Quality of Tenebrio molitor Powders: Effects of Four Processes on Microbiological Quality and Physicochemical Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Insect Powder Processing Trial
2.3. Proximate Composition Analysis and Water Activity Determination
2.3.1. Proximate Composition Analysis
2.3.2. Water Activity Determination
2.3.3. Statistical Analysis
2.4. Microbiological Analysis
2.5. Predictive Microbiology Modeling
3. Results
3.1. Microbiological Status of Fresh Mealworms (Initial Level)
3.2. Microbiological Status of Mealworm Powders (End Products)
3.3. Microbial Inactivation Effects of Processing Steps
3.4. Physicochemical Properties
4. Discussion
4.1. Microbiological Status of Mealworms
4.2. Evaluation of Identified Critical Control Points (CCPs)
4.3. Evaluation of Four Processing Pathways
4.4. Physicochemical Properties of Fresh and Powdered Mealworms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raheem, D.; Carrascosa, C.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Millán, R.; Raposo, A. Traditional Consumption of and Rearing Edible Insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2019, 59, 2169–2188. [Google Scholar] [CrossRef] [PubMed]
- van Huis, A.; Oonincx, D.G.A.B. The Environmental Sustainability of Insects as Food and Feed. A Review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Borkowska, A.; Pieszko, M. Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods 2021, 10, 766. [Google Scholar] [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and Sensory Quality of Edible Insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Raheem, D.; Raposo, A.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Carrascosa, C. Entomophagy: Nutritional, Ecological, Safety and Legislation Aspects. Food Res. Int. 2019, 126, 108672. [Google Scholar] [CrossRef]
- Nowakowski, A.C.; Miller, A.C.; Miller, M.E.; Xiao, H.; Wu, X. Potential Health Benefits of Edible Insects. Crit. Rev. Food Sci. Nutr. 2022, 62, 3499–3508. [Google Scholar] [CrossRef]
- Bessa, L.W.; Pieterse, E.; Sigge, G.; Hoffman, L.C. Insects as Human Food: From Farm to Fork. J. Sci. Food Agric. 2020, 100, 5017–5022. [Google Scholar] [CrossRef]
- van Huis, A.; Rumpold, B.; Maya, C.; Roos, N. Nutritional Qualities and Enhancement of Edible Insects. Annu. Rev. Nutr. 2021, 41, 551–576. [Google Scholar] [CrossRef]
- FAO. Looking at Edible Insects from a Food Safety Perspective. Challenges and Opportunities for the Sector; FAO: Rome, Italy, 2021. [Google Scholar]
- EFSA. Scientific Committee Scientific Opinion on a Risk Profile Related to Production and Consumption of Insects as Food and Feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef] [Green Version]
- Klunder, H.C.; Wolkers-Rooijackers, J.; Korpela, J.M.; Nout, M.J.R. Microbiological Aspects of Processing and Storage of Edible Insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Garofalo, C.; Milanović, V.; Cardinali, F.; Aquilanti, L.; Clementi, F.; Osimani, A. Current Knowledge on the Microbiota of Edible Insects Intended for Human Consumption: A State-of-the-Art Review. Food Res. Int. 2019, 125, 108527. [Google Scholar] [CrossRef]
- Kooh, P.; Ververis, E.; Tesson, V.; Boué, G.; Federighi, M. Entomophagy and Public Health: A Review of Microbiological Hazards. Health 2019, 11, 1272–1290. [Google Scholar] [CrossRef] [Green Version]
- Kooh, P.; Jury, V.; Laurent, S.; Audiat-Perrin, F.; Sanaa, M.; Tesson, V.; Federighi, M.; Boué, G. Control of Biological Hazards in Insect Processing: Application of HACCP Method for Yellow Mealworm (Tenebrio Molitor) Powders. Foods 2020, 9, 1528. [Google Scholar] [CrossRef]
- Costa, S.; Pedro, S.; Lourenço, H.; Batista, I.; Teixeira, B.; Bandarra, N.M.; Murta, D.; Nunes, R.; Pires, C. Evaluation of Tenebrio Molitor Larvae as an Alternative Food Source. NFS J. 2020, 21, 57–64. [Google Scholar] [CrossRef]
- Pippinato, L.; Gasco, L.; Di Vita, G.; Mancuso, T. Current Scenario in the European Edible-Insect Industry: A Preliminary Study. J. Insects Food Feed 2020, 6, 371–381. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA). Safety of Dried Yellow Mealworm (Tenebrio Molitor Larva) as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06343. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2021/882 of 1 June 2021 Authorising the Placing on the Market of Dried Tenebrio Molitor Larva as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470 (Text with EEA Relevance); European Commission: Brussels, Belgium, 2021; Volume 194, pp. 16–20.
