. Technol. 2022, 81, 103155. [Google Scholar] [CrossRef]
- Ekici, L.; Simsek, Z.; Ozturk, I.; Sagdic, O.; Yetim, H. Effects of Temperature, Time, and pH on the Stability of Anthocyanin Extracts: Prediction of Total Anthocyanin Content Using Nonlinear Models. Food Anal. Methods 2013, 7, 1328–1336. [Google Scholar] [CrossRef]
- Chang, Q.; Fan, J.H.; Li, C.; Liu, C.H.; Shu, Q.F.; Deng, X.Y.; Su, Q.Q. Encapsulation of ultrasmall nanophosphors into liposomes by thin-film hydration. Eur. Phys. J. Spec. Top. 2022, 231, 621–629. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, L.S.; Shao, Y.C.; Wang, L.L.; He, J.R.; He, Y. Microencapsulation of Monascus red pigments by emulsification/internal gelation with freeze/spray-drying: Process optimization, morphological characteristics, and stability. LWT 2023, 173, 114227. [Google Scholar] [CrossRef]
- Fan, Y.L.; Chen, H.; Huang, Z.W.; Zhu, J.Z.; Wan, F.; Peng, T.T.; Pan, X.; Huang, Y.; Wu, C.B. Taste-masking and colloidal-stable cubosomes loaded with Cefpodoxime proxetil for pediatric oral delivery. Int. J. Pharm. 2020, 575, 118875. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.K.; Fan, J.; Yang, Y.; Xu, Y.; Chen, F.L.; Bian, X.; Xing, T.L.; Liu, L.L.; Yu, D.; Zhang, N. Enzymatic Hydrolysis of Broken Rice Protein: Antioxidant Activities by Chemical and Cellular Antioxidant Methods. Front. Nutr. 2021, 8, 788078. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, E.-S.R.; Abdelhakim, H.K.; Zakaria, Z. Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: Yield enhancement by gamma irradiation. Mater. Sci. Eng. C 2020, 107, 110318. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Lu, P.M.; Piao, J.H.; Xu, X.L.; Chen, J.; Zhu, L.; Jiang, J.G. Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior. LWT-Food Sci. Technol. 2014, 57, 686–695. [Google Scholar] [CrossRef]
- Tanaka, Y.; Uemori, C.; Kon, T.; Honda, M.; Wahyudiono; Machmudah, S.; Kanda, H.; Goto, M. Preparation of liposomes encapsulating β—carotene using supercritical carbon dioxide with ultrasonication. J. Supercrit. Fluids 2020, 161, 104848. [Google Scholar] [CrossRef]
- El-Aziz, E.; Elgayar, S.F.; Mady, F.M.; Abourehab, M.A.S.; Hasan, O.A.; Reda, L.M.; Alaaeldin, E. The Potential of Optimized Liposomes in Enhancement of Cytotoxicity and Apoptosis of Encapsulated Egyptian Propolis on Hep-2 Cell Line. Pharmaceutics 2021, 13, 2184. [Google Scholar] [CrossRef]
- Barroso, A.K.M.; Pierucci, A.P.T.R.; Freitas, S.P.; Torres, A.G.; Rocha-Leão, M.H.M.D. Oxidative stability and sensory evaluation of microencapsulated flaxseed oil. J. Microencapsul. 2014, 31, 193–201. [Google Scholar] [CrossRef]
- Kawashima, Y. Nanoparticulate systems for improved drug delivery. Adv. Drug Deliv. Rev. 2001, 47, 1–2. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhao, P.Q.; Liang, X.F.; Gong, X.Q.; Song, T.; Niu, R.F.; Chang, J. Folate-PEG coated cationic modified chitosan—Cholesterol liposomes for tumor-targeted drug delivery. Biomaterials 2010, 31, 4129–4138. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Wang, X.; Lu, B.; Zhang, J. Preparation of blueberry anthocyanin liposomes and changes of vesicle properties, physicochemical properties, in vitro release, and antioxidant activity before and after chitosan modification. Food Sci. Nutr. 2022, 10, 75–87. [Google Scholar] [CrossRef]
- Zhao, L.S.; Temelli, F.; Chen, L.Y. Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. J. Funct. Foods 2017, 34, 159–167. [Google Scholar] [CrossRef]
