One-Step Synthesis of Poly(L-Lactic Acid)-Based Soft Films with Gas Permselectivity for White Mushrooms (Agaricus bisporus) Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.2.1. Synthesis of Oligo (L-Lactic Acid) and Poly (L-Lactic Acid)
2.2.2. Synthesis of Oligo (Butylene Fumarate)
2.2.3. Synthesis of the PLGA Copolymer
2.2.4. Synthesis of the PLBF Copolymer
2.2.5. Preparation of Films
2.3. Measurements and Characterization
2.3.1. Attenuated Total Refection Fourier Transform Infrared Spectroscopy
2.3.2. Nuclear Magnetic Resonance
2.3.3. Gel Permeation Chromatography
2.3.4. Tensile Test
2.3.5. Gas Barrier Properties
Oxygen and Carbon Dioxide Permeability
2.4. Application for Agaricus bisporus Packaging
2.4.1. Headspace Analysis
2.4.2. Weight Loss
2.4.3. Browning Index
2.4.4. Total Phenolics and Ascorbic Acid
2.4.5. Malondialdehyde Content and Electrolyte Leakage Rate
2.4.6. Enzyme Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterizations of Films
3.1.1. Structural and Molecular Characterization of Films
3.1.2. Mechanical Properties
3.1.3. Gas Permeability Properties
3.2. Characteristics of Mushrooms
3.2.1. Headspace Analysis
3.2.2. Weight Loss
3.2.3. Browning Index
3.2.4. Total Phenolics and Ascorbic Acid
3.2.5. Malondialdehyde Content and Electrolyte Leakage Rate
3.2.6. Enzyme Activity
3.2.7. Relevance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, B.; Chen, X.; Xin, G.; Qin, S.; Chen, M.; Jiang, F. Effect of 1-methylcyclopropene (1-MCP) on quality of button mushrooms (Agaricus bisporus) packaged in different packaging materials. Postharvest Biol. Technol. 2020, 159, 111023. [Google Scholar] [CrossRef]
- Yan, M.; Yuan, B.; Xie, Y.; Cheng, S.; Huang, H.; Zhang, W.; Chen, J.; Cao, C. Improvement of postharvest quality, enzymes activity and polyphenoloxidase structure of postharvest Agaricus bisporus in response to high voltage electric field. Postharvest Biol. Technol. 2020, 166, 111230. [Google Scholar] [CrossRef]
- Zhang, K.; Pu, Y.-Y.; Sun, D.-W. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends Food Sci. Technol. 2018, 78, 72–82. [Google Scholar] [CrossRef]
- Wu, W.; Ni, X.; Shao, P.; Gao, H. Novel packaging film for humidity-controlled manipulating of ethylene for shelf-life extension of Agaricus bisporus. LWT 2021, 145, 111331. [Google Scholar] [CrossRef]
- Chang, C.-K.; Cheng, K.-C.; Hou, C.-Y.; Wu, Y.-S.; Hsieh, C.-W. Development of Active Packaging to Extend the Shelf Life of Agaricus bisporus by Using Plasma Technology. Polymers 2021, 13, 2120. [Google Scholar] [CrossRef]
- Gholami, R.; Ahmadi, E.; Farris, S. Shelf life extension of white mushrooms (Agaricus bisporus) by low temperatures conditioning, modified atmosphere, and nanocomposite packaging material. Food Packag. Shelf Life 2017, 14, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, Z.; Sun, Y.; Wang, X.; Li, L. Combined antioxidant and sensory effects of active chitosan/zein film containing α-tocopherol on Agaricus bisporus. Food Packag. Shelf Life 2020, 24, 100470. [Google Scholar] [CrossRef]
- Hu, Y.-H.; Chen, C.-M.; Xu, L.; Cui, Y.; Yu, X.-Y.; Gao, H.-J.; Wang, Q.; Liu, K.; Shi, Y.; Chen, Q.-X. Postharvest application of 4-methoxy cinnamic acid for extending the shelf life of mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2015, 104, 33–41. [Google Scholar] [CrossRef]
- Jiang, T.; Zheng, X.; Li, J.; Jing, G.; Cai, L.; Ying, T. Integrated application of nitric oxide and modified atmosphere packaging to improve quality retention of button mushroom (Agaricus bisporus). Food Chem. 2011, 126, 1693–1699. [Google Scholar] [CrossRef]
