Pearls before Swine: Plant-Derived Wastes to Produce Low-Cholesterol Meat from Farmed Pigs—A Bibliometric Analysis Combined to Meta-Analytic Studies
Abstract
:1. Introduction
2. Nutritional Value of Pork Meat
3. Pig Breeding: Current Situation
4. Bibliometric Analysis
5. Graphical Analysis
5.1. VosViewer Reveals Changes in Interest over Time for Both Countries and Research Areas
5.2. BiblioShiny Reveals the Usual Country–Topic–Research Field Linkages
6. Meta-Analysis
6.1. Growth Performances
6.2. Cholesterol Values
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mannino, G.; Serio, G.; Gaglio, R.; Busetta, G.; La Rosa, L.; Lauria, A.; Settanni, L.; Gentile, C. Phytochemical Profile and Antioxidant, Antiproliferative, and Antimicrobial Properties of Rubus idaeus Seed Powder. Foods 2022, 11, 2605. [Google Scholar] [CrossRef]
- Gruber, V.; Holweg, C.; Teller, C. What a waste! Exploring the human reality of food waste from the store manager’s perspective. J. Public Policy Mark. 2016, 35, 3–25. [Google Scholar] [CrossRef]
- Lindgren, E.; Harris, F.; Dangour, A.D.; Gasparatos, A.; Hiramatsu, M.; Javadi, F.; Loken, B.; Murakami, T.; Scheelbeek, P.; Haines, A. Sustainable food systems—A health perspective. Sustain. Sci. 2018, 13, 1505–1517. [Google Scholar] [CrossRef] [Green Version]
- Agliassa, C.; Mannino, G.; Molino, D.; Cavalletto, S.; Contartese, V.; Bertea, C.M.; Secchi, F. A new protein hydrolysate-based biostimulant applied by fertigation promotes relief from drought stress in Capsicum annuum L. Plant Physiol. Biochem. 2021, 166, 1076–1086. [Google Scholar] [CrossRef]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Mbow, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.T.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T. Climate change responses benefit from a global food system approach. Nat. Food 2020, 1, 94–97. [Google Scholar] [CrossRef] [Green Version]
- Zhongming, Z.; Linong, L.; Xiaona, Y.; Wangqiang, Z.; Wei, L. UNEP Food Waste Index Report 2021; UNEP: Nairobi, Kenya, 2021. [Google Scholar]
- Ferronato, N.; Torretta, V. Waste mismanagement in developing countries: A review of global issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [Green Version]
- Farina, V.; Tinebra, I.; Perrone, A.; Sortino, G.; Palazzolo, E.; Mannino, G.; Gentile, C. Physicochemical, nutraceutical and sensory traits of six papaya (Carica papaya L.) cultivars grown in greenhouse conditions in the Mediterranean climate. Agronomy 2020, 10, 501. [Google Scholar] [CrossRef] [Green Version]
- Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food Chem. 2022, 70, 6787–6804. [Google Scholar] [CrossRef]
- Van Nguyen, T.T.; Phan, A.N.; Nguyen, T.-A.; Nguyen, T.K.; Nguyen, S.T.; Pugazhendhi, A.; Phuong, H.H.K. Valorization of agriculture waste biomass as biochar: As first-rate biosorbent for remediation of contaminated soil. Chemosphere 2022, 307, 135834. [Google Scholar] [CrossRef]
- Falade, A.O. Valorization of agricultural wastes for production of biocatalysts of environmental significance: Towards a sustainable environment. Environ. Sustain. 2021, 4, 317–328. [Google Scholar] [CrossRef]
- Garcia-Garcia, G.; Woolley, E.; Rahimifard, S.; Colwill, J.; White, R.; Needham, L. A methodology for sustainable management of food waste. Waste Biomass Valorization 2017, 8, 2209–2227. [Google Scholar] [CrossRef] [Green Version]
- Tanveer, U.; Ishaq, S.; Gough, A. Circular Economy in Agri-Food Sector: Food Waste Management Perspective. In Challenges and Opportunities of Circular Economy in Agri-Food Sector; Springer: Singapore, 2021; pp. 55–75. [Google Scholar]
- Bertocci, F.; Mannino, G. Can Agri-Food Waste Be a Sustainable Alternative in Aquaculture? A Bibliometric and Meta-Analytic Study on Growth Performance, Innate Immune System, and Antioxidant Defenses. Foods 2022, 11, 1861. [Google Scholar] [CrossRef]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [Green Version]
- Magangana, T.P.; Makunga, N.P.; Fawole, O.A.; Opara, U.L. Processing factors affecting the phytochemical and nutritional properties of pomegranate (Punica granatum L.) peel waste: A review. Molecules 2020, 25, 4690. [Google Scholar] [CrossRef]