- Grit, M.; Crommelin, D.J. The effect of surface charge on the hydrolysis kinetics of partially hydrogenated egg phosphatidylcholine and egg phosphatidylglycerol in aqueous liposome dispersions. Biochim. Biophys. Acta BBA Lipids Lipid Metab. 1993, 1167, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Pajean, M.; Herbaged, X. Effect of collagen on liposome permeability. Int. J. Pharm. 1993, 91, 209–216. [Google Scholar] [CrossRef]
- Silveira, S.T.; Daroit, D.J. Stability Modeling of Red Pigments Produced by Monascus purpureus in Submerged Cultivations with Sugarcane Bagasse. Food Bioprocess Technol. 2013, 6, 1007–1014. [Google Scholar] [CrossRef]
- Jung, H.; Kim, C.; Shin, C.S. Enhanced photostability of Monascus Pigments derived with various amino acids via fermentation. J. Agric. Food Chem. 2005, 53, 7108–7114. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Xia, S.Q.; Xue, J.; Xie, J.H.; Feng, B.; Zhang, X.M. Liposomes as vehicles for lutein: Preparation, stability, liposomal membrane dynamics, and structure. J. Agric. Food Chem. 2013, 61, 8175–8184. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.d.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Tai, K.; Rappolt, M.; Mao, L.; Gao, Y.; Li, X.; Yuan, F. The stabilization and release performances of curcumin-loaded liposomes coated by high and low molecular weight chitosan. Food Hydrocolloids 2020, 99, 105355. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Li, X. Controlling the Interaction between Starchy Polyelectrolyte Layers for Adjusting Protein Release from Nanocapsules in a Simulated Gastrointestinal Tract. Foods 2022, 11, 2681. [Google Scholar] [CrossRef]
- Feldman, N.B.; Gromovykh, T.I.; Sedyakina, N.E.; Krasnyuk, I.I.; Lutsenko, S.V. Cytotoxic and Antitumor Activity of Liposomal Silibinin. BioNanoScience 2018, 8, 971–976. [Google Scholar] [CrossRef]
- Zeng, H.Y.; Qin, L.K.; Liu, X.Y.; Miao, S. Increases of lipophilic antioxidants and anticancer activity of coix seed fermented by Monascus purpureus. Foods 2021, 10, 566. [Google Scholar] [CrossRef] [PubMed]
Zero Order | First Order | Higuchi | Korsmeyer–Peppas | |||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | K0(h−1) | R2 | K1(h−1) | R2 | KH(h−1/2) | R2 | KKP(h-n) | n | ||
SGF | MRPs | 0.9884 | 0.1236 | 0.9703 | 0.1990 | 0.9453 | 0.2787 | 0.9897 | 0.1899 | 0.7451 |
MRPL | 0.9863 | 0.1067 | 0.9510 | 0.1526 | 0.8782 | 0.2323 | 0.9874 | 0.1014 | 1.0307 | |
SIF | MRPs | 0.9490 | 0.1541 | 0.9833 | 0.3115 | 0.9775 | 0.3607 | 0.9870 | 0.2623 | 0.6945 |
MRPL | 0.9916 | 0.1238 | 0.9834 | 0.1910 | 0.9215 | 0.2753 | 0.9917 | 0.1238 | 0.9096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, P.; Zhu, L.; Lai, H.; Xu, S.; Dong, X.; Shao, Y.; Wang, L.; Cheng, S.; Liu, G.; He, J.; et al. Monascus Red Pigment Liposomes: Microstructural Characteristics, Stability, and Anticancer Activity. Foods 2023, 12, 447. https://doi.org/10.3390/foods12030447
Long P, Zhu L, Lai H, Xu S, Dong X, Shao Y, Wang L, Cheng S, Liu G, He J, et al. Monascus Red Pigment Liposomes: Microstructural Characteristics, Stability, and Anticancer Activity. Foods. 2023; 12(3):447. https://doi.org/10.3390/foods12030447
Chicago/Turabian StyleLong, Pengcheng, Lisha Zhu, Huafa Lai, Suyin Xu, Xingxing Dong, Yanchun Shao, Liling Wang, Shuiyuan Cheng, Gang Liu, Jingren He, and et al. 2023. "Monascus Red Pigment Liposomes: Microstructural Characteristics, Stability, and Anticancer Activity" Foods 12, no. 3: 447. https://doi.org/10.3390/foods12030447
APA StyleLong, P., Zhu, L., Lai, H., Xu, S., Dong, X., Shao, Y., Wang, L., Cheng, S., Liu, G., He, J., & He, Y. (2023). Monascus Red Pigment Liposomes: Microstructural Characteristics, Stability, and Anticancer Activity. Foods, 12(3), 447. https://doi.org/10.3390/foods12030447