A Novel Universal Primer Multiplex Real-Time PCR (UP-M-rtPCR) Approach for Specific Identification and Quantitation of Cat, Dog, Fox, and Mink Fractions Using Nuclear DNA Sequences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Preparation of Meat Samples
2.3. DNA Extraction
2.4. Screening Nuclear DNA Target Sequences of Cat, Dog, Fox, and Mink
2.5. Design of Universal Primers and Species-Specific Probes
2.6. Conventional PCR
2.7. Real-Time PCR
2.8. Construction of Standard Curves for Cats, Dogs, Foxes, and Minks
2.9. Quantitative Analysis of DNA Mixtures
3. Results and Discussion
3.1. Identification of Nuclear DNA Target Sequence, Universal Primers, and Species-Specific Probes for Cat, Dog, Fox, and Mink DNA
3.2. Evaluation of Specificity and Conservation of the Nuclear DNA Target Sequences, Primers, and Probes
3.3. Establishment and Optimisation of UP-M-rtPCR for the Detection of Cat, Dog, Fox, and Mink Components
3.4. Sensitivity of UP-M-rtPCR
3.5. Quantitative Analysis of Cat, Dog, Fox, and Mink Fractions in DNA Mixtures Using UP-M-rtPCR
3.6. Application of UP-M-rtPCR in Detecting Artificial Meat Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Day, M.J. One Health: The small animal dimension. Vet. Rec. 2010, 167, 847–849. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Boireau, P. Trichinellosis in China: Epidemiology and control. Trends Parasitol. 2002, 18, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Enserink, M. Coronavirus rips through Dutch mink farms, triggering culls. Science 2020, 368, 1169. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef] [Green Version]
- Mor-Mur, M.; Yuste, J. Emerging Bacterial Pathogens in Meat and Poultry: An Overview. Food Bioprocess Technol. 2010, 3, 24–35. [Google Scholar] [CrossRef]
- King, A.M.; Mcminn, R.P.; Glass, K.A.; Milkowski, A.L. Developing Time-Temperature Thermal Processing Guidelines for Ready-To-Eat Meat and Poultry Products. 2013. Available online: https://digicomst.ie/wp-content/uploads/2020/05/2013_06_10.pdf (accessed on 20 January 2023).
- Michelitsch, A.; Wernike, K.; Ulrich, L.; Mettenleiter, T.C.; Beer, M. SARS-CoV-2 in animals: From potential hosts to animal models. Adv. Virus Res. 2021, 110, 59–102. [Google Scholar]
- Li, X.; Guan, Y. Specific Identification of the Adulterated Components in Beef or Mutton Meats Using Multiplex PCR. J. AOAC Int. 2019, 102, 1181–1185. [Google Scholar] [CrossRef]
- Piskoroya, L.; Vasilkova, Z.; Krupicer, I. Heavy metal residues in tissues of wild boar (Sus scrofa) and red fox (Vulpes vulpes) in the Central Zemplin region of the Slovak Republic. Czech J. Anim. Sci. 2003, 48, 134–138. [Google Scholar]
- Rahman, M.; Ali, E.; Hamid, S.B.A.; Mustafa, S.; Hashim, U.; Hanapi, U.K. Polymerase chain reaction assay targeting cytochrome b gene for the detection of dog meat adulteration in meatball formulation. Meat Sci. 2014, 97, 404–409. [Google Scholar] [CrossRef]
- Wu, Q.; Xiang, S.; Wang, W.; Zhao, J.; Xia, J.; Zhen, Y.; Liu, B. Species identification of fox-, mink-, dog-, and rabbit-derived ingredients by multiplex PCR and real-time PCR assay. Appl. Biochem. Biotechnol. 2018, 185, 1–12. [Google Scholar] [CrossRef]
- Alikord, M.; Momtaz, H.; Keramat, J.; Kadivar, M.; Rad, A.H. Species identification and animal authentication in meat products: A review. J. Food Meas. Charact. 2017, 12, 145–155. [Google Scholar] [CrossRef]
- Vishnuraj, M.; Devatkal, S.; Vaithiyanathan, S.; Kumar, R.U.; Srinivas, C.; Mendiratta, S. Detection of giblets in chicken meat products using microRNA markers and droplet digital PCR assay. LWT Food Sci. Technol. 2020, 140, 110798. [Google Scholar] [CrossRef]
- Ali, M.E.; Kashif, M.; Uddin, K.; Hashim, U.; Mustafa, S.; Man, Y.B.C. Species Authentication Methods in Foods and Feeds: The Present, Past, and Future of Halal Forensics. Food Anal. Methods 2012, 5, 935–955. [Google Scholar] [CrossRef]