- Melgar-Lalanne, G.; Hernández-Álvarez, A.; Salinas-Castro, A. Edible Insects Processing: Traditional and Innovative Technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1166–1191. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Laurent, S.; Federighi, M.; Boué, G.; Jury, V. Processing Edible Insects into Powders: A Review of Available Processes and Potential Microbial Inactivation Methods. J. Insects Food Feed 2022, 1–14. [Google Scholar] [CrossRef]
- Dossey, A.T.; Tatum, J.T.; McGill, W.L. Chapter 5—Modern Insect-Based Food Industry: Current Status, Insect Processing Technology, and Recommendations Moving Forward. In Insects as Sustainable Food Ingredients; Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Academic Press: San Diego, CA, 2016; pp. 113–152. ISBN 978-0-12-802856-8. [Google Scholar]
- IPIFF. Guide on Good Hygiene Practices for European Union (EU) Producers of Insects as Food and Feed; International Platform of Insects for Food and Feed: Brussels, Belgium, 2022; p. 120. [Google Scholar]
- Lenaerts, S.; Van Der Borght, M.; Callens, A.; Van Campenhout, L. Suitability of Microwave Drying for Mealworms (Tenebrio Molitor) as Alternative to Freeze Drying: Impact on Nutritional Quality and Colour. Food Chem. 2018, 254, 129–136. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Klein, G. Microbiology of Cooked and Dried Edible Mediterranean Field Crickets (Gryllus Bimaculatus) and Superworms (Zophobas Atratus) Submitted to Four Different Heating Treatments. Food Sci. Technol. Int. Cienc. Tecnol. Los Aliment. Int. 2017, 23, 17–23. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Poelaert, C.; Ernens, M.; Liotta, M.; Blecker, C.; Danthine, S.; Tyteca, E.; Haubruge, É.; Alabi, T.; Bindelle, J.; et al. Effect of Household Cooking Techniques on the Microbiological Load and the Nutritional Quality of Mealworms (Tenebrio Molitor L. 1758). Food Res. Int. 2018, 106, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Fombong, F.; Van Der Borght, M.; Vanden Broeck, J. Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia Differens. Insects 2017, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kröncke, N.; Grebenteuch, S.; Keil, C.; Demtröder, S.; Kroh, L.; Thünemann, A.; Benning, R.; Haase, H. Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm (Tenebrio Molitor L.). Insects 2019, 10, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatun, H.; Claes, J.; Smets, R.; De Winne, A.; Akhtaruzzaman, M.; Van der Borght, M. Characterization of Freeze-Dried, Oven-Dried and Blanched House Crickets (Acheta Domesticus) and Jamaican Field Crickets (Gryllus Assimilis) by Means of Their Physicochemical Properties and Volatile Compounds. Eur. FOOD Res. Technol. 2021, 247, 1291–1305. [Google Scholar] [CrossRef]
- AOAC: Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1990.
- Janssen, R.H.; Vincken, J.-P.; van den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio Molitor, Alphitobius Diaperinus, and Hermetia Illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Song, L.; Sommerfeld, M.; Hu, Q. Automated Accelerated Solvent Extraction Method for Total Lipid Analysis of Microalgae. Algal Res. 2020, 51, 102080. [Google Scholar] [CrossRef]
- Smith, J.S.; Hui, Y.H. (Eds.) Food Processing: Principles and Applications, 1st ed.; Blackwell Publishing Ltd.: Ames, IA, USA, 2004; ISBN 978-0-8138-1942-6. [Google Scholar]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (Aw) on Microbial Stability: As a Hurdle in Food Preservation. In Water Activity in Foods; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2008; pp. 239–271. ISBN 978-0-470-37645-4. [Google Scholar]
- FDA Sterilizing Symbols (D, Z, F). Available online: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/inspection-guides/sterilizing-symbols-d-z-f (accessed on 24 May 2020).
