Effects of Different Low-Temperature Storage Methods on the Quality and Processing Characteristics of Fresh Beef
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Sample Preparation
2.3. Physicochemical Properties of the Fresh Meat
2.3.1. Freezing Curve
2.3.2. The Determination of the Chromatic Aberration
2.3.3. The Determination of the pH
2.3.4. The Determination of the Aerobic Count
2.3.5. The Determination of Moisture
2.3.6. The Determination of the Volatile Base Nitrogen
2.3.7. The Relative Percentage of Metmyoglobin (MetMb%)
2.4. Oxidation and Microstructure of Myofibrillar Protein in Fresh Beef
2.4.1. The Determination of the Total Protein
2.4.2. The Extraction of the Myofibrillar Protein
2.4.3. The Determination of the Total Sulfhydryl Groups
2.4.4. The Determination of the Protein Carbonyl
2.4.5. The Determination of the Protein Composition
2.4.6. The Determination of the Free Amino Acids
2.4.7. Microstructure Determination
2.5. Processing Characteristics of Fresh Meat
2.5.1. Texture Profile Analysis (TPA)
2.5.2. Shear Force Measurement
2.5.3. The Determination of the Volatile Flavor Substances
2.5.4. Based on the PCA Analysis of the Key Flavor Substances
3. Results and Discussion
3.1. Physical and Chemical Properties of the Fresh Beef
3.1.1. The Determination of the Freezing Curve and Freezing Point of Beef
3.1.2. Chromatic Aberration
3.1.3. The pH of the Beef
3.1.4. Aerobic Count
3.1.5. Moisture Content
3.1.6. Total Volatile Base Nitrogen (TVB-N)
3.1.7. MetMb%
3.2. Oxidation and Microstructure of Myofibrillar Protein in Raw Meat
3.2.1. Changes in the Total Protein Content
3.2.2. Changes in the Total Sulfhydryl Group Content
3.2.3. Changes in the Protein Carbonyl Content
3.2.4. Protein
3.2.5. Free Amino Acid
3.2.6. Microstructure
3.3. Processing Characteristics of Raw Meat
3.3.1. TPA
3.3.2. The Shear Stress
3.3.3. Volatile Flavor Substances
3.3.4. PCA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, R.; Xing, L.; Zhou, G.; Zhang, W. What is meat in China? Anim. Front. 2017, 7, 53–56. [Google Scholar] [CrossRef]
- Peng, S.; Wei, H.; Zhan, S.; Yang, W.; Lou, Q.; Deng, S.; Yu, X.; Huang, T. Spoilage mechanism and preservation technologies on the quality of shrimp: An overview. Trends Food Sci. Technol. 2022, 129, 233–243. [Google Scholar] [CrossRef]
- Chang, Y.; Liu, Y.; Bai, Y.; Teng, S.; Guo, Y.; Dou, H.; Ye, K. Effect of Different Degrees of Deep Freezing on the Quality of Snowflake Beef during Storage. Foods 2022, 11, 2175. [Google Scholar] [CrossRef]
- ÇEtİNkaya, A.; Atasever, M. The effects of different salting and preservation techniques ofkaşar cheese on cheese quality. Turk. J. Vet. Anim. Sci. 2015, 39, 621–628. [Google Scholar] [CrossRef]
- An, D.S.; Wang, H.J.; Jaisan, C.; Lee, J.H.; Jo, M.G.; Lee, D.S. Effects of modified atmosphere packaging conditions on quality preservation of powdered infant formula. Packag. Technol. Sci. 2018, 31, 441–446. [Google Scholar] [CrossRef]
- Silva, M.; Lidon, F. Food preservatives—An overview on applications and side effects. Emir. J. Food Agric. 2016, 28, 366–373. [Google Scholar] [CrossRef]
- Torngren, M.A.; Darre, M.; Gunvig, A.; Bardenshtein, A. Case studies of packaging and processing solutions to improve meat quality and safety. Meat Sci. 2018, 144, 149–158. [Google Scholar] [CrossRef]
- Duran, A.; Kahve, H.I. The effect of chitosan coating and vacuum packaging on the microbiological and chemical properties of beef. Meat Sci. 2020, 162, 107961. [Google Scholar] [CrossRef]
- Yu, H.H.; Chin, Y.W.; Paik, H.D. Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods 2021, 10, 2418. [Google Scholar] [CrossRef]
- Mesias, F.J.; Martin, A.; Hernandez, A. Consumers’ growing appetite for natural foods: Perceptions towards the use of natural preservatives in fresh fruit. Food Res. Int. 2021, 150, 110749. [Google Scholar] [CrossRef]
- Mandal, D. Food preservative chemistry: Effects and side effects. J. Indian Chem. Soc. 2019, 96, 1519–1528. [Google Scholar]
- Janjarasskul, T.; Tananuwong, K.; Kongpensook, V.; Tantratian, S.; Kokpol, S. Shelf life extension of sponge cake by active packaging as an alternative to direct addition of chemical preservatives. LWT Food Sci. Technol. 2016, 72, 166–174. [Google Scholar] [CrossRef]
- Markowski, J.; Celejewska, K.; Rosłonek, A.; Kosmala, M. Impact of different thermal preservation technologies on the quality of apple-based smoothies. LWT Food Sci. Technol. 2017, 85, 470–473. [Google Scholar] [CrossRef]
- Qiu, H.; Guo, X.; Deng, X.; Guo, X.; Mao, X.; Xu, C.; Zhang, J. The influence of endogenous cathepsin in different subcellular fractions on the quality deterioration of Northern pike (Esox lucius) fillets during refrigeration and partial freezing storage. Food Sci. Biotechnol. 2020, 29, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Zhu, K.; Cao, J.; Lin, X.; Li, C. Relationship between Micromolecules and Quality Changes of Tilapia Fillets after Partial Freezing Treatment with Polyphenols. J. Agric. Food Chem. 2021, 69, 8213–8226. [Google Scholar] [CrossRef] [PubMed]
- Bellés, M.; Alonso, V.; Roncalés, P.; Beltrán, J.A. A review of fresh lamb chilling and preservation. Small Rumin. Res. 2017, 146, 41–47. [Google Scholar] [CrossRef]
- Ji, H.; Hou, X.; Zhang, L.; Wang, X.; Chen, F. Effect of ice-temperature storage on some properties of salt-soluble proteins and gel from chicken breast muscles. CyTA J. Food 2021, 19, 521–531. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, H.; Bai, T.; Qian, Q.; Peng, H.; Mu, Y.; Wang, L.; Liu, B.; Chen, J.; et al. Effect of 4 degrees C and ice temperature on umami-enhancing nucleotides of conditioned pork. Food Chem. 2023, 401, 134146. [Google Scholar] [CrossRef]
- Lan, W.; