The Influence of the Use of Different Polysaccharide Coatings on the Stability of Phenolic Compounds and Antioxidant Capacity of Chokeberry Hydrogel Microcapsules Obtained by Indirect Extrusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Reagents, and Standards
2.2. Preparation of Hydrogel Beads
2.3. Extraction Procedure
2.4. Identification and Quantification of Phenolic Compounds
2.5. Determination of Antioxidant Activity by DPPH, ABTS, and FRAP Assays
2.6. Optical Microscopy Analysis
2.7. Statistical Analysis
3. Results
3.1. Analysis of Polyphenolic Compounds
3.2. Analysis of Antioxidant Capacity
3.3. Microscopic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project Expert Report. 2018. Available online: https://www.wcrf.org/dietandcancer. (accessed on 1 May 2022).
- Broeks, M.J.; Biesbroek, S.; Over, E.A.B.; van Gils, P.F.; Toxopeus, I.; Beukers, M.H.; Temme, E.H.M. A social cost-benefit analysis of meat taxation and a fruit and vegetables subsidy for a healthy and sustainable food consumption in the Netherlands. BMC Public Health 2020, 20, 643. [Google Scholar] [CrossRef] [PubMed]
- Bushmeleva, K.; Vyshtakalyuk, A.; Terenzhev, D.; Belov, T.; Nikitin, E.; Zobov, V. Antioxidative and Immunomodulating Properties of Aronia melanocarpa Extract Rich in Anthocyanins. Plants 2022, 11, 3333. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, Y.; Liu, X.; Chen, X.; Ding, C.; Dong, L.; Zhang, J.; Sun, S.; Ding, Q.; Khatoom, S.; et al. Chokeberry (Aronia melanocarpa) as a new functional food relationship with health: An overview. J. Future Foods 2021, 1, 168–178. [Google Scholar] [CrossRef]
- Sidor, A.; Drożdżyńska, A.; Gramza-Michałowska, A. Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors—An overview. Trends Food Sci. Technol. 2019, 89, 45–60. [Google Scholar] [CrossRef]
- Fang, J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 2015, 31, 1301–1306. [Google Scholar] [CrossRef]
- Frakolaki, G.; Giannou, V.; Kekos, D.; Tzia, C. A review of the microencapsulation techniques for the incorporation of pro-biotic bacteria in functional foods. Crit. Rev. Food Sci. Nutr. 2020, 61, 1515–1536. [Google Scholar] [CrossRef]
- Ćorković, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Hydrogels: Characteristics and Application as Delivery Systems of Phenolic and Aroma Compounds. Foods 2021, 10, 1252. [Google Scholar] [CrossRef]
- Mohammadalinejhad, S.; Kurek, M.A. Microencapsulation of anthocyanins–critical review of techniques and wall materials. Appl. Sci. 2021, 11, 3936. [Google Scholar] [CrossRef]
- Fangmeier, M.; Lehn, D.N.; Maciel, M.J.; Volken de Souza, C.F. Encapsulation of Bioactive Ingredients by Extrusion with Vibrating Technology: Advantages and Challenges. Food Bioprocess Technol. 2019, 12, 1472–1486. [Google Scholar] [CrossRef]
