Evaluation of the Feasibility of Harvest Optimisation of Soft-Shell Mud Crab (Scylla paramamosain) from the Perspective of Nutritional Values
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Production Process of Soft-Shell Crab
2.3. Experiment Design
2.4. Sample Collection
2.5. Determination of Proximate Composition
2.6. Determination of Mineral Composition
2.7. Extraction and Determination of Total Carotenoids
2.8. Determination of Amino Acid Composition
2.9. Determination of Fatty Acid Composition
2.10. Statistical Analysis
3. Results and Discussion
3.1. Production Process of Soft-Shell Crab
3.2. Proximate Composition in Soft-Shell Crab
3.3. Mineral Composition in Soft-Shell Crab
3.4. Total Carotenoid Content in Soft-Shell Crab
3.5. Amino Acid Composition in Soft-Shell Crab
3.6. Fatty Acid Composition of Soft-Shell Crab
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lorentzen, G.; Voldnes, G.; Whitaker, R.D.; Kvalvik, I.; Vang, B.; Solstad, R.G.; Thomassen, M.R.; Siikavuopio, S.I. Current status of the red king crab (Paralithodes camtchaticus) and snow crab (Chionoecetes opilio) industries in Norway. Rev. Fish. Sci. Aquac. 2018, 26, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.Y.; Shi, X.; Fang, S.B.; Xie, Z.F.; Guan, M.Y.; Li, S.K.; Zheng, H.P.; Zhang, Y.L.; Ikhwanuddin, M.; Ma, H.Y. Different biochemical composition and nutritional value attribute to salinity and rearing period in male and female mud crab Scylla paramamosain. Aquaculture 2019, 513, 734417. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, X.X.; Jin, M.; Jiao, L.F.; Sun, P.; Betancor, M.B.; Tocher, D.R.; Zhou, Q.C. Modification of nutritional values and flavor qualities of muscle of swimming crab (Portunus trituberculatus): Application of a dietary lipid nutrition strategy. Food Chem. 2020, 308, 125607. [Google Scholar] [CrossRef]
- Benjakul, S.; Sutthipan, N. Comparative study on chemical composition, thermal properties and microstructure between the muscle of hard shell and soft shell mud crabs. Food Chem. 2009, 112, 627–633. [Google Scholar] [CrossRef]
- Tavares, C.P.S.; Silva, U.A.T.; Pereira, L.Â.; Ostrensky, A. Evaluation of different induced molting methods in Callinectes ornatus (Crustacea, Decapoda, Portunidae) as a tool for the commercial production of soft-shell crabs. An. Acad. Bras. Ciênc. 2021, 2021, 93. [Google Scholar] [CrossRef]
- Mullowney, D.R.J.; Baker, K.D.; Pantin, J.R. Hard to Manage? Dynamics of soft-shell crab in the Newfoundland and Labrador snow crab fishery. Front. Mar. Sci. 2021, 8, 591496. [Google Scholar] [CrossRef]
- Pathak, N.; Shakila, R.J.; Jeyasekaran, G.; Padmavathy, P.; Neethiselvan, N.; Shalini, R.; Arisekar, U.; Patel, A.; Kumar, U.; Malini, A.H.; et al. Variation in the nutritional composition of soft and hard blue swimming crabs (Portunus pelagicus) having good export potential. J. Aquat. Food Prod. Technol. 2021, 30, 706–719. [Google Scholar] [CrossRef]
- Sudhakar, M.; Manivannan, K.; Soundrapandian, P. Nutritive value of hard and soft shell crabs of Portunus sanguinolentus (Herbst). Int. J. Anim. Vet. Adv. 2009, 2, 44–48. [Google Scholar]
- Lahiri, T.; Nazrul, K.M.S.; Rahman, M.A.; Saha, D.; Egna, H.; Wahab, M.A.; Mamun, A.-A. Boom and bust: Soft-shell mud crab farming in south-east coastal Bangladesh. Aquacult. Res. 2021, 52, 5056–5068. [Google Scholar] [CrossRef]
- Hungria, D.B.; dos Santos Tavares, C.P.; Pereira, L.Â.; de Assis Teixeira da Silva, U.; Ostrensky, A. Global status of production and commercialization of soft-shell crabs. Aquacult. Int. 2017, 25, 2213–2226. [Google Scholar] [CrossRef]
