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Several factors influence consumers’ choices of food products. While price remains the
main criterion, quality, pleasure, convenience, and health are also important driving factors
in food market evolution. Food enterprises are making significant efforts to manufacture
products that meet consumers’ demands without compromising on safety standards. Ad-
ditionally, the food industry also aims to improve the efficiency of transformation and
conservation processes by minimizing energy consumption, process duration, and waste
generation. However, foods are highly complex systems in which: (i) non-linear dynamics
and interactions among different temporal and spatial scales must be considered; (ii) a
wide range of physical phenomena (such as evaporation, mechanical changes, thawing,
energy/mass transport, and color changes) occur; (iii) different food matrices (such as meat,
vegetables, cereal, milk, and juices) with different microstructures and properties are in-
volved; and (iv) the number of quality and safety indicators (such as bacteria, total volatile
basic nitrogen, color, texture, odor, and sensory characteristics) is substantial. Mathematical
modeling and simulation are key elements that allow us to gain a deeper understanding of
food processes and enable the use of tools such as optimization and real-time control to
improve their efficiency. This special issue aims to gather research on the development of
dynamic mathematical models that describe the relevant factors in food processes from
the perspectives of food safety (chemical or microbiological), food quality (organoleptic
or nutritional), or resource consumption. Additionally, the development of model-based
tools to improve food processes is also considered. This includes decision-making and opti-
mization tools, the characterization of uncertainty/variability in model predictions, model
simulation techniques, software sensors, and software development. The contributions
published in this Special Issue can be grouped into two categories according to their main
research topic: the evolution of safety and quality indicators in unprocessed food systems,
and transformation and preservation processes.

1. Evolution of Safety and Quality Indicators in Unprocessed Food Systems

The evolution of quality in food products is mainly dependent on microbial content,
but also on other indicators such as nucleotide degradation; the formation of volatile
nitrogenous bases or biogenic amines; and texture. In this Special Issue, we present four
research articles on different aspects of bacterial growth or inactivation and a review
paper analyzing the mathematical models in the literature that describe and predict food
quality indicators.

1.1. Bacterial Dynamics

Microbial growth and inactivation rates are highly influenced by the food matrix.
Therefore, matrix microstructure is a main factor to consider when deriving mathematical
models that describe microbial dynamics in food systems. Verheyen and Van Impe [1]
provide a comprehensive review of the models developed during the last two decades that
study microstructure influence. Two types of model are identified: (i) macroscale secondary
models including food microstructural factors, and (ii) microscale semi-mechanistic models.
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The selection of the best approach depends on the particular application, the accuracy
required, and the available computational power. The authors also identified current
research trends: (i) the study of the effect of intrinsic factors on microbial dynamics, and
(ii) the development of models considering the influence of food microstructure during
non-thermal processes.

Some bacteria, such as Carnobacterium maltaromaticum CNCM I-3298, can be used in
food biopreservation, flavor development processes, or in biological time–temperature
integrators to track temperature variations during transport and storage. Puentes et al. [2]
used the reaction scheme mechanism to derive an accurate mathematical model that
describes the growth of C. maltaromaticum and the production of formic acid, acetic acid,
lactic acid, and ethanol from trehalose. The surface response method was used to describe
the relationships between the operating conditions (temperature and pH) and the specific
growth and production rates. The authors also illustrated how the model can be used to
compute the optimal operating conditions of the process (T and pH). Finally, they also
proposed some interesting research directions such as incorporating the effects of other
culture parameters or understanding the inhibition mechanisms of metabolites.

The efficiency of treatments to inactivate bacteria can be assessed by detecting and
quantifying the sublethal injury of pathogenic microorganisms. However, existing methods
of modeling the evolution of sublethal injury (SI) present several disadvantages related to
the frequent occurrence of SI trends in these methods, which are, in part, artifacts. Akker-
mans et al. [3] proposed a new approach to modeling the evolution of SI during microbial
inactivation that avoids unrealistic calculations. The method, based on the description
of inactivation kinetics between subpopulations of healthy, sublethally injured, and dead
cells, was designed to be used in combination with any existing microbial inactivation
model. Log-linear inactivation, biphasic inactivation, and log-linear inactivation with tail-
ing were used to validate the approach. The advantages of this approach make it suitable
for describing SI during food processes.