- Amaral, J.S.; Santos, C.G.; Melo, V.S.; Costa, J.; Oliveira, M.B.P.; Mafra, I. Identification of duck, partridge, pheasant, quail, chicken and turkey meats by species-specific PCR assays to assess the authenticity of traditional game meat Alheira sausages. Food Control 2015, 47, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Uddin, S.M.K.; Hossain, M.A.M.; Chowdhury, Z.Z.; Johan, M.R. Detection and discrimination of seven highly consumed meat species simultaneously in food products using heptaplex PCR-RFLP assay. J. Food Compos. Anal. 2021, 100, 103938. [Google Scholar] [CrossRef]
- Liu, G.Q.; Luo, J.X.; Xu, W.L.; Li, C.D.; Guo, Y.S.; Guo, L. Improved triplex real-time PCR with endogenous control for synchronous identification of DNA from chicken, duck, and goose meat. Food Sci. Nutr. 2021, 9, 3130–3141. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Ren, J.; Huang, W.; Xing, R.; Deng, T.; Chen, Y. An effective analytical droplet digital PCR approach for identification and quantification of fur-bearing animal meat in raw and processed food. Food Chem. 2021, 355, 129525. [Google Scholar] [CrossRef]
- Cai, Z.; Zhou, S.; Liu, Q.; Ma, H.; Yuan, X.; Gao, J.; Cao, J.; Pan, D. A Simple and Reliable Single Tube Septuple PCR Assay for Simultaneous Identification of Seven Meat Species. Foods 2021, 10, 1083. [Google Scholar] [CrossRef]
- Yang, C.; Zhong, G.; Zhou, S.; Guo, Y.; Pan, D.; Wang, S.; Liu, Q.; Xia, Q.; Cai, Z. Detection and characterization of meat adulteration in various types of meat products by using a high-efficiency multiplex polymerase chain reaction technique. Front. Nutr. 2022, 9, 979977. [Google Scholar] [CrossRef]
- Guo, L.; Yu, Y.; Xu, W.L.; Li, C.D.; Liu, G.Q.; Qi, L.; Luo, J.X.; Guo, Y.S. Simultaneous detection of ovine and caprine DNA in meat and dairy products using triplex TaqMan real-time PCR. Food Sci. Nutr. 2020, 8, 6467–6476. [Google Scholar] [CrossRef]
- Ishida, N.; Sakurada, M.; Kusunoki, H.; Ueno, Y. Development of a simultaneous identification method for 13 animal species using two multiplex real-time PCR assays and melting curve analysis. Leg. Med. 2017, 30, 64–71. [Google Scholar] [CrossRef]
- Li, K.; Luo, Y.; Huang, K.; Yang, Z.; Wan, Y.; Xu, W. Single universal primer recombinase polymerase amplification-based lateral flow biosensor (SUP-RPA-LFB) for multiplex detection of genetically modified maize. Anal. Chim. Acta 2020, 1127, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Hellberg, R.S.; Hernandez, B.C.; Hernandez, E.L. Identification of meat and poultry species in food products using DNA barcoding. Food Control 2017, 80, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.; Saleem, M.S.; Imran, M.; Khan, W.A.; Ashraf, K.; Zahoor, M.Y.; Rashid, I.; Rehman, H.-U.; Nadeem, A.; Ali, S.; et al. Single tube multiplex PCR assay for the identification of banned meat species. Food Addit. Contam. Part B 2020, 13, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, X.; Tao, J.; Xi, B.; Xue, M.; Sun, W. A Multiplex PCR Assay Mediated by Universal Primers for the Detection of Adulterated Meat in Mutton. J. Food Prot. 2019, 82, 325–330. [Google Scholar] [CrossRef]
- Hanapi, U.K.; Desa, M.N.M.; Ismail, A.; Mustafa, S. A higher sensitivity and efficiency of common primer multiplex PCR assay in identification of meat origin using NADH dehydrogenase subunit 4 gene. J. Food Sci. Technol. 2014, 52, 4166–4175. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; Wang, P.; Zhao, J.; Xu, A.; Guan, F. Development and validation of a universal primer pair for the simultaneous detection of eight animal species. Food Chem. 2017, 221, 790–796. [Google Scholar] [CrossRef]
- Zhou, S.; Zhong, G.; Zhou, H.; Zhang, X.; Zeng, X.; Wu, Z.; Pan, D.; He, J.; Cai, Z.; Liu, Q. A Heptaplex PCR Assay for Molecular Traceability of Species Origin with High Efficiency and Practicality in Both Raw and Heat Processing Meat Materials. Front. Nutr. 2022, 9, 890537. [Google Scholar] [CrossRef]