- Benjakul, S.; Sutthipan, N. Muscle changes in hard and soft shell crabs during frozen storage. Lwt Food Sci. Technol. 2009, 42, 723–729. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Lemos, D.; Metian, M. Fish for health: Improved nutritional quality of cultured fish for human consumption. Rev. Fish. Sci. Aquac. 2020, 28, 449–458. [Google Scholar] [CrossRef]
- Claret, A.; Guerrero, L.; Gartzia, I.; Garcia-Quiroga, M.; Ginés, R. Does information affect consumer liking of farmed and wild fish? Aquaculture 2016, 454, 157–162. [Google Scholar] [CrossRef]
- Umer, A.; Syed, M.N.; Tarar, O.M.; Mushtaq, S.; Jalbani, N.; Saleem, N.; Haider, M.S.; Ahmad, N. Biochemical evaluation with reference to nutritional aspects of edible species of crabs collected from the coastal waters of Pakistan. J. Food Compos. Anal. 2021, 100, 103877. [Google Scholar] [CrossRef]
- Mizuta, S.; Kobayashi, Y.; Yoshinaka, R. Chemical and histological characterization of raw muscle from soft and hard crabs of snow crab Chionoecetes opilio. J. Food Sci. 2001, 66, 238–241. [Google Scholar] [CrossRef]
- Mohapatra, A.; Rautray, T.R.; Patra, A.K.; Vijayan, V.; Mohanty, R.K. Trace element-based food value evaluation in soft and hard shelled mud crabs. Food Chem. Toxicol. 2009, 47, 2730–2734. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.G.; Zhou, B.; Cheng, Y.X.; Zeng, C.S.; Wang, C.L.; Feng, L. Comparison of gender differences in biochemical composition and nutritional value of various edible parts of the blue swimmer crab. J. Food Compos. Anal. 2010, 23, 154–159. [Google Scholar] [CrossRef]
- Zhu, S.C.; Long, X.W.; Turchini, G.M.; Deng, D.; Cheng, Y.X.; Wu, X.G. Towards defining optimal dietary protein levels for male and female sub-adult Chinese mitten crab, Eriocheir sinensis reared in earthen ponds: Performances, nutrient composition and metabolism, antioxidant capacity and immunity. Aquaculture 2021, 536, 736442. [Google Scholar] [CrossRef]
- Farhadi, A.; Lv, L.G.; Song, J.; Zhang, Y.; Ye, S.P.; Zhang, N.; Zheng, H.P.; Li, S.K.; Zhang, Y.L.; Ikhwanuddin, M.; et al. Whole-transcriptome RNA sequencing revealed the roles of chitin-related genes in the eyestalk abnormality of a novel mud crab hybrid (Scylla serrata♀×S. paramamosain♂). Int. J. Biol. Macromol. 2022, 208, 611–626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, Z.; Zhou, Y.; Ma, H.Y.; Saqib, H.S.A.; Su, Q.; Cui, W.X.; Ma, H.Y. The effects of different diet, salinity and light condition on growth performance and moulting cycle of juvenile mud crab, Scylla paramamosain. Aquac. Res. 2022, 53, 6333–6342. [Google Scholar] [CrossRef]
- Waiho, K.; Fazhan, H.; Quinitio, E.T.; Baylon, J.C.; Fujaya, Y.; Azmie, G.; Wu, Q.Y.; Shi, X.; Ikhwanuddin, M.; Ma, H.Y. Larval rearing of mud crab (Scylla): What lies ahead. Aquaculture 2018, 493, 37–50. [Google Scholar] [CrossRef]
- Shi, X.; Lu, J.X.; Wu, Q.Y.; Waiho, K.; Aweya, J.J.; Fazhan, H.; Zhang, Y.L.; Li, S.K.; Zheng, H.P.; Lin, F.; et al. Comparative analysis of growth performance between female and male mud crab Scylla paramamosain crablets: Evidences from a four-month successive growth experiment. Aquaculture 2019, 505, 351–362. [Google Scholar] [CrossRef]
- Cui, W.X.; Guan, M.Y.; Sadek, M.A.; Wu, F.C.; Wu, Q.Y.; Tan, H.Q.; Shi, X.; Ikhwanuddin, M.; Ma, H.Y. Construction of a genetic linkage map and QTL mapping for sex indicate the putative genetic pattern of the F1 hybrid Scylla (Scylla serrata♀×S. paramamosain♂). Aquaculture 2021, 545, 737222. [Google Scholar] [CrossRef]
- Ye, S.P.; Yu, X.Y.; Chen, H.Y.; Zhang, Y.; Wu, Q.Y.; Tan, H.Q.; Song, J.; Saqib, H.S.A.; Farhadi, A.; Ikhwanuddin, M.; et al. Full-Length transcriptome reconstruction reveals the genetic mechanisms of eyestalk displacement and its potential implications on the interspecific hybrid crab (Scylla serrata♀×S. paramamosain♂). Biology 2022, 11, 1026. [Google Scholar] [CrossRef] [PubMed]