- Aguirre Calvo, T.R.; Santagapita, P.R.; Perullini, M. Functional and structural effects of hydrocolloids on Ca(II)-alginate beads containing bioactive compounds extracted from beetroot. LWT 2019, 111, 520–526. [Google Scholar] [CrossRef]
- Ahmad, A.; Mubarak, N.M.; Jannat, F.T.; Ashfaq, T.; Santulli, C.; Rizwan, M.; Najda, A.; Bin-Jumah, M.; Abdel-Daim, M.M.; Hussain, S.; et al. A Critical Review on the Synthesis of Natural Sodium Alginate Based Composite Materials: An Innovative Biological Polymer for Biomedical Delivery Applications. Processes 2021, 9, 137. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Komes, D.; Karlovic, S.; Djakovic, S.; Spoljaric, I.; Mrsic, G.; Jezek, D. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chem. 2015, 167, 378–386. [Google Scholar] [CrossRef]
- Ćorković, I.; Pichler, A.; Ivić, I.; Šimunović, J.; Kopjar, M. Microencapsulation of Chokeberry Polyphenols and Volatiles: Application of Alginate and Pectin as Wall Materials. Gels 2021, 7, 231. [Google Scholar] [CrossRef] [PubMed]
- Haładyn, K.; Tkacz, K.; Wojdyło, A.; Nowicka, P. The Types of Polysaccharide Coatings and Their Mixtures as a Factor Affecting the Stability of Bioactive Compounds and Health-Promoting Properties Expressed as the Ability to Inhibit the α-Amylase and α-Glucosidase of Chokeberry Extracts in the Microencapsulation Process. Foods 2021, 10, 1994. [Google Scholar] [CrossRef]
- Hadiyanto, H.; Christwardana, M.; Suzery, M.; Sutanto, H.; Munti Nilamsari, A.; Yunanda, A. Effects of carrageenan and chitosan as coating materials on the thermal degradation of microencapsulated phycocyanin from Spirulina sp. Int. J. Food Eng. 2019, 15, 20180290. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Cervantes, J.; Correa-Murrieta, M.M.; Sánchez-Duarte, R.G.; Cruz-Flores, P.; de la Mora-López, G.S. Chitosan. In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 485–493. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Dong, H.; Li, X.; Zhang, J.; Ramaswamy, S.; Xu, F. Pectin in biomedical and drug delivery applications: A review. Int. J. Biol. Macromol. 2021, 185, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Encapsulator B-390 for Innovative Microbeads and Microcapsules. Available online: https://assets.buchi.com/image/upload/v1605791517/pdf/Brochures/PB_11592751_B-390_en.pdf (accessed on 13 July 2022).
- Kopjar, M.; Ivić, I.; Buljeta, I.; Ćorković, I.; Vukoja, J.; Šimunović, J.; Pichler, A. Volatiles and antioxidant activity of citrus fiber/blackberry gels: Influence of sucrose and trehalose. Plants 2021, 10, 1640. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Kolniak-Ostek, J.; Stokłosa, D. Effect of different sizes of ceramic membranes in the process of microfiltration on physicochemical parameters of chokeberry juice. Eur. Food Res. Technol. 2019, 245, 1263–1275. [Google Scholar] [CrossRef] [Green Version]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Operating Manual Axiolab 5. Available online: https://www.ryfag.ch/fileadmin/user_upload/Axiolab_5_-_manual_low.pdf (accessed on 20 August 2022).