- Holdsworth, S.D. Aseptic Processing and Packaging of Food Products; Sole distributor in the USA and Canada; Elsevier Science Pub. Co.: Amsterdam, The Netherlands, 1992; ISBN 1-85166-775-X. [Google Scholar]
- Jay, J.M.; Loessner, M.J.; Golden, D.A. Modern Food Microbiology, 7th ed.; Food Science Text Series; Springer US: New York, NY, USA, 2005; ISBN 978-0-387-23180-8. [Google Scholar]
- Vanasselt, E.; Zwietering, M. A Systematic Approach to Determine Global Thermal Inactivation Parameters for Various Food Pathogens. Int. J. Food Microbiol. 2006, 107, 73–82. [Google Scholar] [CrossRef]
- Anses. Data Sheet on Foodborne Biological Hazards—Bacillus Cereus; Anses: Maisons-Alfort, France, 2011.
- Anses. Data Sheet on Foodborne Biological Hazards—Clostridium Botulinum, and Neurotoxigenic Clostridia; Anses: Maisons-Alfort, France, 2010.
- Anses. Data Sheet on Foodborne Biological Hazards—Clostridium Perfringens; Anses: Maisons-Alfort, France, 2010.
- Anses. Data Sheet on Foodborne Biological Hazards—Cronobacter Spp.; Anses: Maisons-Alfort, France, 2011.
- Anses. Data Sheet on Foodborne Biological Hazards—Enterohaemorrhagic E. coli (EHEC); Anses: Maisons-Alfort, France, 2011.
- Anses. Data Sheet on Foodborne Biological Hazards—Listeria Monocytogenes; Anses: Maisons-Alfort, France, 2011.
- Anses. Data Sheet on Foodborne Biological Hazards—Salmonella Spp.; Anses: Maisons-Alfort, France, 2011.
- Anses. Data Sheet on Foodborne Biological Hazards—Staphylococcus Aureus and Staphylococcal Enterotoxins; Anses: Maisons-Alfort, France, 2011.
- Bhatia, A.; Zahoor, S. Staphylococcus Aureus Enterotoxins: A Review. J. Clin. Diagn. Res. 2007, 3, 188–197. [Google Scholar]
- Rahman, M.S.; Labuza, T.P. Water Activity and Food Preservation. In Handbook of Food Preservation; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-429-19108-4. [Google Scholar]
- Osimani, A.; Milanović, V.; Cardinali, F.; Garofalo, C.; Clementi, F.; Ruschioni, S.; Riolo, P.; Isidoro, N.; Loreto, N.; Galarini, R.; et al. Distribution of Transferable Antibiotic Resistance Genes in Laboratory-Reared Edible Mealworms (Tenebrio Molitor L.). Front. Microbiol. 2018, 9, 2702. [Google Scholar] [CrossRef]
- Mancini, S.; Fratini, F.; Turchi, B.; Mattioli, S.; Dal Bosco, A.; Tuccinardi, T.; Nozic, S.; Paci, G. Former Foodstuff Products in Tenebrio Molitor Rearing: Effects on Growth, Chemical Composition, Microbiological Load, and Antioxidant Status. Animals 2019, 9, 484. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, C.; Osimani, A.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Riolo, P.; Ruschioni, S.; Isidoro, N.; Clementi, F. The Microbiota of Marketed Processed Edible Insects as Revealed by High-Throughput Sequencing. Food Microbiol. 2017, 62, 15–22. [Google Scholar] [CrossRef]
- Mancini, S.; Paci, G.; Ciardelli, V.; Turchi, B.; Pedonese, F.; Fratini, F. Listeria Monocytogenes Contamination of Tenebrio Molitor Larvae Rearing Substrate: Preliminary Evaluations. Food Microbiol. 2019, 83, 104–108. [Google Scholar] [CrossRef]
- Wynants, E.; Frooninckx, L.; Van Miert, S.; Geeraerd, A.; Claes, J.; Van Campenhout, L. Risks Related to the Presence of Salmonella Sp. during Rearing of Mealworms (Tenebrio Molitor) for Food or Feed: Survival in the Substrate and Transmission to the Larvae. Food Control 2019, 100, 227–234. [Google Scholar] [CrossRef]