- Quinitio, E.T.; Estepa, F.D.P. Survival and growth of mud crab, Scylla serrata, juveniles subjected to removal or trimming of chelipeds. Aquaculture 2011, 318, 229–234. [Google Scholar] [CrossRef]
- Perry, H.; Trigg, C.; Larsen, K.; Freeman, J.; Erickson, M.; Henry, R. Calcium concentration in seawater and exoskeletal calcification in the blue crab, Callinectes sapidus. Aquaculture 2001, 198, 197–208. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Yue, W.C.; Chen, J.; Gaughan, S.; Lu, W.Q.; Lu, G.Q.; Wang, C.H. Transcriptomic variation of hepatopancreas reveals the energy metabolism and biological processes associated with molting in Chinese mitten crab, Eriocheir sinensis. Sci. Rep. 2015, 5, 14015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 16th ed.AOAC: Arlington, VA, USA, 1995. [Google Scholar]
- Wu, H.; Ge, M.; Chen, H.; Jiang, S.; Lin, L.; Lu, J. Comparison between the nutritional qualities of wild-caught and rice-field male Chinese mitten crabs (Eriocheir sinensis). Lwt Food Sci. Technol. 2020, 117, 108663. [Google Scholar] [CrossRef]
- Yanar, Y.; Çelik, M.; Yanar, M. Seasonal changes in total carotenoid contents of wild marine shrimps (Penaeus semisulcatus and Metapenaeus monoceros) inhabiting the eastern Mediterranean. Food Chem. 2004, 88, 267–269. [Google Scholar] [CrossRef]
- Farhadi, A.; Huang, Z.; Qiu, B.X.; Ikhwanuddin, M.; Ma, H.Y. Effect of light condition on the growth performance and biochemical compositions of post-mating female mud crab (Scylla paramamosain). Aquacult. Rep. 2021, 21, 100807. [Google Scholar] [CrossRef]
- Li, Y.Y.; Hu, C.B.; Zheng, Y.J.; Xia, X.A.; Xu, W.J.; Wang, S.Q.; Chen, W.Z.; Sun, Z.W.; Huang, J.H. The effects of dietary fatty acids on liver fatty acid composition and Δ6-desaturase expression differ with ambient salinities in Siganus canaliculatus. Comp. Biochem. Phys. B 2008, 151, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.Z.; Chen, F.; Lin, S.Y.; You, C.H.; Wang, S.Q.; Zhang, Q.H.; Monroig, Ó.; Tocher, D.R.; Li, Y.Y. Long-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases. Comp. Biochem. Phys. B 2016, 198, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Romano, N.; Zeng, C. The effects of salinity on the survival, growth and haemolymph osmolality of early juvenile blue swimmer crabs, Portunus pelagicus. Aquaculture 2006, 260, 151–162. [Google Scholar] [CrossRef]
- Ljubojevic, D.; Trbovic, D.; Lujic, J.; Bjelic-Cabrilo, O.; Kostic, D.; Novakov, N.; Cirkovic, M. Fatty acid composition of fishes from inland waters. Bulg. J. Agric. Sci. 2013, 19, 62–71. [Google Scholar]
- Vijayavel, K.; Balasubramanian, M.P. Fluctuations of biochemical constituents and marker enzymes as a consequence of naphthalene toxicity in the edible estuarine crab Scylla serrata. Ecotox. Environ. Safe. 2006, 63, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Godswill, A.G.; Somtochukwu, I.V.; Ikechukwu, A.O.; Kate, E.C. Health benefits of micronutrients (vitamins and minerals) and their associated deficiency diseases: A systematic review. Int. J. Food Sci. Nutr. 2020, 3, 1–32. [Google Scholar] [CrossRef]
- Soetan, K.; Olaiya, C.; Oyewole, O. The importance of mineral elements for humans, domestic animals and plants—A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Greenaway, P. Calcium and magnesium balance during molting in land crabs. J. Crustacean Biol. 1993, 13, 191–197. [Google Scholar] [CrossRef]
- Elamin, O.M.; Wilcox, G.E. Effect of magnesium and manganese nutrition on muskmelon growth and manganese toxicity. J. Am. Soc. Hortic. Sci. 1986, 111, 582–587. [Google Scholar] [CrossRef]
- Lall, S.P. The minerals. In Fish Nutrition; Halver, J.E., Hardy, R.W., Eds.; Academic Press: New York, NY, USA, 2002; pp. 259–308. [Google Scholar]