- Płatosz, N.; Bączek, N.; Topolska, J.; Szawara-Nowak, D.; Skipor, J.; Milewski, S.; Wiczkowski, W. Chokeberry anthocyanins and their metabolites ability to cross the blood-cerebrospinal fluid barrier. Food Chem. 2020, 346, 128730. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Kolniak-Ostek, J. Influence of different pectinolytic enzymes on bioactive compound content, antioxidant potency, colour and turbidity of chokeberry juice. Eur. Food Res. Technol. 2018, 244, 1907–1920. [Google Scholar] [CrossRef] [Green Version]
- Oszmiański, J.; Lachowicz, S. Effect of the production of dried fruits and juice from chokeberry (Aronia melanocarpa L.) on the content and antioxidative activity of bioactive compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef]
- Lin, S.-F.; Chen, Y.-C.; Chen, R.-N.; Chen, L.-C.; Ho, H.-O.; Tsung, Y.-H.; Sheu, M.-T.; Liu, D.-Z. Improving the stability of astaxanthin by microencapsulation in calcium alginate beads. PLoS ONE 2016, 11, 0153685. [Google Scholar] [CrossRef] [Green Version]
- Zam, W.; Bashour, G.; Abdelwahed, W.; Khayata, W. Alginate-pomegranate peels’ polyphenols beads: Effects of formulation parameters on loading efficiency. Braz. J. Pharm. Sci. 2014, 50, 741–748. [Google Scholar] [CrossRef] [Green Version]
- Caballero, S.; Li, Y.O.; McClements, D.J.; Davidov-Pardo, G. Encapsulation and delivery of bioactive citrus pomace polyphenols: A review. Crit. Rev. Food Sci. Nutr. 2021, 62, 8028–8044. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.-Y.; Wu, J.; Luo, X.-Q.; Liu, K.; Zhou, W.-J.; Zhang, G.-W. Research progress of inhibitory effects of polyphenolic compounds on xanthine oxidase. Food Mach. 2021, 37, 1–8. [Google Scholar] [CrossRef]
- Qu, M.; Chen, Q.; Sun, B.-Y.; Lv, M.-S.; Liu, L.-L.; Zhu, X.-Q. Advances in studies on the functional properties of polyphenols and their interactions with proteins and polysaccharides. Sci. Technol. Food Ind. 2020, 42, 405–413. [Google Scholar] [CrossRef]
- Wen, C.; Song, D.; Zhuang, L.; Liu, G.; Liang, L.; Zhang, J.; Liu, X.; Li, Y.; Xu, X. Isolation and identification of polyphenol monomers from celery leaves and their structure-antioxidant activity relationship. Process Biochem. 2022, 21, 69–77. [Google Scholar] [CrossRef]
- Wang, T.-Y.; Li, Q.; Bi, K.-S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Tuo, X.; Wang, L.; Tundis, R.; Portillo, M.P.P.; Simal-Gandara, J.; Yu, Y.; Zou, L.; Xiao, J.; Deng, J. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends Food Sci. Technol. 2021, 111, 114–127. [Google Scholar] [CrossRef]
- Pedrali, D.; Barbarito, S.; Lavelli, V. Encapsulation of grape seed phenolics from winemaking byproducts in hydrogel microbeads—Impact of food matrix and processing on the inhibitory activity towards α-glucosidase. LWT 2020, 133, 109952. [Google Scholar] [CrossRef]