- Martillanes, S.; Rocha-Pimienta, J.; Delgado-Adámez, J. Agrifood by-products as a source of phytochemical compounds. In Descriptive Food Science; IntechOpen: London, UK, 2018; ISBN 1789845955. [Google Scholar]
- Sharma, A.; Bachheti, A.; Sharma, P.; Bachheti, R.K.; Husen, A. Phytochemistry, pharmacological activities, nanoparticle fabrication, commercial products and waste utilization of Carica papaya L.: A comprehensive review. Curr. Res. Biotechnol. 2020, 2, 145–160. [Google Scholar] [CrossRef]
- Mannino, G.; Chinigò, G.; Serio, G.; Genova, T.; Gentile, C.; Munaron, L.; Bertea, C.M. Proanthocyanidins and where to find them: A meta-analytic approach to investigate their chemistry, biosynthesis, distribution, and effect on human health. Antioxidants 2021, 10, 1229. [Google Scholar] [CrossRef]
- Truong, L.; Morash, D.; Liu, Y.; King, A. Food waste in animal feed with a focus on use for broilers. Int. J. Recycl. Org. Waste Agric. 2019, 8, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Read, Q.D.; Hondula, K.L.; Muth, M.K. Biodiversity effects of food system sustainability actions from farm to fork. Proc. Natl. Acad. Sci. USA 2022, 119, e2113884119. [Google Scholar] [CrossRef]
- Deselnicu, D.C.; Militāru, G.; Deselnicu, V.; Zăinescu, G.; Albu, L. Towards a circular economy–a zero waste programme for Europe. In Proceedings of the International Conference on Advanced Materials and Systems (ICAMS); The National Research & Development Institute for Textiles and Leather-INCDTP: Bethesda, MD, USA, 2018; pp. 563–568. [Google Scholar]
- Kass, M.J. Climate, Sustainability, and Waste: EU and US Regulatory Approaches Compared. In Interdisciplinary Approaches to Climate Change for Sustainable Growth; Springer: Cham, Switzerland, 2022; pp. 245–260. [Google Scholar]
- Bogusz, M.; Matysik-Pejas, R.; Krasnodębski, A.; Dziekański, P. The concept of zero waste in the context of supporting environmental protection by consumers. Energies 2021, 14, 5964. [Google Scholar] [CrossRef]
- Săplăcan, Z.; Márton, B. Determinants of adopting a zero waste consumer lifestyle. Reg. Bus. Stud. 2019, 11, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Grigatti, M.; Barbanti, L.; Hassan, M.U.; Ciavatta, C. Fertilizing potential and CO2 emissions following the utilization of fresh and composted food-waste anaerobic digestates. Sci. Total Environ. 2020, 698, 134198. [Google Scholar] [CrossRef]
- Chew, K.W.; Chia, S.R.; Yen, H.-W.; Nomanbhay, S.; Ho, Y.-C.; Show, P.L. Transformation of biomass waste into sustainable organic fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef] [Green Version]
- Conrad, Z.; Niles, M.T.; Neher, D.A.; Roy, E.D.; Tichenor, N.E.; Jahns, L. Relationship between food waste, diet quality, and environmental sustainability. PLoS ONE 2018, 13, e0195405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannino, G.; Gentile, C.; Ertani, A.; Serio, G.; Bertea, C.M. Anthocyanins: Biosynthesis, Distribution, Ecological Role, and Use of Biostimulants to Increase Their Content in Plant Foods—A Review. Agriculture 2021, 11, 212. [Google Scholar] [CrossRef]
- Campobenedetto, C.; Agliassa, C.; Mannino, G.; Vigliante, I.; Contartese, V.; Secchi, F.; Bertea, C.M. A biostimulant based on seaweed (Ascophyllum nodosum and Laminaria digitata) and yeast extracts mitigates water stress effects on tomato (Solanum lycopersicum L.). Agriculture 2021, 11, 557. [Google Scholar] [CrossRef]
- Mapelli, F.; Carullo, D.; Farris, S.; Ferrante, A.; Bacenetti, J.; Ventura, V.; Frisio, D.; Borin, S. Food waste-derived biomaterials enriched by biostimulant agents for sustainable horticultural practices: A possible circular solution. Front. Sustain. 2022, 3, 1–7. [Google Scholar] [CrossRef]
- Xu, L.; Geelen, D. Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 2018, 9, 1567. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, C. Food waste valorization opportunities for different food industries. In The Interaction of Food Industry and Environment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 341–422. [Google Scholar]