- Gao, M.; Feng, L.; Jiang, T. Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment. Food Chem. 2014, 149, 107–113. [Google Scholar] [CrossRef]
- Chen, C.; Chen, W.; Dai, F.; Yang, F.; Xie, J. Development of Packaging Films With Gas Selective Permeability Based On Poly (butylene Adipate-co-terephthalate)/Poly (butylene Succinate) and Its Application in the Storage of White Mushroom (Agaricus Bisporus). Food Bioprocess Technol. 2022, 15, 1–16. [Google Scholar] [CrossRef]
- Genovese, L.; Soccio, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Salatelli, E.; Balestra, F.; Munari, A. Design of biobased PLLA triblock copolymers for sustainable food packaging: Thermo-mechanical properties, gas barrier ability and compostability. Eur. Polym. J. 2017, 95, 289–303. [Google Scholar] [CrossRef]
- Jiang, Y.; Yan, C.; Wang, K.; Shi, D.; Liu, Z.; Yang, M. Super-toughed PLA blown film with enhanced gas barrier property available for packaging and agricultural applications. Materials 2019, 12, 1663. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Zhou, Y.; Waterhouse, G.I.; Gong, R.; Xie, J.; Zhang, K.; Xu, J. Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films. Food Chem. 2021, 334, 127487. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Kaveh, F.; Schmid, M. Facile fabrication of transparent high-barrier poly (lactic acid)-based bilayer films with antioxidant/antimicrobial performances. Food Chem. 2022, 384, 132540. [Google Scholar] [CrossRef]
- Ali, F.B.; Kang, D.J.; Kim, M.P.; Cho, C.H.; Kim, B.J. Synthesis of biodegradable and flexible, polylactic acid based, thermoplastic polyurethane with high gas barrier properties. Polym. Int. 2014, 63, 1620–1626. [Google Scholar] [CrossRef]
- Yuk, J.S.; Mo, E.; Kim, S.; Jeong, H.; Gwon, H.; Kim, N.-K.; Kim, Y.-W.; Shin, J. Thermoplastic Superelastomers Based on Poly (isobutylene)-graft-Poly (l-lactide) Copolymers: Enhanced Thermal Stability, Tunable Tensile Strength, and Gas Barrier Property. Macromolecules 2020, 53, 2503–2515. [Google Scholar] [CrossRef]
- Marano, S.; Laudadio, E.; Minnelli, C.; Stipa, P. Tailoring the Barrier Properties of PLA: A State-of-the-Art Review for Food Packaging Applications. Polymers 2022, 14, 1626. [Google Scholar] [CrossRef]
- Cheng, P.; Yun, X.; Xu, C.; Yang, Y.; Han, Y.; Dong, T. Use of poly (ε-caprolactone)-based films for equilibrium-modified atmosphere packaging to extend the postharvest shelf life of garland chrysanthemum. Food Sci. Nutr. 2019, 7, 1946–1956. [Google Scholar] [CrossRef]
- Mistriotis, A.; Briassoulis, D.; Giannoulis, A.; D’Aquino, S. Design of biodegradable bio-based equilibrium modified atmosphere packaging (EMAP) for fresh fruits and vegetables by using micro-perforated poly-lactic acid (PLA) films. Postharvest Biol. Technol. 2016, 111, 380–389. [Google Scholar] [CrossRef]
- Matar, C.; Salou, T.; Hélias, A.; Pénicaud, C.; Gaucel, S.; Gontard, N.; Guilbert, S.; Guillard, V. Benefit of modified atmosphere packaging on the overall environmental impact of packed strawberries. Postharvest Biol. Technol. 2021, 177, 111521. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Wang, Y.; Bu, H.; Dong, T. Changes in cell wall metabolism and flavor qualities of mushrooms (Agaricus bernardii) under EMAP treatments during storage. Food Packag. Shelf Life 2021, 29, 100732. [Google Scholar] [CrossRef]
- Tumwesigye, K.S.; Sousa, A.; Oliveira, J.; Sousa-Gallagher, M. Evaluation of novel bitter cassava film for equilibrium modified atmosphere packaging of cherry tomatoes. Food Packag. Shelf Life 2017, 13, 1–14. [Google Scholar] [CrossRef]