- Mercado-Mercado, G.; de la Rosa, L.A.; Alvarez-Parrilla, E. Effect of pectin on the interactions among phenolic compounds determined by antioxidant capacity. J. Mol. Struct. 2020, 1199, 126967. [Google Scholar] [CrossRef]
RT (min) | UV λmax (nm) | [M − H]−/[M + H]+ (m/z) | MS/MS (m/z) | Tentative Identification | Chokeberry Juice | Chokeberry Preparation |
---|---|---|---|---|---|---|
Anthocyanins | ||||||
3.28 | 242, 521 | 737.1551 | 575.1198/287.9778 | Cyanidin-3-hexoside-(epi)catechin 2 | 23.05 ± 0.01 e | 160.44 ± 3.00 e |
3.81 | 283, 524 | 707.1428 | 329.0815/287.0707 | Cyanidin-3-pentoside-(epi)catechin 2 | 23.15 ± 0.01 e | 198.40 ± 3.99 d |
4.04 | 282, 520 | 1025.209 | 575.1270/287.0711 | Cyanidin-3-hexoside-(epi)catechin-(epi)catechin 2 | 27.42 ± 0.01 d | 230.22 ± 8.01 c |
4.39 | 280, 520 | 449.1134 | 287.0675 | Cyanidin-3-O-galactoside 1 | 520.45 ± 1.02 a | 2759.33 ± 23.19 a |
4.86 | 279, 515 | 449.112 | 287.0672 | Cyanidin-3-O-glucoside 1 | 39.59 ± 0.01 c | 250.91 ± 2.15 c |
4.88 | 279, 514 | 419.1054 | 287.0676 | Cyanidin-3-O-arabinoside 2 | 294.03 ± 1.05 b | 1015.24 ± 21.02 b |
5.51 | 279, 515 | 419.1037 | 287.0732 | Cyanidin-3-O-xyloside 2 | 1.17 ± 0.00 g | 87.24 ± 2.79 g |
6.31 | 280, 515 | 287.0709 | Cyanidin 2 | 1.98 ± 0.00 f | 99.37 ± 1.78 f | |
Phenolic acids | ||||||
3.26 | 322 | 353.097 | 191.0697/179.0483 | Neochlorogenic acid 1 | 180.22 ± 1.21 b | 1128.43 ± 25.87 b |
4.01 | 311 | 337.9106 | 191.0766 | 3-O-p-Coumaroylquinic acid 1 | 22.37 ± 0.20 c | 150.53 ± 5.15 c |
4.37 | 322 | 353.0978 | 191.0699 | Chlorogenic acid 1 | 694.04 ± 2.41 a | 1587.45 ± 43.44 a |
Flavan-3-ols | ||||||
3.78 | 285 | 289.0684 | (+)-Catechin 1 | 10.69 ± 0.20 c | 87.92 ± 3.98 c | |
5.34 | 277 | 289.0881 | (-)-Epicatechin 1 | 199.66 ± 1.56 a | 570.43 ± 14.36 a | |
6.74 | 280 | 577.1315 | 289.0522 | Procyanidin B2 1 | 33.83 ± 0.12 b | 180.35 ± 5.12 b |
Flavonols | ||||||
6.23 | 255, 353 | 625.1376 | 301.0378 | Quercetin-di-hexoside 2 | 0.26 ± 0.00 g | 38.35 ± 2.77 f |
6.30 | 260, 353 | 625.1610 | 301.0514 | Quercetin-di-hexoside 2 | 0.64 ± 0.00 g | 40.54 ± 3.01 f |
6.62 | 255, 353 | 595.1298 | 431.1937/301.0433 | Quercetin-3-O-vicianoside 2 | 6.36 ± 0.02 d | 180.66 ± 9.19 c |
6.84 | 230, 323 | 609.2298 | 301.0441 | Quercetin-3-O-robinobioside 2 | 17.81 ± 0.01 b | 215.15 ± 8.22 b |
7.00 | 255, 320 | 609.1415 | 301.0403 | Quercetin-3-O-rutinoside 1 | 9.91 ± 0.01 c | 176.36 ± 8.98 c |
7.12 | 255, 352 | 463.0899 | 301.0455 | Quercetin-3-O-galactoside 1 | 3.79 ± 0.01 e | 140.22 ± 6.76 d |
7.22 | 255, 352 | 463.0901 | 301.0428 | Quercetin-3-O-glucoside 1 | 39.89 ± 0.02 a | 309.71 ± 10.47 a |
7.79 | 265, 345 | 623.1624 | 463.0815/315.7207 | Isorhamnetin rhamnosyl-hexoside 2 | 1.12 ± 0.00 f | 63.72 ± 3.12 e |
Flavanones | ||||||
7.4 | 287 | 281.0098 | 463.1537 | Eriodictyol glucuronide 1 | 35.99 ± 0.22 a | 234.97 ± 9.18 a |