- Durazzo, A.; Lucarini, M.; Heinrich, M. Dietary Supplements, Botanicals and Herbs at the Interface of Food and Medicine. Front. Pharmacol. 2022, 13, 899499. [Google Scholar] [CrossRef]
- Spiker, M.L.; Hiza, H.A.B.; Siddiqi, S.M.; Neff, R.A. Wasted food, wasted nutrients: Nutrient loss from wasted food in the United States and comparison to gaps in dietary intake. J. Acad. Nutr. Diet. 2017, 117, 1031–1040. [Google Scholar] [CrossRef]
- Magara, G.; Prearo, M.; Vercelli, C.; Barbero, R.; Micera, M.; Botto, A.; Caimi, C.; Caldaroni, B.; Bertea, C.M.; Mannino, G. Modulation of antioxidant defense in farmed rainbow trout (Oncorhynchus mykiss) fed with a diet supplemented by the waste derived from the supercritical fluid extraction of basil (Ocimum basilicum). Antioxidants 2022, 11, 415. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.Y.; Cheng, Z.; Choi, W.M.; Lun, C.H.I.; Man, Y.B.; Wong, J.T.F.; Chen, X.W.; Lau, S.C.K.; Wong, M.H. Use of food waste as fish feeds: Effects of prebiotic fibers (inulin and mannanoligosaccharide) on growth and non-specific immunity of grass carp (Ctenopharyngodon idella). Environ. Sci. Pollut. Res. 2015, 22, 17663–17671. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.-H.; Mo, W.-Y.; Choi, W.-M.; Cheng, Z.; Man, Y.-B. Recycle food wastes into high quality fish feeds for safe and quality fish production. Environ. Pollut. 2016, 219, 631–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechkirrou, L.; Arabi, M.; Ouhssine, M.; Afilal, M.E.A. Food Waste reuse as a feed for organic chicken: A case study. In Proceedings of the E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 234, p. 90. [Google Scholar]
- Mechkirrou, L.; Ouhssine, M.; Afilal, M.E.A. Valorisation of food waste as new raw materials in broiler feed. In Proceedings of the E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 240, p. 3003. [Google Scholar]
- Salemdeeb, R.; Zu Ermgassen, E.K.H.J.; Kim, M.H.; Balmford, A.; Al-Tabbaa, A. Environmental and health impacts of using food waste as animal feed: A comparative analysis of food waste management options. J. Clean. Prod. 2017, 140, 871–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westendorf, M.L. Food waste as animal feed: An introduction. In Food Waste to Animal Feed; Wiley: Hoboken, NJ, USA, 2000; pp. 3–16. [Google Scholar]
- Dou, Z.; Toth, J.D.; Westendorf, M.L. Food waste for livestock feeding: Feasibility, safety, and sustainability implications. Glob. Food Sec. 2018, 17, 154–161. [Google Scholar] [CrossRef]
- San Martin, D.; Ramos, S.; Zufía, J. Valorisation of food waste to produce new raw materials for animal feed. Food Chem. 2016, 198, 68–74. [Google Scholar] [CrossRef]
- Mateos-Aparicio, I. Plant-based by-products. In Food Waste Recovery; Elsevier: Amsterdam, The Netherlands, 2021; pp. 367–397. [Google Scholar]
- Minelgaitė, A.; Liobikienė, G. Waste problem in European Union and its influence on waste management behaviours. Sci. Total Environ. 2019, 667, 86–93. [Google Scholar] [CrossRef]
- Rauw, W.M.; Rydhmer, L.; Kyriazakis, I.; Øverland, M.; Gilbert, H.; Dekkers, J.C.M.; Hermesch, S.; Bouquet, A.; Gómez Izquierdo, E.; Louveau, I. Prospects for sustainability of pig production in relation to climate change and novel feed resources. J. Sci. Food Agric. 2020, 100, 3575–3586. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Text mining and visualization using VOSviewer. arXiv 2011, arXiv:1109.2058. [Google Scholar]
- Srisusilawati, P.; Rusydiana, A.S.; Sanrego, Y.D.; Tubastuvi, N. Biblioshiny R application on islamic microfinance research. Libr. Philos. Pract. 2021, 2021, 1–24. [Google Scholar]
- Andrade, C. Understanding the basics of meta-analysis and how to read a forest plot: As simple as it gets. J. Clin. Psychiatry 2020, 81, 21858. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Falvo, M.J. Protein—Which is best? J. Sport. Sci. Med. 2004, 3, 118. [Google Scholar]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The role of the anabolic properties of plant-versus animal-based protein sources in supporting muscle mass maintenance: A critical review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Therkildsen, M.; Aluko, R.E.; Lametsch, R. Exploration of collagen recovered from animal by-products as a precursor of bioactive peptides: Successes and challenges. Crit. Rev. Food Sci. Nutr. 2019, 59, 2011–2027. [Google Scholar] [PubMed]