- Osimani, A.; Garofalo, C.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Pasquini, M.; Mozzon, M.; Raffaelli, N.; Ruschioni, S.; et al. Insight into the Proximate Composition and Microbial Diversity of Edible Insects Marketed in the European Union. Eur. Food Res. Technol. 2017, 243, 1157–1171. [Google Scholar] [CrossRef]
- Osimani, A.; Cardinali, F.; Aquilanti, L.; Garofalo, C.; Roncolini, A.; Milanović, V.; Pasquini, M.; Tavoletti, S.; Clementi, F. Occurrence of Transferable Antibiotic Resistances in Commercialized Ready-to-Eat Mealworms (Tenebrio Molitor L.). Int. J. Food Microbiol. 2017, 263, 38–46. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Klein, G. Microbiology of Processed Edible Insect Products—Results of a Preliminary Survey. Int. J. Food Microbiol. 2017, 243, 103–107. [Google Scholar] [CrossRef]
- Vandeweyer, D.; Crauwels, S.; Lievens, B.; Van Campenhout, L. Microbial Counts of Mealworm Larvae (Tenebrio Molitor) and Crickets (Acheta Domesticus and Gryllodes Sigillatus) from Different Rearing Companies and Different Production Batches. Int. J. Food Microbiol. 2017, 242, 13–18. [Google Scholar] [CrossRef]
- Stoops, J.; Crauwels, S.; Waud, M.; Claes, J.; Lievens, B.; Van Campenhout, L. Microbial Community Assessment of Mealworm Larvae (Tenebrio Molitor) and Grasshoppers (Locusta Migratoria Migratorioides) Sold for Human Consumption. Food Microbiol. 2016, 53, 122–127. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 1441/2007 of 5 December 2007 Amending Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs; EC European Commission: Brussels, Belgium, 2007; Volume 322, pp. 12–29.
- Vandeweyer, D.; Lenaerts, S.; Callens, A.; Van Campenhout, L. Effect of Blanching Followed by Refrigerated Storage or Industrial Microwave Drying on the Microbial Load of Yellow Mealworm Larvae (Tenebrio Molitor). Food Control 2017, 71, 311–314. [Google Scholar] [CrossRef]
- Caparros Megido, R.; Desmedt, S.; Blecker, C.; Béra, F.; Haubruge, É.; Alabi, T.; Francis, F. Microbiological Load of Edible Insects Found in Belgium. Insects 2017, 8, 12. [Google Scholar] [CrossRef]
- Särkkä-Tirkkonen, M.; Väisänen, H.-M.; Beck, A. Overview on Different Sterilization Techniques for Baby Food; University of Helsinki, Ruralia Institute: Mikkeli, Finland, 2010; p. 25. [Google Scholar]
- Bourdoux, S.; Li, D.; Rajkovic, A.; Devlieghere, F.; Uyttendaele, M. Performance of Drying Technologies to Ensure Microbial Safety of Dried Fruits and Vegetables. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Bußler, S.; Rumpold, B.A.; Fröhling, A.; Jander, E.; Rawel, H.M.; Schlüter, O.K. Cold Atmospheric Pressure Plasma Processing of Insect Flour from Tenebrio Molitor: Impact on Microbial Load and Quality Attributes in Comparison to Dry Heat Treatment. Innov. Food Sci. Emerg. Technol. 2016, 36, 277–286. [Google Scholar] [CrossRef]
- Fellows, P.J. Freezing. In Food Processing Technology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 885–928. ISBN 978-0-08-101907-8. [Google Scholar]
- Bonazzi, C.; Dumoulin, E. Quality Changes in Food Materials as Influenced by Drying Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Siemianowska, E.; Kosewska, A.; Aljewicz, M.; Skibniewska, K.A.; Polak-Juszczak, L.; Jarocki, A.; Jedras, M. Larvae of Mealworm (Tenebrio Molitor L.) as European Novel Food. Agric. Sci. 2013, 4, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Bosch, G.; Zhang, S.; Oonincx, D.G.A.B.; Hendriks, W.H. Protein Quality of Insects as Potential Ingredients for Dog and Cat Foods*. J. Nutr. Sci. 2014, 3, e29. [Google Scholar] [CrossRef] [Green Version]