SUM | 2187.42 ± 5.48 B | 9905.94 ± 89.97 A |
Total Anthocyanins | Total Phenolic acids | Total Flavan-3-ols | Total Flavonols | Total Flavanones | Total Phenolics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Not Stored | 1 Month | Not Stored | 1 Month | Not Stored | 1 Month | Not Stored | 1 Month | Not Stored | 1 Month | Not Stored | 1 Month | ||
of Storage | of Storage | of Storage | of Storage | of Storage | of Storage | ||||||||
non-caps | 930.84 ± 21.23 b | 450.99 ± 11.48 b | 896.63 ± 17.71 b | 406.11 ± 12.98 b | 244.18 ± 9.47 b | 193.00 ± 9.82 b | 79.78 ± 2.01 b | 21.57 ± 0.32 c | 35.99 ± 0.32 b | 10.28 ± 0.19 cd | 2187.42 ± 5.48 b | 1081.95 ± 17.47 b | |
Chokeberry | Alginate | 184.73 ± 5.43 h | 101.99 ± 8.39 h | 176.40 ± 5.37 g | 120.88 ± 4.81 f | 40.61 ± 1.12 f | 27.19 ± 0.41 f | 10.64 ± 0.12 e | 6.40 ± 0.12 e | 4.38 ± 0.14 f | 2.60 ± 0.12 f | 416.76 ± 8.93 j | 259.06 ± 8.84 g |
Juice | Alg + Pect | 201.15 ± 7.17 g | 153.12 ± 10.12 g | 180.22 ± 4.99 fg | 100.23 ± 5.25 g | 43.59 ± 2.43 f | 32.61 ± 0.36 f | 11.01 ± 0.35 e | 6.50 ± 0.22 e | 5.15 ± 0.21 e | 2.99 ± 0.15 f | 441.12 ± 9.54 i | 295.45 ± 7.32 f |
Alg + Chit | 215.32 ± 8.55 g | 99.52 ± 5.67 h | 201.17 ± 5.68 f | 85.15 ± 1.34 h | 62.18 ± 2.99 e | 15.12 ± 0.29 g | 12.32 ± 0.68 e | 4.20 ± 0.14 f | 5.25 ± 0.42 e | 1.85 ± 0.04 f | 496.24 ± 9.28 h | 205.84 ± 9.47 h | |
Alg + Carr | 259.59 ± 10.25 f | 161.92 ± 9.58 g | 202.34 ± 5.13 f | 123.12 ± 4.32 f | 65.65 ± 1.18 e | 45.38 ± 0.61 e | 15.05 ± 0.47 e | 10.21 ± 0.98 d | 6.01 ± 0.55 e | 4.56 ± 0.09 e | 548.64 ± 10.42 g | 345.19 ± 6.16 e | |
non-caps | 4801.15 ± 48.12 a | 2304.58 ± 33.21 a | 2866.41 ± 29.19 a | 1289.88 ± 17.36 a | 838.70 ± 17.71 a | 662.57 ± 13.72 a | 1164.71 ± 15.62 a | 349.47 ± 11.27 a | 234.97 ± 10.10 a | 87.98 ± 9.87 a | 9905.94 ± 89.97 a | 4694.48 ± 32.91 a | |
Chokeberry | Alginate | 429.04 ± 9.88 e | 278.22 ± 4.93 f | 395.06 ± 7.59 d | 161.95 ± 6.63 d | 117.04 ± 2.73 d | 56.48 ± 0.94 e | 30.82 ± 1.12 d | 18.08 ± 0.76 c | 16.90 ± 0.76 d | 8.85 ± 1.01 d | 988.84 ± 22.61 f | 523.58 ± 19.93 d |
Preparation | Alg + Pect | 472.78 ± 11.45 d | 340.42 ± 7.46 d | 404.08 ± 7.63 d | 179.75 ± 5.72 d | 128.72 ± 3.01 d | 88.26 ± 1.25 d | 40.19 ± 0.98 c | 26.53 ± 1.03 b | 24.90 ± 0.69 c | 17.97 ± 1.22 c | 1070.67 ± 24.86 e | 652.91 ± 18.89 c |
Alg + Chit | 484.61 ± 12.22 d | 303.12 ± 8.33 e | 374.64 ± 9.23 e | 140.69 ± 3.55 e | 168.61 ± 2.98 c | 32.93 ± 1.01 f | 38.98 ± 1.32 cd | 17.97 ± 1.00 c | 35.57 ± 1.48 b | 13.55 ± 0.98 c | 1102.40 ± 26.26 d | 508.26 ± 19.27 d | |
Alg + Carr | 521.07 ± 11.89 c | 400.51 ± 7.15 c | 439.78 ± 8.18 c | 321.95 ± 7.64 c | 180.56 ± 3.15 c | 159.97 ± 2.04 c | 46.19 ± 1.02 c | 28.54 ± 0.68 b | 47.34 ± 1.42 b | 28.43 ± 1.13 b | 1234.94 ± 23.878 c | 939.41 ± 19.99 a |
DPPH | ABTS | FRAP | |||
---|---|---|---|---|---|
Chokeberry juice | Not stored | Non-encapsulated juice | 8.80 ± 0.09 b | 5.04 ± 0.21 c | 4.49 ± 0.53 c |