- Zhao, X.; Zhang, X.; Liu, D. Collagen peptides and the related synthetic peptides: A review on improving skin health. J. Funct. Foods 2021, 86, 104680. [Google Scholar]
- Zhang, Q.; Hou, Y.; Bazer, F.W.; He, W.; Posey, E.A.; Wu, G. Amino acids in swine nutrition and production. In Amino Acids in Nutrition and Health; Springer: Cham, Switzerland, 2021; pp. 81–107. [Google Scholar]
- Chalvon-Demersay, T.; Luise, D.; Le Floc’H, N.; Tesseraud, S.; Lambert, W.; Bosi, P.; Trevisi, P.; Beaumont, M.; Corrent, E. Functional amino acids in pigs and chickens: Implication for gut health. Front. Vet. Sci. 2021, 8, 663727. [Google Scholar]
- Lebret, B.; Čandek-Potokar, M. Pork quality attributes from farm to fork. Part I. Carcass and fresh meat. Animal 2022, 16, 100402. [Google Scholar]
- Rey, A.I.; Segura, J.F.; Castejón, D.; Fernández-Valle, E.; Cambero, M.I.; Calvo, L. Vitamin D3 supplementation in drinking water prior to slaughter improves oxidative status, physiological stress, and quality of pork. Antioxidants 2020, 9, 559. [Google Scholar] [CrossRef]
- Uhlen, M.; Karlsson, M.J.; Zhong, W.; Tebani, A.; Pou, C.; Mikes, J.; Lakshmikanth, T.; Forsström, B.; Edfors, F.; Odeberg, J. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science 2019, 366, eaax9198. [Google Scholar] [CrossRef]
- Sjöstedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020, 367, eaay5947. [Google Scholar]
- Karlsson, M.; Sjöstedt, E.; Oksvold, P.; Sivertsson, Å.; Huang, J.; Álvez, M.B.; Arif, M.; Li, X.; Lin, L.; Yu, J. Genome-wide annotation of protein-coding genes in pig. BMC Biol. 2022, 20, 1–18. [Google Scholar]
- Mannino, G.; Iovino, P.; Lauria, A.; Genova, T.; Asteggiano, A.; Notarbartolo, M.; Porcu, A.; Serio, G.; Chinigò, G.; Occhipinti, A. Bioactive triterpenes of protium heptaphyllum gum resin extract display cholesterol-lowering potential. Int. J. Mol. Sci. 2021, 22, 2664. [Google Scholar]
- Alsehli, A.M.; Liao, S.; Al-Sabri, M.H.; Vasionis, L.; Purohit, A.; Behare, N.; Clemensson, L.E.; Williams, M.J.; Schiöth, H.B. The Statin Target HMG-Coenzyme a Reductase (Hmgcr) Regulates Sleep Homeostasis in Drosophila. Pharmaceuticals 2022, 15, 79. [Google Scholar] [CrossRef]
- Miyajima, C.; Hayakawa, Y.; Inoue, Y.; Nagasaka, M.; Hayashi, H. HMG-CoA Reductase Inhibitor Statins Activate the Transcriptional Activity of p53 by Regulating the Expression of TAZ. Pharmaceuticals 2022, 15, 1015. [Google Scholar] [CrossRef]
- Ding, Y.; Hou, Y.; Ling, Z.; Chen, Q.; Xu, T.; Liu, L.; Yu, N.; Ni, W.; Ding, X.; Zhang, X. Identification of candidate genes and regulatory competitive endogenous RNA (ceRNA) networks underlying intramuscular fat content in yorkshire pigs with extreme fat deposition phenotypes. Int. J. Mol. Sci. 2022, 23, 12596. [Google Scholar] [CrossRef]
- Chalupová, P.; Sedláčková, T.; Kaplanová, K.; Weisz, F.; Bryndová, M.; Vykoukalová, Z.; Jůzl, M.; Šulcerová, H.; Gregor, T.; Urban, T. Association of 15 candidate genes with meat quality traits in Czech Large White pigs. Afr. J. Agric. Res. 2012, 7, 3719–3728. [Google Scholar]
- Parmagnani, A.S.; Mannino, G.; Maffei, M.E. Transcriptomics and Metabolomics of Reactive Oxygen Species Modulation in Near-Null Magnetic Field-Induced Arabidopsis thaliana. Biomolecules 2022, 12, 1824. [Google Scholar]
- Thewissen, J.G.M.; Cooper, L.N.; George, J.C.; Bajpai, S. From land to water: The origin of whales, dolphins, and porpoises. Evol. Educ. Outreach 2009, 2, 272–288. [Google Scholar]
- Sikorski, Z.E.; Kołakowska, A.; Pan, B.S. The nutritive composition of the major groups of marine food organisms. In Seafood: Resources, Nutritional Composition, and Preservation; CRC Press: Boca Raton, FL, USA, 2020; pp. 29–54. ISBN 1003068413. [Google Scholar]
- Hamilton, J.J.; Auestad, N.; Innis, S.M. A comparative study of hepatic HMG CoA reductase activity and LDL receptor relative mass in suckling and adult guinea pigs. Neonatology 1994, 65, 317–325. [Google Scholar] [CrossRef]