Shewanella putrefaciens is one of the most important Specific Spoilage Organisms (SSOs)
in fish products. Yi and Xie [4] focused on designing a nondestructive method, based on
the use of an electronic nose, to describe the growth of S. putrefaciens during fish spoilage.
Bacterial concentration was described using two classical primary models—Gompertz
and logistic—whereas the dependence of growth rate and lag time on temperature was
modeled using the square root model. The authors also derived a regression model
based on the partial least squares method to correlate the electronic nose and electrical
conductivity measurements with the spoilage potential of S. putrefaciens. Finally, gas
chromatography/mass spectrometry was used to determine the characteristic volatile
organic compounds of tuna inoculated with S. putrefaciens.

1.2. Other Quality Indicators

The development of methods to describe the evolution of other quality indicators has
gained relevance in recent decades. García et al. [5] presented a comprehensive review of
the different indicators used in the literature to assess the quality of fresh fish; the stress
variables that affect the evolution of such indicators; and the mathematical models available
to describe such evolution. The work also presented the main challenges currently faced in
food quality modeling:

(i) There is a lack of mathematical models for some critical indicators, such as nutrients
and odor.

(ii) There are many different model structures but a lack of proper comparisons between
alternatives.

(iii) Uncertainty analysis of model parameters and bacterial load is usually missed.
(iv) Model validation is usually disregarded.
(v) The relationships between the shelf life and growth of SSOs are not well understood

and are usually not described in dynamic modeling.
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(vi) The potential of current models is not fully exploited towards their integration into
software systems for online quality prediction.

2. Preservation and Transformation Processes

Preservation and transformation processes are of paramount importance in food
systems. This Special Issue includes four articles focusing on different aspects of the
fermentation process and three manuscripts that consider thermal processes.

2.1. Fermentation Processes

Mathematical models are useful tools to understand food systems, and combined with
proper methodologies such as optimization, control, or scheduling, they enable the design
of food processes and their operating conditions. Ritonja et al. [6] derived a fourth-order
non-linear state-space model to explain the effect of temperature on the dynamics of CO2
produced during milk fermentation. The structure of the proposed model is compact and
simpler than other options in the literature, although it is able to represent experimental
behavior. The authors also suggest that a non-linear adaptive control approach would
be a reliable option to design a control law to force the process to follow the desired
reference trajectory.

Fermentation is also used to ensure the safety and quality of foods, and to increase
product shelf life. Predictive microbiology can be exploited to describe the growth and
inactivation of bacteria as a function of the fermentation conditions. Racioppo et al. [7]
used the Food Spoilage and Safety Predictor to model the effects of stress variables (such
as temperature, pH, and salt) on the growth of lactic acid bacteria in fermented smoked
fish. The maximal growth rate and the time taken to attain the critical threshold were
modeled through a multiple regression procedure. This model was used to optimize the
production of smoked fermented fish by combining the variables through a fractional
design of experiments. The authors showed that the most critical factor in the fermentation
process was liquid smoke, followed by temperature and salt.

Rapaport et al. [8] proposed a simple model that includes a maintenance term (giving
rise to a variable yield) to describe the growth of yeast on nitrogen during the fermentation
of wine. This maintenance term can explain a consumption of nitrogen that is not entirely
converted into biomass. Additionally, the variable yield, that can be estimated from data,
gives the approach the flexibility to suit different kinds of models or experimental data with
a single common structure. The maintenance term encodes the underlying mechanisms of
transporters and carbohydrate accumulation. The authors showed that this simple model
can reproduce the experimental data and results of more sophisticated models, bringing
new perspectives to the control of wine fermentation through the addition of nitrogen.