- Ballin, N.Z.; Vogensen, F.K.; Karlsson, A.H. Species determination—Can we detect and quantify meat adulteration? Meat Sci. 2009, 83, 165–174. [Google Scholar] [CrossRef]
- Chow, S.; Inoue, S. Intra-and interspecific restriction fragment length polymorphism in mitochondrial genes of Thunnus tuna species. Bull. Natl. Res. Inst. Far Seas Fish. 1993, 30, 207–225. [Google Scholar]
- Kirsten, H.; Teupser, D.; Weissfuss, J.; Wolfram, G.; Emmrich, F.; Ahnert, P. Robustness of single-base extension against mismatches at the site of primer attachment in a clinical assay. J. Mol. Med. 2006, 85, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Sarri, C.; Stamatis, C.; Sarafidou, T.; Galara, I.; Mamuris, Z. A new set of 16S rRNA universal primers for identification of animal species. Food Control 2014, 43, 35–41. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Ali, M.E.; Hashim, U.; Mustafa, S.; Che Man, Y.B. Swine-specific PCR-RFLP assay targeting mitochondrial cytochrome B gene for semiquantitative detection of pork in commercial meat products. Food Anal. Methods 2012, 5, 613–623. [Google Scholar] [CrossRef]
- Iwobi, A.; Sebah, D.; Spielmann, G.; Maggipinto, M.; Schrempp, M.; Kraemer, I.; Gerdes, L.; Busch, U.; Huber, I. A multiplex real-time PCR method for the quantitative determination of equine (horse) fractions in meat products. Food Control 2017, 74, 89–97. [Google Scholar] [CrossRef]
- Iwobi, A.; Sebah, D.; Kraemer, I.; Losher, C.; Fischer, G.; Busch, U.; Huber, I. A multiplex real-time PCR method for the quantification of beef and pork fractions in minced meat. Food Chem. 2014, 169, 305–313. [Google Scholar] [CrossRef]
- Lee, J.-I.; Kim, S.-S.; Park, J.-W.; Kang, D.-H. Detection of Salmonella enterica serovar Montevideo in food products using specific PCR primers developed by comparative genomics. LWT Food Sci. Technol. 2022, 165, 113677. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kim, H.-Y. A fast multiplex real-time PCR assay for simultaneous detection of pork, chicken, and beef in commercial processed meat products. LWT Food Sci. Technol. 2019, 114, 108390. [Google Scholar] [CrossRef]
- Köppel, R.; Breitenmoser, Z.A. Heptaplex real-time PCR for the identification and quantification of DNA from beef, pork, chicken, turkey, horse meat, sheep (mutton) and goat. Eur. Food Res. Technol. 2009, 230, 125–133. [Google Scholar] [CrossRef]
- Liu, W.; Tao, J.; Xue, M.; Ji, J.; Zhang, Y.; Zhang, L.; Sun, W. A multiplex PCR method mediated by universal primers for the identification of eight meat ingredients in food products. Eur. Food Res. Technol. 2019, 245, 2385–2392. [Google Scholar] [CrossRef]
- ENGL. Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing, European network of GMO laboratories, Joint Research Center EURL. 2015. Available online: http://gmo-crl.jrc.ec.europa.eu/doc/MPR%20Report%20Application%2020_10_2015.pdf (accessed on 25 October 2021).
- Nixon, G.J.; Wilkes, T.M.; Burns, M.J. Development of a real-time PCR approach for the relative quantitation of horse DNA. Anal. Methods 2015, 7, 8590–8596. [Google Scholar] [CrossRef]
- Wang, W.; Fu, M.; Zhang, Q.; Zhen, Y.; Liu, J.; Xiang, S.; Michal, J.J.; Jiang, Z.; Zhou, X.; Liu, B. A novel quantitative real-time PCR method for the detection of mammalian and poultry species based on a shared single-copy nuclear DNA sequence. Food Chem. 2021, 341, 128170. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, J.; Zhang, Q.; Zhou, X.; Liu, B. Multiplex PCR assay for identification and quantification of bovine and equine in minced meats using novel specific nuclear DNA sequences. Food Control 2019, 105, 29–37. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Wei, T.; Zhang, Q.; Liu, B. A multiplex real-time PCR approach for identification and quantification of sheep/goat, fox and murine fractions in meats using nuclear DNA sequences. Food Control 2021, 26, 108035. [Google Scholar] [CrossRef]