- West, K.L.; Luz Fernandez, M. Guinea pigs as models to study the hypocholesterolemic effects of drugs. Cardiovasc. Drug Rev. 2004, 22, 55–70. [Google Scholar]
- Schoch, L.; Sutelman, P.; Suades, R.; Casani, L.; Padro, T.; Badimon, L.; Vilahur, G. Hypercholesterolemia-induced HDL dysfunction can be reversed: The impact of diet and statin treatment in a preclinical animal model. Int. J. Mol. Sci. 2022, 23, 8596. [Google Scholar] [CrossRef] [PubMed]
- Gentile, C.; Mannino, G.; Palazzolo, E.; Gianguzzi, G.; Perrone, A.; Serio, G.; Farina, V. Pomological, sensorial, nutritional and nutraceutical profile of seven cultivars of Cherimoya (Annona cherimola Mill.). Foods 2020, 10, 35. [Google Scholar] [PubMed]
- Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Weindl, I.; Popp, A.; Lotze-Campen, H. Global food demand scenarios for the 21st century. PLoS ONE 2015, 10, e0139201. [Google Scholar]
- Tripathi, A.D.; Mishra, R.; Maurya, K.K.; Singh, R.B.; Wilson, D.W. Estimates for world population and global food availability for global health. In The Role of Functional Food Security in Global Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–24. [Google Scholar]
- Lebret, B.; Čandek-Potokar, M. Pork quality attributes from farm to fork. Part II. Processed pork products. Animal 2022, 16, 100383. [Google Scholar]
- Sooryanarain, H.; Meng, X.-J. Swine hepatitis E virus: Cross-species infection, pork safety and chronic infection. Virus Res. 2020, 284, 197985. [Google Scholar]
- Jennifer, H.; Yang, L.; Chen, C.; Fang, J.; Jin, S.; Li, X.; Su, S.; Wang, W. Pig in the Middle: Environment, Health and Development Dimensions of the Pork Sector in China. Open J. Soc. Sci. 2022, 10, 115–137. [Google Scholar]
- Ge, Y.; Lin, S.; Li, B.; Yang, Y.; Tang, X.; Shi, Y.; Sun, J.; Le, G. Oxidized pork induces oxidative stress and inflammation by altering gut microbiota in mice. Mol. Nutr. Food Res. 2020, 64, 1901012. [Google Scholar] [CrossRef]
- Giromini, C.; Givens, D.I. Benefits and Risks Associated with Meat Consumption during Key Life Processes and in Relation to the Risk of Chronic Diseases. Foods 2022, 11, 2063. [Google Scholar] [CrossRef]
- Anihouvi, D.G.H.; Kpoclou, Y.E.; Assogba, M.F.; Iko Afé, O.H.; Lègba, G.; Scippo, M.; Hounhouigan, D.J.; Anihouvi, V.B.; Mahillon, J. Microbial contamination associated with the processing of grilled pork, a ready-to-eat street food in Benin. J. Food Saf. 2020, 40, e12731. [Google Scholar] [CrossRef]
- Peruzy, M.F.; Houf, K.; Joossens, M.; Yu, Z.; Proroga, Y.T.R.; Murru, N. Evaluation of microbial contamination of different pork carcass areas through culture-dependent and independent methods in small-scale slaughterhouses. Int. J. Food Microbiol. 2021, 336, 108902. [Google Scholar]
- Lander, B.; Schneider, M.; Brunson, K. A history of pigs in China: From curious omnivores to industrial pork. J. Asian Stud. 2020, 79, 865–889. [Google Scholar]
- Csonka, A.; Fertő, I. Structural change and agglomeration in the Hungarian pork industry. Eur. Plan. Stud. 2020, 28, 1756–1770. [Google Scholar] [CrossRef]
- Maes, D.G.D.; Dewulf, J.; Piñeiro, C.; Edwards, S.; Kyriazakis, I. A critical reflection on intensive pork production with an emphasis on animal health and welfare. J. Anim. Sci. 2020, 98, S15–S26. [Google Scholar] [PubMed]
- Shurson, G.C. “What a waste”—Can we improve sustainability of food animal production systems by recycling food waste streams into animal feed in an era of health, climate, and economic crises? Sustainability 2020, 12, 7071. [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29, 4. [Google Scholar]
- Shah, S.H.H.; Lei, S.; Ali, M.; Doronin, D.; Hussain, S.T. Prosumption: Bibliometric analysis using HistCite and VOSviewer. Kybernetes 2019, 49, 1020–1045. [Google Scholar]
- Xie, L.; Chen, Z.; Wang, H.; Zheng, C.; Jiang, J. Bibliometric and visualized analysis of scientific publications on atlantoaxial spine surgery based on Web of Science and VOSviewer. World Neurosurg. 2020, 137, 435–442. [Google Scholar]
- Abafe, E.A.; Bahta, Y.T.; Jordaan, H. Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture. Sustainability 2022, 14, 10651. [Google Scholar]