- Zalewska, M.; Marcinkowska-Lesiak, M.; Onopiuk, A.; Stelmasiak, A.; Półtorak, A. Modified atmosphere packaging for extending the shelf life of fresh Agaricus bisporus. J. Food Process. Preserv. 2018, 42, e13839. [Google Scholar] [CrossRef]
- Sami, R.; Elhakem, A.; Alharbi, M.; Benajiba, N.; Almatrafi, M.; Abdelazez, A.; Helal, M. Evaluation of antioxidant activities, oxidation enzymes, and quality of nano-coated button mushrooms (Agaricus bisporus) during storage. Coatings 2021, 11, 149. [Google Scholar] [CrossRef]
- Cheng, P.-f.; Liang, M.; Yun, X.-y.; Dong, T. Biodegradable blend films of poly (ε-caprolactone)/poly (propylene carbonate) for shelf life extension of whole white button mushrooms. J. Food Sci. Technol. 2022, 59, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Yun, X.; Wang, Y.; Li, M.; Jin, Y.; Han, Y.; Dong, T. Application of permselective poly (ε-caprolactone) film for equilibrium-modified atmosphere packaging of strawberry in cold storage. J. Food Process. Preserv. 2017, 41, e13247. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, D.; Wu, Y.; Yuan, M.; Li, L.; Yang, J. Effect of PLA/PCL/cinnamaldehyde antimicrobial packaging on physicochemical and microbial quality of button mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2015, 99, 73–79. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Z.; Li, C.; Zhang, D.; Xiao, Y. Novel unsaturated aliphatic polyesters: Synthesis, characterization, and properties of multiblock copolymers composing of poly (butylene fumarate) and poly (1, 2-propylene succinate). Ind. Eng. Chem. Res. 2012, 51, 14107–14114. [Google Scholar] [CrossRef]
- Naghavi Sheikholeslami, S.; Rafizadeh, M.; Afshar Taromi, F.; Shirali, H. Crystallization and photo-curing kinetics of biodegradable poly (butylene succinate-co-butylene fumarate) short-segmented block copolyester. Polym. Int. 2017, 66, 289–299. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, X.; Liu, F.; Xue, J.; Zhou, J.; Huo, H.; Li, L. Crystallization of isomorphic poly (butylene succinate-co butylene fumarate) biopolyester: Single crystals and ring-banded spherulites. Polym. Test. 2018, 68, 379–387. [Google Scholar] [CrossRef]
- Zheng, Y.; Pan, P. Crystallization of biodegradable and biobased polyesters: Polymorphism, cocrystallization, and structure-property relationship. Prog. Polym. Sci. 2020, 109, 101291. [Google Scholar] [CrossRef]
- Ellingford, C.; Samantaray, P.K.; Farris, S.; McNally, T.; Tan, B.; Sun, Z.; Huang, W.; Ji, Y.; Wan, C. Reactive extrusion of biodegradable PGA/PBAT blends to enhance flexibility and gas barrier properties. J. Appl. Polym. Sci. 2022, 139, 51617. [Google Scholar] [CrossRef]
- Regubalan, B.; Manibalan, S.; Pandit, P. Polyglycolic Acid-Based Bionanocomposites for Food Packaging Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 153–164. [Google Scholar]
- Pirie, A.; Mullins, M.G. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid. Plant Physiol. 1976, 58, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Yuan, W.; Jin, P.; Wang, W.; Wang, X.; Yang, L.; Zhang, Y. Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biol. Technol. 2016, 119, 41–48. [Google Scholar] [CrossRef]
- Kaya, C.; Kirnak, H.; Higgs, D.; Saltali, K. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci. Hortic. 2002, 93, 65–74. [Google Scholar] [CrossRef]
- Cao, J.; Jiang, W.; Zhao, Y. Experiment Guidance of Postharvest Physiology and Biochemistry of Fruits and Vegetables; China Light Industry Press, Beijing, China, 2007; pp. 84–87.