- Rumbos, C.I.; Karapanagiotidis, I.T.; Mente, E.; Psofakis, P.; Athanassiou, C.G. Evaluation of Various Commodities for the Development of the Yellow Mealworm, Tenebrio Molitor. Sci. Rep. 2020, 10, 11224. [Google Scholar] [CrossRef]
- Madibela, O.R.; Seitiso, T.K.; Thema, T.F.; Letso, M. Effect of Traditional Processing Methods on Chemical Composition and in Vitro True Dry Matter Digestibility of the Mophane Worm (Imbrasia Belina). J. Arid Environ. 2007, 68, 492–500. [Google Scholar] [CrossRef]
- Ravi, H.K.; Degrou, A.; Costil, J.; Trespeuch, C.; Chemat, F.; Vian, M.A. Effect of Devitalization Techniques on the Lipid, Protein, Antioxidant, and Chitin Fractions of Black Soldier Fly (Hermetia Illucens) Larvae. Eur. Food Res. Technol. 2020, 246, 2549–2568. [Google Scholar] [CrossRef]
- Manditsera, F.A.; Luning, P.A.; Fogliano, V.; Lakemond, C.M.M. Effect of Domestic Cooking Methods on Protein Digestibility and Mineral Bioaccessibility of Wild Harvested Adult Edible Insects. Food Res. Int. 2019, 121, 404–411. [Google Scholar] [CrossRef]
- Leni, G.; Caligiani, A.; Sforza, S. Killing Method Affects the Browning and the Quality of the Protein Fraction of Black Soldier Fly (Hermetia Illucens) Prepupae: A Metabolomics and Proteomic Insight. Food Res. Int. 2019, 115, 116–125. [Google Scholar] [CrossRef]
- Zhen, Y.; Chundang, P.; Zhang, Y.; Wang, M.; Vongsangnak, W.; Pruksakorn, C.; Kovitvadhi, A. Impacts of Killing Process on the Nutrient Content, Product Stability and In Vitro Digestibility of Black Soldier Fly (Hermetia Illucens) Larvae Meals. Appl. Sci. 2020, 10, 6099. [Google Scholar] [CrossRef]
- Selaledi, L.; Mabelebele, M. The Influence of Drying Methods on the Chemical Composition and Body Color of Yellow Mealworm (Tenebrio Molitor L.). Insects 2021, 12, 333. [Google Scholar] [CrossRef]
Processing Step | Description | Processing Pathway | Sample | |||
---|---|---|---|---|---|---|
A | B | C | D | |||
Sieving | Sieving was performed to remove residues of substrates, frass and dead larvae. | + | + | + | + | Alive (A) |
Rinsing | Mealworm larvae was carefully rinsed with clean water. | + | + | + | + | After rinsing (AR) |
Boiling | Mealworm larvae were boiled in hot water (insect water ratio 1:1) for 5 min (timer started only when water temperature reached 100 °C after the addition of larvae) and then drained. | + | + | + | PA-B PB-B PC-B | |
Freezing slaughter | Larvae were put in a thin layer of less than 5 cm into freezer for 4 h at −18 °C. | + | PD-FS | |||
Mincing | Mincing was performed at speed 10 with a multifunctional appliance Thermomix®. | + | ||||
Cooking | Cooking was performed in Thermomix® tank at 80 °C for 30 min (insect water ratio 1:1). | + | PB-C | |||
Centrifugation | Centrifugation was applied to separate the oil and paste (5 min 80 °C with a force of 5000 g). | + | ||||
Cooling | Boiled mealworms were put in a cold-water cooling system at 15 °C for 5 min. | + | ||||
Freezing | Cooled mealworms were frozen for 4 h at −18 °C. | + | PC-F | |||
Oven-drying | Whole insects or insect paste were dried in a fine layer of a laboratory oven at 100 °C for 4–8 h. | + | + | PA-OD PB-OD | ||
Freeze-drying | Frozen mealworms were put into freeze-drying equipment at −85 °C for 48 h. | + | + | |||
Grinding | Insect powder was obtained by grinding the obtained larvae with a blender. | + | + | + | + | |
Packaging, Labeling, Storage | All the powders were packaged into plastic bottles, labeled and stored at ambient temperature. | + | + | + | + | PA-P, PB-P, PC-P, PD-P |