Alginate | 0.90 ± 0.02 g | 0.66 ± 0.01 i | 0.65 ± 0.01 h | ||
Alg + pect | 0.91 ± 0.02 g | 0.67 ± 0.01 i | 0.67 ± 0.02 h | ||
Alg + chit | 0.94 ± 0.03 g | 0.69 ± 0.01 i | 0.71 ± 0.02 h | ||
Alg + carr | 0.95 ± 0.03 g | 0.70 ± 0.02 i | 0.72 ± 0.02 h | ||
1 month of storage | Non-encapsulated juice | 8.67 ± 0.06 bc | 4.90 ± 0.17 d | 4.36 ± 0.43 c | |
Alginate | 0.77 ± 0.02 h | 0.56 ± 0.01 j | 0.29 ± 0.00 i | ||
Alg + pect | 0.80 ± 0.02 h | 0.58 ± 0.01 j | 0.35 ± 0.00 i | ||
Alg + chit | 0.65 ± 0.02 i | 0.40 ± 0.00 k | 0.15 ± 0.00 j | ||
Alg + carr | 0.93 ± 0.03 g | 0.68 ± 0.02 i | 0.71 ± 0.03 h | ||
Chokeberry preparation | Not stored | Non-encapsulated preparation | 15.23 ± 0.91 a | 14.33 ± 0.92 a | 14.19 ± 0.81 a |
Alginate | 1.25 ± 0.06 f | 1.19 ± 0.04 g | 1.34 ± 0.06 f | ||
Alg + pect | 1.32 ± 0.06 e | 1.20 ± 0.05 g | 1.4 ± 0.07 f | ||
Alg + chit | 1.35 ± 0.05 de | 1.31 ± 0.04 f | 1.76 ± 0.08 e | ||
Alg + carr | 1.41 ± 0.06 d | 1.39 ± 0.06 e | 1.89 ± 0.08 d | ||
1 month of storage | Non-encapsulated preparation | 8.50 ± 0.76 c | 7.90 ± 0.69 b | 8.20 ± 0.66 b | |
Alginate | 0.95 ± 0.07 g | 0.69 ± 0.01 i | 0.70 ± 0.01 h | ||
Alg + pect | 0.99 ± 0.07 g | 0.83 ± 0.02 hi | 0.78 ± 0.03 g | ||
Alg + chit | 0.65 ± 0.05 i | 0.40 ± 0.01 k | 0.34 ± 0.00 i | ||
Alg + carr | 1.34 ± 0.08 de | 1.27 ± 0.07 f | 1.70 ± 0.06 e | ||
Correlation coefficient | Sum of phenolic compounds | 0.85 | 0.95 | 0.96 | |
Anthocyanins | 0.87 | 0.96 | 0.97 | ||
Phenolic acids | 0.90 | 0.97 | 0.98 | ||
Flavan-3-ols | 0.88 | 0.96 | 0.97 | ||
Flavonols | 0.82 | 0.92 | 0.92 | ||
Flavanones | 0.79 | 0.91 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stach, M.; Kolniak-Ostek, J. The Influence of the Use of Different Polysaccharide Coatings on the Stability of Phenolic Compounds and Antioxidant Capacity of Chokeberry Hydrogel Microcapsules Obtained by Indirect Extrusion. Foods 2023, 12, 515. https://doi.org/10.3390/foods12030515
Stach M, Kolniak-Ostek J. The Influence of the Use of Different Polysaccharide Coatings on the Stability of Phenolic Compounds and Antioxidant Capacity of Chokeberry Hydrogel Microcapsules Obtained by Indirect Extrusion. Foods. 2023; 12(3):515. https://doi.org/10.3390/foods12030515
Chicago/Turabian StyleStach, Marcelina, and Joanna Kolniak-Ostek. 2023. "The Influence of the Use of Different Polysaccharide Coatings on the Stability of Phenolic Compounds and Antioxidant Capacity of Chokeberry Hydrogel Microcapsules Obtained by Indirect Extrusion" Foods 12, no. 3: 515. https://doi.org/10.3390/foods12030515
APA StyleStach, M., & Kolniak-Ostek, J. (2023). The Influence of the Use of Different Polysaccharide Coatings on the Stability of Phenolic Compounds and Antioxidant Capacity of Chokeberry Hydrogel Microcapsules Obtained by Indirect Extrusion. Foods, 12(3), 515. https://doi.org/10.3390/foods12030515