Dynamic models describing food processes must be accurate and reliable, but they
must also be compatible with measurable variables in real industrial processes. Zamudio-
Lara et al. [9] proposed two dynamic models of beer fermentation and performed parameter
estimation, structural identifiability analysis, observability analysis, and cross-validation to
assess the models’ predictive capabilities. The proposed models were based on biomass
dynamics and CO2. A set of variables that should be monitored for each model to achieve
complete observability was provided. The estimation procedure included some mathemati-
cal relationships to describe the thermal dependence of the kinetic parameters proposed,
leading to a good prediction of the experimental data for both models. These new models
enable measurement implementations in order to identify and quantify the process vari-
ables, thus improving process efficiency and controllability. These new models are good
candidates for model-based process control in beer fermentation.

2.2. Thermal Processes

The analysis of multiple objectives is crucial when designing dynamic food processes.
The different dynamics of the considered objectives may lead to counterintuitive conclu-
sions. Peñalver-Soto et al. [10], the authors analyzed the microbial inactivation of Geobacillus
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stearothermophilus and acrylamide production in the thermal processing of pureed potato
and prune juice, which may be present in infant formulations. The authors found that to
ensure proper microbial inactivation and reduce acrylamide formation, high-temperature
processes (with a short application time) are needed. This could be counterintuitive as
acrylamide formation increases along with temperature. However, the sensitivities of the
objectives to the process variables make the dynamics of acrylamide formation much slower
than those of microbial inactivation at high temperatures. These results may facilitate the
design of microbial inactivation thermal processes where acrylamide formation is an issue.

Quality parameters can be seriously affected when dynamic thermal processes are
applied to foods. In some cases, high temperatures can produce a decline in some quality
parameters while improving others. This is the case with fried potato chips, where higher
temperatures improve yellowness and crunchiness (important indicators for consumer
acceptance) but also accelerate the production of certain toxic compounds such as acry-
lamide. Peñalver-Soto et al. [11] presented a multi-objective optimization approach to
simultaneously maximize yellowness and minimize acrylamide production in the potato-
chip frying process. Their results showed that most of the solutions of the Pareto front
led to levels of acrylamide above the maximum recommended by the European Food
Safety Agency (EFSA). Low temperatures and high processing times should be used to
avoid excess acrylamide. They also found that under mild processing conditions, there
can be quasi-equivalent solutions (e.g., different processing conditions leading to the same
relationship between yellowness and acrylamide) due to the sensitivities of the objectives to
such conditions. Finally, parameter uncertainty and Pareto front uncertainties were higher
at higher temperatures.

Innovations in the field of rapid heating technologies require foods’ thermal prop-
erties to be determined accurately. Muniandy et al. [12] performed a study to determine
the thermal conductivity of a model food using rapid heating. Two-dimensional heat
transfer models based on finite differences were formulated, and experiments to monitor
temperature were designed based on scaled sensitivity coefficients. The authors proposed
three models for thermal conductivity—constant, linear, and re-parameterized linear—to
improve identifiability, and obtained better estimates from the linear ones. To estimate the
parameters with low errors, it was concluded that the constant temperature experiment
should be conducted for at least 20 min, while the rapid heating experiment required only
30 s. The estimated trend of conductivity with temperature was more consistent with fatty
foods in the rapid heating experiments. Additionally, the residual analysis for both types
of experiment revealed that the parameter estimation in the rapid heating experiment was
more reliable. Finally, prolonged exposure to temperature in the constant-temperature
experiments could negatively impact the reliability of the estimated thermal properties due
to changes in the food matrix.

In the face of climate change, it may advised that unused species of some crops
should be recovered to ensure resistance against increasing pests and resilience against
changing climate conditions. It is therefore important to determine their physicochemical
properties and understand how they are affected by processing treatments.Sridhar et al. [13]
determined the physicochemical properties of currant tomato (Solanum pimpinellifolium)
and studied the effects of cold- and hot-break heat treatments on it. Color-related parameter
values decreased significantly under all of the heat treatments. The apparent viscosity,
lycopene, and total titratable acidity differed significantly between heat treatments (mostly
at the highest temperatures). The change in the viscosity of tomato pulp and paste with
temperature was modeled using Arrhenius. The findings of this research may strengthen
the knowledge of process optimization designers, and thus, facilitate the development of
currant tomato-based products.
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