- Verhagen, A.P.; Ferreira, M.L. Forest plots. J. Physiother. 2014, 60, 170–173. [Google Scholar]
- McDermott, P.F.; Zhao, S.; Wagner, D.D.; Simjee, S.; Walker, R.D.; White, D.G. The food safety perspective of antibiotic resistance. Anim. Biotechnol. 2002, 13, 71–84. [Google Scholar] [PubMed]
- Vigliante, I.; Mannino, G.; Maffei, M.E. OxiCyan®, a phytocomplex of bilberry (Vaccinium myrtillus) and spirulina (Spirulina platensis), exerts both direct antioxidant activity and modulation of ARE/Nrf2 pathway in HepG2 cells. J. Funct. Foods 2019, 61, 103508. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [PubMed] [Green Version]
- Mannino, G.; Gentile, C.; Maffei, M.E. Chemical partitioning and DNA fingerprinting of some pistachio (Pistacia vera L.) varieties of different geographical origin. Phytochemistry 2019, 160, 40–47. [Google Scholar] [CrossRef]
- Mannino, G.; Maffei, M.E. Metabolomics-Based Profiling, Antioxidant Power, and Uropathogenic Bacterial Anti-Adhesion Activity of SP4TM, a Formulation with a High Content of Type-A Proanthocyanidins. Antioxidants 2022, 11, 1234. [Google Scholar] [PubMed]
- Guimarães, I.; Baptista-Silva, S.; Pintado, M.; Oliveira, A.L. Polyphenols: A promising avenue in therapeutic solutions for wound care. Appl. Sci. 2021, 11, 1230. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, T. Antimicrobial activities of tea polyphenol on phytopathogens: A review. Molecules 2019, 24, 816. [Google Scholar] [PubMed] [Green Version]
- Musarra-Pizzo, M.; Ginestra, G.; Smeriglio, A.; Pennisi, R.; Sciortino, M.T.; Mandalari, G. The antimicrobial and antiviral activity of polyphenols from almond (Prunus dulcis L.) skin. Nutrients 2019, 11, 2355. [Google Scholar] [CrossRef] [Green Version]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front. Microbiol. 2019, 10, 911. [Google Scholar]
- Vigliante, I.; Mannino, G.; Maffei, M.E. Chemical characterization and DNA fingerprinting of Griffonia simplicifolia baill. Molecules 2019, 24, 1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mhatre, S.; Srivastava, T.; Naik, S.; Patravale, V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine 2021, 85, 153286. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, G.; Sanduzzi Zamparelli, M.; Santoro, C.; Ciampaglia, R.; Stornaiuolo, M.; Tenore, G.C.; Sanduzzi, A.; Novellino, E. May polyphenols have a role against coronavirus infection? An overview of in vitro evidence. Front. Med. 2020, 7, 240. [Google Scholar] [CrossRef]
- Maffei, M.E.; Salata, C.; Gribaudo, G. Tackling the Future Pandemics: Broad-Spectrum Antiviral Agents (BSAAs) Based on A-Type Proanthocyanidins. Molecules 2022, 27, 8353. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Grijalva, N.V.; Pinelli-Saavedra, A.; Muhlia-Almazan, A.; Domínguez-Díaz, D.; González-Ríos, H. Dietary inclusion effects of phytochemicals as growth promoters in animal production. J. Anim. Sci. Technol. 2017, 59, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, D.; Pestana, J.; Almeida, J.M.; Alfaia, C.M.; Fontes, C.M.G.A.; Moreira, O.; Prates, J.A.M. A high dietary incorporation level of Chlorella vulgaris improves the nutritional value of pork fat without impairing the performance of finishing pigs. Animals 2020, 10, 2384. [Google Scholar] [CrossRef]
- Türkeli, S.; Kemp, R.; Huang, B.; Bleischwitz, R.; McDowall, W. Circular economy scientific knowledge in the European Union and China: A bibliometric, network and survey analysis (2006–2016). J. Clean. Prod. 2018, 197, 1244–1261. [Google Scholar] [CrossRef]
- Su, G.; Zhou, X.; Wang, Y.; Chen, D.; Chen, G.; Li, Y.; He, J. Effects of plant essential oil supplementation on growth performance, immune function and antioxidant activities in weaned pigs. Lipids Health Dis. 2018, 17, 1–10. [Google Scholar] [CrossRef]
- Devi, S.M.; Park, J.W.; Kim, I.H. Effect of plant extracts on growth performance and insulin-like growth factor 1 secretion in growing pigs. Rev. Bras. Zootec. 2015, 44, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Che, T.M.; Song, M.; Lee, J.J.; Almeida, J.A.S.; Bravo, D.; Van Alstine, W.G.; Pettigrew, J.E. Dietary plant extracts improve immune responses and growth efficiency of pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J. Anim. Sci. 2013, 91, 5668–5679. [Google Scholar] [CrossRef] [Green Version]