- Martins, N.; Ferreira, I.C. Wastes and by-products: Upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends Food Sci. Technol. 2017, 62, 33–48. [Google Scholar] [CrossRef]
- Ambati, R.R.; Siew-Moi, P.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef] [PubMed]
- Parisenti, J.; Beirão, L.H.; Tramonte, V.L.; Ourique, F.; da Silveira Brito, C.C.; Moreira, C.C. Preference ranking of colour in raw and cooked shrimps. Int. J. Food Sci. 2011, 46, 2558–2561. [Google Scholar] [CrossRef]
- Yamashita, E. Astaxanthin as a medical food. Funct. Foods Health Dis. 2013, 3, 254–258. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Ahmad Khan, M.; Yousefi, M.; Costas, B. Roles of arginine in fish nutrition and health: Insights for future researches. Rev. Aquacult. 2020, 12, 2091–2108. [Google Scholar] [CrossRef]
- Dutta, S.; Ray, S.; Nagarajan, K. Glutamic acid as anticancer agent: An overview. Saudi Pharm. J. 2013, 21, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, B.C.; Barbul, A. Cellular and physiological effects of arginine. Mini-Rev. Med. Chem. 2004, 4, 823–832. [Google Scholar]
- Tomé, D.; Bos, C. Lysine requirement through the human life cycle. J. Nutr. 2007, 137, 1642S–1645S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Xu, F.M.; Jin, M.; Wang, X.X.; Hu, X.Y.; Zhao, M.M.; Cheng, X.; Luo, J.X.; Jiao, L.F.; Betancor, M.B.; et al. Untargeted lipidomics reveals metabolic responses to different dietary n-3 PUFA in juvenile swimming crab (Portunus trituberculatus). Food Chem. 2021, 354, 129570. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.Y.; Waiho, K.; Huang, Z.; Li, S.K.; Zheng, H.P.; Zhang, Y.L.; Ikhwanuddin, M.; Lin, F.; Ma, H.Y. Growth performance and biochemical composition dynamics of ovary, hepatopancreas and muscle tissues at different ovarian maturation stages of female mud crab, Scylla paramamosain. Aquaculture 2020, 515, 734560. [Google Scholar] [CrossRef]
- Zhang, S.; Knight, T.J.; Stalder, K.J.; Goodwin, R.N.; Lonergan, S.M.; Beitz, D.C. Effects of breed, sex and halothane genotype on fatty acid composition of triacylglycerols and phospholipids in pork longissimus muscle. J. Anim. Breed. Genet. 2009, 126, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Dorni, C.; Sharma, P.; Saikia, G.; Longvah, T. Fatty acid profile of edible oils and fats consumed in India. Food Chem. 2018, 238, 9–15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Yuan, Y.; Huang, Z.; Chen, Y.; Cui, W.; Zhang, Y.; Saqib, H.S.A.; Ye, S.; Li, S.; Zheng, H.; et al. Evaluation of the Feasibility of Harvest Optimisation of Soft-Shell Mud Crab (Scylla paramamosain) from the Perspective of Nutritional Values. Foods 2023, 12, 583. https://doi.org/10.3390/foods12030583
Gao W, Yuan Y, Huang Z, Chen Y, Cui W, Zhang Y, Saqib HSA, Ye S, Li S, Zheng H, et al. Evaluation of the Feasibility of Harvest Optimisation of Soft-Shell Mud Crab (Scylla paramamosain) from the Perspective of Nutritional Values. Foods. 2023; 12(3):583. https://doi.org/10.3390/foods12030583
Chicago/Turabian StyleGao, Weifeng, Ye Yuan, Zhi Huang, Yongyi Chen, Wenxiao Cui, Yin Zhang, Hafiz Sohaib Ahmed Saqib, Shaopan Ye, Shengkang Li, Huaiping Zheng, and et al. 2023. "Evaluation of the Feasibility of Harvest Optimisation of Soft-Shell Mud Crab (Scylla paramamosain) from the Perspective of Nutritional Values" Foods 12, no. 3: 583. https://doi.org/10.3390/foods12030583
APA StyleGao, W., Yuan, Y., Huang, Z., Chen, Y., Cui, W., Zhang, Y., Saqib, H. S. A., Ye, S., Li, S., Zheng, H., Zhang, Y., Ikhwanuddin, M., & Ma, H. (2023). Evaluation of the Feasibility of Harvest Optimisation of Soft-Shell Mud Crab (Scylla paramamosain) from the Perspective of Nutritional Values. Foods, 12(3), 583. https://doi.org/10.3390/foods12030583