- Yun, X.; Li, X.; Cheng, P.; Pan, P.; Dong, T. Controllable Poly (L-lactic acid) Soft Film with Respirability and Its Effect on Strawberry Preservation. Polym. Sci. Ser. A 2021, 63, 77–90. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; He, M.; Li, J. Degradation of PGA, prepared by reactive extrusion polymerization, in water, humid, and dry air, and in a vacuum. J. Mater. Res. 2020, 35, 1846–1856. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Z.; Li, C.; Xiao, Y.; Zhang, D.; Guan, G.; Zhu, W. Synthesis, characterization and properties of novel linear poly (butylene fumarate) bearing reactive double bonds. Polymer 2013, 54, 631–638. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Chen, H.; Zhang, S.; Xiong, C. Preparation and characterization of biodegradable thermoplastic Elastomers (PLCA/PLGA blends). J. Polym. Res. 2010, 17, 77–82. [Google Scholar] [CrossRef]
- Lu, D.D.; Yuan, J.C.; Lei, Z.Q. High molecular weight biodegraded poly (lactic acid-glycolic acid-ε-caprolactam) copolymer: Direct polycondensation of lactic acid, glycolic acid and ε-caprolactam using Sn (II)-organic anhydride as catalysts. Polym. Adv. Technol. 2009, 20, 536–540. [Google Scholar] [CrossRef]
- Coudane, J.; Van Den Berghe, H.; Mouton, J.; Garric, X.; Nottelet, B. Poly (Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review. Molecules 2022, 27, 4135. [Google Scholar] [CrossRef]
- Magazzini, L.; Grilli, S.; Fenni, S.E.; Donetti, A.; Cavallo, D.; Monticelli, O. The Blending of Poly (glycolic acid) with Polycaprolactone and Poly (l-lactide): Promising Combinations. Polymers 2021, 13, 2780. [Google Scholar] [CrossRef] [PubMed]
- Peñas, M.I.; Pérez-Camargo, R.A.; Hernández, R.; Müller, A.J. A Review on Current Strategies for the Modulation of Thermomechanical, Barrier, and Biodegradation Properties of Poly (Butylene succinate) (PBS) and Its Random Copolymers. Polymers 2022, 14, 1025. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.B.; Budd, P.M.; Msayib, K.J.; Ghanem, B.S.; Kingston, H.J.; Tattershall, C.E.; Makhseed, S.; Reynolds, K.J.; Fritsch, D. Polymers of intrinsic microporosity (PIMs): Bridging the void between microporous and polymeric materials. Chem. A Eur. J. 2005, 11, 2610–2620. [Google Scholar] [CrossRef]
- Echeverría, J.C.; Estella, J.; Barbería, V.; Musgo, J.; Garrido, J.J. Synthesis and characterization of ultramicroporous silica xerogels. J. Non-Cryst. Solids 2010, 356, 378–382. [Google Scholar] [CrossRef]
- Jafri, M.; Jha, A.; Bunkar, D.S.; Ram, R.C. Quality retention of oyster mushrooms (Pleurotus florida) by a combination of chemical treatments and modified atmosphere packaging. Postharvest Biol. Technol. 2013, 76, 112–118. [Google Scholar] [CrossRef]
- Guillaume, C.; Schwab, I.; Gastaldi, E.; Gontard, N. Biobased packaging for improving preservation of fresh common mushrooms (Agaricus bisporus L.). Innov. Food Sci. Emerg. Technol. 2010, 11, 690–696. [Google Scholar] [CrossRef]