- Danilov, A.; Donică, I.; Coşman, S.; Savca, D. Effectiveness of usage of cake obtained from grape seeds in the food of pigs for fattening. Proc. Zooteh. Şi Biotehnol. Agric. 2018, 52, 37–42. [Google Scholar]
- Yu, Y.; Xing, Y.; Li, C.; Wu, X.; Yang, Z.; Liu, X.; Zeng, Q.; Zhang, B. Effects of linseed oil on growth performance, carcass traits and meat quality of Ningxiang pigs. Chin. J. Anim. Nutr. 2018, 30, 3875–3881. [Google Scholar]
- McNaughton, E.P.; Ball, R.O.; Friendship, R.M. The effects of feeding a chocolate product on growth performance and meat quality of finishing swine. Can. J. Anim. Sci. 1997, 77, 1–8. [Google Scholar] [CrossRef]
- Taranu, I.; Marin, D.E.; Palade, M.; Pistol, G.C.; Chedea, V.S.; Gras, M.A.; Rotar, C. Assessment of the efficacy of a grape seed waste in counteracting the changes induced by aflatoxin B1 contaminated diet on performance, plasma, liver and intestinal tissues of pigs after weaning. Toxicon 2019, 162, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Ogunsipe, M.H.; Ibidapo, I.; Oloruntola, O.D.; Agbede, J.O. Growth performance of pigs on dietary cocoa bean shell meal. Livest. Res. Rural. Dev. 2017, 29, 1–5. [Google Scholar]
- Mabena, P.M.; Ratsaka, M.M.; Nkukwana, T.T.; Malebana, I.M.M.; Nkosi, B.D. Growth performance, nutrient digestibility and carcass characteristics of pigs fed diets containing amarula (Sclerocarya birrea A. Rich) nut cake as replacement to soybean meal. Trop. Anim. Health Prod. 2022, 54, 1–10. [Google Scholar] [CrossRef]
- Baruah, K.K.; Khargharia, G.; Deori, S.; Kadirvel, G.; Doley, S.; Baruah, A.; Abedin, S.N.; Sen, A.; Baruah Sr, K.K. Effect of Dietary Substitution of Maize with Banana Pseudostem on Performance and Economics of Crossbred Grower Pigs. 2022. Available online: https://www.researchsquare.com/article/rs-1597153/v1 (accessed on 10 January 2023).
- Liotta, L.; Chiofalo, V.; Lo Presti, V.; Chiofalo, B. In vivo performances, carcass traits, and meat quality of pigs fed olive cake processing waste. Animals 2019, 9, 1155. [Google Scholar] [CrossRef] [Green Version]
- Laitat, M.; Antoine, N.; Cabaraux, J.-F.; Cassart, D.; Mainil, J.; Moula, N.; Nicks, B.; Wavreille, J.; Philippe, F.-X. Influence of sugar beet pulp on feeding behavior, growth performance, carcass quality and gut health of fattening pigs. Biotechnol. Agron. Société Environ. 2015, 19, 20–31. [Google Scholar]
- Badaras, S.; Klupsaite, D.; Ruzauskas, M.; Gruzauskas, R.; Zokaityte, E.; Starkute, V.; Mockus, E.; Klementaviciute, J.; Cernauskas, D.; Dauksiene, A. Influence of Sugar Beet Pulp Supplementation on Pigs’ Health and Production Quality. Animals 2022, 12, 2041. [Google Scholar] [CrossRef]
- Adebiyi, O.A.; Adeshola, A.T.; Ekeh, C.C.; Olumide, M.D. Growth Performance, Digestibility and Gut Morphology of Grower Pigs fed Diets Substituted with Watermelon Waste. Anim. Nutr. Feed Technol. 2020, 20, 61–70. [Google Scholar] [CrossRef]
- Giamouri, E.; Papadomichelakis, G.; Pappas, A.C.; Simitzis, P.E.; Galliou, F.; Paßlack, N.; Zentek, J.; Lasaridi, K.; Fegeros, K.; Manios, T. Μeat Quality Traits as Affected by the Dietary Inclusion of Food Waste in Finishing Pigs. Sustainability 2022, 14, 6593. [Google Scholar] [CrossRef]
- Md, E.H.; Seok, Y.K.; Chul, J.Y. Dietary supplementation of green tea by-products on growth performance, meat quality, blood parameters and immunity in finishing pigs. J. Med. Plants Res. 2012, 6, 2458–2467. [Google Scholar]
- Pietrosemoli, S.; Moron-Fuenmayor, O.E.; Paez, A.; Villamide, M.J. Effect of including sweet potato (Ipomoea batatas Lam.) meal in finishing pig diets on growth performance, carcass traits and pork quality. Anim. Sci. J. 2016, 87, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Olsson, V.; Pickova, J. The influence of production systems on meat quality, with emphasis on pork. AMBIO A J. Hum. Environ. 2005, 34, 338–343. [Google Scholar]