Indicators/Targets | Methods |
---|---|
Bacterial endospores | Plate Count Agar (PCA) with 0.2% starch, incubated at 30 °C for 72 h after thermal treatment at 80 °C for 10 min |
Clostridium perfringens/g | NF EN ISO 7937 |
Coagulase-positive staphylococci (37 °C)/g | Internal method adapted from NF V 08-057-1 |
Cronobacter spp./10 g | NF EN ISO 22964 |
Enterobacteriaceae (30 °C)/g | NF * V 08-054 |
Escherichia coli β-glucuronidase positive/g | Internal method adapted from NF ISO 16649-2 |
Lactic acid bacteria (LAB) | De Man, Rogosa Sharpe (MRS) agar, incubation at 30°C for 72 h |
Listeria monocytogenes/25 g | AES 10/03-09/00 *** |
Presumptive Bacillus cereus (30 °C)/g | BKR 23/06-02/10 ** |
Salmonella spp./10 g | BRD 07/11-12/05 **** |
Sulfite-reducing anaerobes (Clostridium spp.) (46 °C)/g | Internal method adapted from NF V 08-061 box |
Total aerobic count (TAC) | Plate Count Agar (PCA), incubation at 30 °C for 72 h |
Yeasts and molds (on products at aw < 0.96)/g | NF V 08-036 |
Biological Hazards | Thermal Inactivation Parameters | References | ||
---|---|---|---|---|
TRef (°C) | DRef * (min) | z (°C) * | ||
B. Cereus (spore) | 95 | 2 | (8−12.5) | [38] |
C. botulinum Type I (spore) | 121.1 | 0.21 | 10 | [39] |
C. perfringens (spore) | 100 | (0.2−43) | (10.6−13.7) | [40] |
Cronobacter sakazakii | 60 | (0.9−4.4) | 5.6 | [41] |
E. coli STEC | 60 | (0.5−3) | (3.5−7) | [42] |
L. monocytogenes | 65 | (0.2−2) | (4−11) | [43] |
Salmonella spp. | 60 | (2−6) | 6.5 | [44] |
S. aureus | 60 | (0.8−10) | 7 | [45] |
S. aureus (enterotoxin) | 121 | (8.3–34) | (25−33) | [46] |
Alive Larvae | Powder A | Powder B | Powder C | Powder D | |
---|---|---|---|---|---|
Dry matter (DM, g/100 g) | 29.48 d ± 0.08 | 97.95 a ± 0.02 | 97.87 a ± 0.13 | 95.54 c ± 0.18 | 96.83 b ± 0.15 |
Crude protein (%, DM) | 66.08 b ± 0.41 | 57.90 cd ± 1.01 | 70.04 a ± 1.42 | 58.37 c ± 0.36 | 55.62 d ± 0.56 |
Crude fat (%, DM) | 19.94 bc ± 1.33 | 28.21 a ± 0.91 | 16.84 c ± 0.23 | 23.63 ab ± 4.19 | 24.51 ab± 0.32 |
Ash (%, DM) | 4.60 a ± 0.04 | 3.14 e ± 0.09 | 3.71 c ± 0.06 | 3.44 d ± 0.14 | 4.03 b ± 0.11 |
Carbohydrates (%, DM) | 9.38 b ± 1.67 | 10.75 ab ± 1.56 | 9.41 b ± 1.61 | 14.55 ab ± 4.01 | 15.84 a ± 0.79 |
aw | 0.99 a ± 0.00 | 0.08 c ± 0.00 | 0.16 b ± 0.00 | 0.17 b ± 0.01 | 0.17 b ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Laurent, S.; Hue, I.; Cabon, S.; Grua-Priol, J.; Jury, V.; Federighi, M.; Boué, G. Quality of Tenebrio molitor Powders: Effects of Four Processes on Microbiological Quality and Physicochemical Factors. Foods 2023, 12, 572. https://doi.org/10.3390/foods12030572
Yan X, Laurent S, Hue I, Cabon S, Grua-Priol J, Jury V, Federighi M, Boué G. Quality of Tenebrio molitor Powders: Effects of Four Processes on Microbiological Quality and Physicochemical Factors. Foods. 2023; 12(3):572. https://doi.org/10.3390/foods12030572
Chicago/Turabian StyleYan, Xin, Sophie Laurent, Isabelle Hue, Sylvie Cabon, Joelle Grua-Priol, Vanessa Jury, Michel Federighi, and Geraldine Boué. 2023. "Quality of Tenebrio molitor Powders: Effects of Four Processes on Microbiological Quality and Physicochemical Factors" Foods 12, no. 3: 572. https://doi.org/10.3390/foods12030572
APA StyleYan, X., Laurent, S., Hue, I., Cabon, S., Grua-Priol, J., Jury, V., Federighi, M., & Boué, G. (2023). Quality of Tenebrio molitor Powders: Effects of Four Processes on Microbiological Quality and Physicochemical Factors. Foods, 12(3), 572. https://doi.org/10.3390/foods12030572