- Pourbagher, R.; Abbaspour-Fard, M.H.; Sohbatzadeh, F.; Rohani, A. Inhibition of enzymes and Pseudomonas tolaasii growth on Agaricus bisporus following treatment with surface dielectric barrier discharge plasma. Innov. Food Sci. Emerg. Technol. 2021, 74, 102833. [Google Scholar] [CrossRef]
- Wang, T.; Yun, J.; Zhang, Y.; Bi, Y.; Zhao, F.; Niu, Y. Effects of ozone fumigation combined with nano-film packaging on the postharvest storage quality and antioxidant capacity of button mushrooms (Agaricus bisporus). Postharvest Biol. Technol. 2021, 176, 111501. [Google Scholar] [CrossRef]
- YE, J.-J.; LI, J.-R.; HAN, X.-X.; Zhang, L.; JIANG, T.-J.; Miao, X. Effects of active modified atmosphere packaging on postharvest quality of shiitake mushrooms (Lentinula edodes) stored at cold storage. J. Integr. Agric. 2012, 11, 474–482. [Google Scholar] [CrossRef]
- Qu, T.; Li, B.; Huang, X.; Li, X.; Ding, Y.; Chen, J.; Tang, X. Effect of peppermint oil on the storage quality of white button mushrooms (Agaricus bisporus). Food Bioprocess Technol. 2020, 13, 404–418. [Google Scholar] [CrossRef]
- Lin, X.; Sun, D.-W. Research advances in browning of button mushroom (Agaricus bisporus): Affecting factors and controlling methods. Trends Food Sci. Technol. 2019, 90, 63–75. [Google Scholar] [CrossRef]
- Xu, D.; Gu, S.; Zhou, F.; Hu, W.; Feng, K.; Chen, C.; Jiang, A. Mechanism underlying sodium isoascorbate inhibition of browning of fresh-cut mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2021, 173, 111357. [Google Scholar] [CrossRef]
- Haminiuk, C.W.; Maciel, G.M.; Plata-Oviedo, M.S.; Peralta, R.M. Phenolic compounds in fruits-an overview. Int. J. Food Sci. Technol. 2012, 47, 2023–2044. [Google Scholar] [CrossRef]
- Sánchez, C. Reactive oxygen species and antioxidant properties from mushrooms. Synth. Syst. Biotechnol. 2017, 2, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Cheung, L.; Cheung, P.C.; Ooi, V.E. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 2003, 81, 249–255. [Google Scholar] [CrossRef]
- Lin, S.; Chen, C.; Luo, H.; Xu, W.; Zhang, H.; Tian, J.; Ju, R.; Wang, L. The combined effect of ozone treatment and polyethylene packaging on postharvest quality and biodiversity of Toona sinensis (A. Juss.) M. Roem. Postharvest Biol. Technol. 2019, 154, 1–10. [Google Scholar] [CrossRef]
- Liu, H.; Chen, F.; Lai, S.; Tao, J.; Yang, H.; Jiao, Z. Effects of calcium treatment and low temperature storage on cell wall polysaccharide nanostructures and quality of postharvest apricot (Prunus armeniaca). Food Chem. 2017, 225, 87–97. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Y.; He, Z.; Liu, Q.; Lai, S.; Yang, H. Effect of exogenous ATP on the postharvest properties and pectin degradation of mung bean sprouts (Vigna radiata). Food Chem. 2018, 251, 9–17. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef] [Green Version]