- Cassens, R.G. Historical perspectives and current aspects of pork meat quality in the USA. Food Chem. 2000, 69, 357–363. [Google Scholar] [CrossRef]
- Son, H.-Y.; Lee, M.-S.; Chang, E.; Kim, S.-Y.; Kang, B.; Ko, H.; Kim, I.-H.; Zhong, Q.; Jo, Y.-H.; Kim, C.-T. Formulation and characterization of quercetin-loaded oil in water nanoemulsion and evaluation of hypocholesterolemic activity in rats. Nutrients 2019, 11, 244. [Google Scholar] [CrossRef] [Green Version]
- Al Faraj, G. Vegetal products with hypocholesterolemic activity. MedEspera 2020, 8, 379. [Google Scholar]
- Pavlović, N.; Jokić, S.; Jakovljević, M.; Blažić, M.; Molnar, M. Green extraction methods for active compounds from food waste—Cocoa bean shell. Foods 2020, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- Oanh, N.C.; Lam, T.Q.; Tien, N.D.; Hornick, J.-L.; Ton, V.D. Effects of medicinal plants mixture on growth performance, nutrient digestibility, blood profiles, and fecal microbiota in growing pigs. Vet. World 2021, 14, 1894–1900. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Mun, H.-S.; Islam, M.M.; Ko, S.-Y.; Yang, C.-J. Effects of dietary natural and fermented herb combination on growth performance, carcass traits and meat quality in grower-finisher pigs. Meat Sci. 2016, 122, 7–15. [Google Scholar] [CrossRef]
- Serem, J.; Wahome, R.G.; Gakuya, D.; Onyango, D.W. Growth performance, feed conversion efficiency and blood characteristics of growing pigs fed on different levels of Moringa oleifera leaf meal. J. Vet. Med. Anim. Health 2017, 9, 327–333. [Google Scholar]
- Gunness, P.; Michiels, J.; Vanhaecke, L.; De Smet, S.; Kravchuk, O.; Van de Meene, A.; Gidley, M.J. Reduction in circulating bile acid and restricted diffusion across the intestinal epithelium are associated with a decrease in blood cholesterol in the presence of oat β-glucan. FASEB J. 2016, 30, 4227–4238. [Google Scholar] [CrossRef] [PubMed]
- Omojola, A.B.; Fagbuaro, S.S.; Ayeni, A.A. Cholesterol content, physical and sensory properties of pork from pigs fed varying levels of dietary garlic (Allium sativum). World Appl. Sci. J. 2009, 6, 971–975. [Google Scholar]
- Quifer-Rada, P.; Choy, Y.Y.; Calvert, C.C.; Waterhouse, A.L.; Lamuela-Raventos, R.M. Use of metabolomics and lipidomics to evaluate the hypocholestreolemic effect of Proanthocyanidins from grape seed in a pig model. Mol. Nutr. Food Res. 2016, 60, 2219–2227. [Google Scholar] [CrossRef] [Green Version]
- Hanczakowska, E.; Świątkiewicz, M.; Grela, E.R. Effect of dietary supplement of herbal extract from hop (Humulus lupulus) on pig performance and meat quality. Czech J. Anim. Sci. 2017, 62, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Taranu, I.; Habeanu, M.; Gras, M.A.; Pistol, G.C.; Lefter, N.; Palade, M.; Ropota, M.; Sanda Chedea, V.; Marin, D.E. Assessment of the effect of grape seed cake inclusion in the diet of healthy fattening-finishing pigs. J. Anim. Physiol. Anim. Nutr. 2018, 102, e30–e42. [Google Scholar] [CrossRef]
- Ngamukote, S.; Mäkynen, K.; Thilawech, T.; Adisakwattana, S. Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules 2011, 16, 5054–5061. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertocci, F.; Mannino, G. Pearls before Swine: Plant-Derived Wastes to Produce Low-Cholesterol Meat from Farmed Pigs—A Bibliometric Analysis Combined to Meta-Analytic Studies. Foods 2023, 12, 571. https://doi.org/10.3390/foods12030571
Bertocci F, Mannino G. Pearls before Swine: Plant-Derived Wastes to Produce Low-Cholesterol Meat from Farmed Pigs—A Bibliometric Analysis Combined to Meta-Analytic Studies. Foods. 2023; 12(3):571. https://doi.org/10.3390/foods12030571
Chicago/Turabian StyleBertocci, Filippo, and Giuseppe Mannino. 2023. "Pearls before Swine: Plant-Derived Wastes to Produce Low-Cholesterol Meat from Farmed Pigs—A Bibliometric Analysis Combined to Meta-Analytic Studies" Foods 12, no. 3: 571. https://doi.org/10.3390/foods12030571
APA StyleBertocci, F., & Mannino, G. (2023). Pearls before Swine: Plant-Derived Wastes to Produce Low-Cholesterol Meat from Farmed Pigs—A Bibliometric Analysis Combined to Meta-Analytic Studies. Foods, 12(3), 571. https://doi.org/10.3390/foods12030571