- Bai, W.; Xu, W.; Huang, K.; Yuan, Y.; Cao, S.; Luo, Y. A novel common primer multiplex PCR (CP-M-PCR) method for the simultaneous detection of meat species. Food Control 2009, 20, 366–370. [Google Scholar] [CrossRef]
- Dolch, K.; Andrée, S.; Schwägele, F. Comparison of Real-Time PCR Quantification Methods in the Identification of Poultry Species in Meat Products. Foods 2020, 9, 1049. [Google Scholar] [CrossRef] [PubMed]
Species | Designation | Oligo Sequences (5′ → 3′) | Size (bp) |
---|---|---|---|
Forward primer | GCTGCCTTKaGAACATCTAARaTC | — | |
Reverse primer | AGGCTAYaTRaGTAGTTACCTTTCTG | ||
Cat | Cat-P | Cy5-TTTGATGGTGTGGGGGATCAAGGC-BHQ2 | 339 |
Dog | Dog-P | FAM-TTTAGAGTGTGGGAAGGATCGGCACC-TAMRA | 335 |
Fox | Fox-P | HEX-AGACCTTGGGGAGGATCG-MGB | 335 |
Mink | Mink-P | Cy5.5-TTTAGACTATAGGGGAGATTGGCGCCC-BHQ3 | 332 |
DNA Mixtures | Species | Actual Proportion (%) | Detected Proportion (%) | Accuracy (R.D.)% | Precision (R.S.D.)% |
---|---|---|---|---|---|
Ⅰ | Cat | 20% | 20.87% | 4.36% | 5.90% |
Dog | 20% | 18.75% | 6.26% | 5.58% | |
Fox | 20% | 20.94% | 4.68% | 11.54% | |
Mink | 20% | 20.37% | 1.83% | 7.48% | |
Cattle | 20% | - | - | - | |
Ⅱ | Cat | 10% | 9.66% | 3.44% | 4.21% |
Dog | 10% | 9.34% | 6.58% | 2.13% | |
Fox | 10% | 10.15% | 1.45% | 13.83% | |
Mink | 10% | 9.91% | 0.93% | 4.44% | |
Sheep | 60% | - | - | - | |
Ⅲ | Cat | 5% | 4.65% | 7.04% | 7.41% |
Dog | 15% | 15.59% | 3.91% | 2.14% | |
Fox | 25% | 24.79% | 0.85% | 6.91% | |
Mink | 25% | 24.88% | 0.48% | 1.42% | |
Cattle | 15% | - | - | - | |
Sheep | 15% | - | - | - |
Artificial Meat Samples. | Actual Ingredient and Proportion | Detected Species | PCR Consistency | |||||
---|---|---|---|---|---|---|---|---|
Cat | Dog | Fox | Mink | Cattle | Sheep | |||
Sample 1 | cat (1%), dog (1%), cattle (49%), sheep (49%) | √ | √ | - | - | √ | √ | √ |
Sample 2 | cat (25%), dog (25%), cattle (25%), sheep (25%) | √ | √ | - | - | √ | √ | √ |
Sample 3 | cat (1%), dog (1%), mink (1%), cattle (48.5%), sheep (48.5%) | √ | √ | - | √ | √ | √ | √ |
Sample 4 | cat (20%), dog (20%), mink (20%), cattle (20%), sheep (20%) | √ | √ | - | √ | √ | √ | √ |
Sample 5 | cat (1%), dog (1%), fox (1%), mink (1%), cattle (48%), sheep (48%) | √ | √ | √ | √ | √ | √ | √ |
Sample 6 | cat (16.67%), dog (16.67%), fox (16.67%), mink (16.67%), cattle (16.67%), sheep (16.67%) | √ | √ | √ | √ | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Wei, T.; Shi, M.; Han, Y.; Shen, Y.; Zhou, X.; Liu, B. A Novel Universal Primer Multiplex Real-Time PCR (UP-M-rtPCR) Approach for Specific Identification and Quantitation of Cat, Dog, Fox, and Mink Fractions Using Nuclear DNA Sequences. Foods 2023, 12, 594. https://doi.org/10.3390/foods12030594
Wang W, Wei T, Shi M, Han Y, Shen Y, Zhou X, Liu B. A Novel Universal Primer Multiplex Real-Time PCR (UP-M-rtPCR) Approach for Specific Identification and Quantitation of Cat, Dog, Fox, and Mink Fractions Using Nuclear DNA Sequences. Foods. 2023; 12(3):594. https://doi.org/10.3390/foods12030594
Chicago/Turabian StyleWang, Wenjun, Tiean Wei, Manna Shi, Yu Han, Yang Shen, Xiang Zhou, and Bang Liu. 2023. "A Novel Universal Primer Multiplex Real-Time PCR (UP-M-rtPCR) Approach for Specific Identification and Quantitation of Cat, Dog, Fox, and Mink Fractions Using Nuclear DNA Sequences" Foods 12, no. 3: 594. https://doi.org/10.3390/foods12030594
APA StyleWang, W., Wei, T., Shi, M., Han, Y., Shen, Y., Zhou, X., & Liu, B. (2023). A Novel Universal Primer Multiplex Real-Time PCR (UP-M-rtPCR) Approach for Specific Identification and Quantitation of Cat, Dog, Fox, and Mink Fractions Using Nuclear DNA Sequences. Foods, 12(3), 594. https://doi.org/10.3390/foods12030594