- Vunduk, J.; Kozarski, M.; Djekic, I.; Tomašević, I.; Klaus, A. Effect of modified atmosphere packaging on selected functional characteristics of Agaricus bisporus. Eur. Food Res. Technol. 2021, 247, 829–838. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, X.; Chen, Y.; Lin, M.; Tang, J.; Lin, Q.; Fang, L.; Li, M.; Hung, Y.-C.; Lin, H. Recent trends and applications of electrolyzed oxidizing water in fresh foodstuff preservation and safety control. Food Chem. 2022, 369, 130873. [Google Scholar] [CrossRef]
- Ali, S.; Khan, A.S.; Malik, A.U.; Anjum, M.A.; Nawaz, A.; Shah, H.M.S. Modified atmosphere packaging delays enzymatic browning and maintains quality of harvested litchi fruit during low temperature storage. Sci. Hortic. 2019, 254, 14–20. [Google Scholar] [CrossRef]
Sample Name | x/LA wt/wt | x/LA a wt/wt | Mn b | Pd b |
---|---|---|---|---|
PLLA | — | — | 40,375 | 2.33 |
PLGA | 8/92 | 7.5/92.5 | 45,296 | 2.02 |
PLBF | 8/92 | 9/91 | 58,359 | 1.97 |
Films | E/(MPa) | σt/(MPa) | εb/(%) |
---|---|---|---|
PLLA | 1352 ± 16.7 | 40.3 ± 2.0 | 5.7 ± 1.1 |
PLGA | 525 ± 8.6 | 23.3 ± 3.1 | 121.1 ± 10.4 |
PLBF | 559 ± 6.4 | 25.6 ± 2.4 | 139 ± 15.8 |
Films | CDP (10−12·cm3/m·s·Pa) | OP (10−12·cm3/m·s·Pa) | PC/O |
---|---|---|---|
PLLA | 4.51 ± 0.35 A | 1.50 ± 0.23 A | 3.0 |
PLGA | 2.55 ± 0.23 B | 0.69 ± 0.13 B | 3.7 |
PLBF | 2.08 ± 0.12 B | 0.46 ± 0.12 B | 4.5 |
O2 | CO2 | Wl | BI | TP | AA | MDA | EC | CAT | SOD | |
O2 | 1 | −0.972 * | −0.507 | 0.987 * | −10.00 ** | −0.924 | 0.930 | 0.989 * | −0.875 | −0.901 |
CO2 | 1 | 0.296 | −0.996 ** | 0.969 * | 0.962 * | −0.984 * | −0.984 * | 0.931 | 0.978 * | |
Wl | 1 | −0.377 | 0.511 | 0.184 | −0.158 | −0.398 | 0.082 | 0.094 | ||
BI | 1 | −0.984 * | −0.944 | 0.966 * | 0.987 * | −0.904 | −0.957 * | |||
TP | 1 | 0.926 | −0.929 | −0.990 ** | 0.878 | 0.897 | ||||
AA | 1 | −0.989 * | −0.970 * | 0.993 ** | 0.954 * | |||||
MDA | 1 | 0.968 * | −0.978 * | −0.987 * | ||||||
EC | 1 | −0.936 | −0.935 | |||||||
CAT | 1 | 0.942 | ||||||||
SOD | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Bian, J.; Wang, Y.; Hu, J.; Yun, X.; Chen, E.; Dong, T. One-Step Synthesis of Poly(L-Lactic Acid)-Based Soft Films with Gas Permselectivity for White Mushrooms (Agaricus bisporus) Preservation. Foods 2023, 12, 586. https://doi.org/10.3390/foods12030586
Sun T, Bian J, Wang Y, Hu J, Yun X, Chen E, Dong T. One-Step Synthesis of Poly(L-Lactic Acid)-Based Soft Films with Gas Permselectivity for White Mushrooms (Agaricus bisporus) Preservation. Foods. 2023; 12(3):586. https://doi.org/10.3390/foods12030586
Chicago/Turabian StyleSun, Tao, Junxia Bian, Yangyang Wang, Jian Hu, Xueyan Yun, Eerdunbayaer Chen, and Tungalag Dong. 2023. "One-Step Synthesis of Poly(L-Lactic Acid)-Based Soft Films with Gas Permselectivity for White Mushrooms (Agaricus bisporus) Preservation" Foods 12, no. 3: 586. https://doi.org/10.3390/foods12030586
APA StyleSun, T., Bian, J., Wang, Y., Hu, J., Yun, X., Chen, E., & Dong, T. (2023). One-Step Synthesis of Poly(L-Lactic Acid)-Based Soft Films with Gas Permselectivity for White Mushrooms (Agaricus bisporus) Preservation. Foods, 12(3), 586. https://doi.org/10.3390/foods12030586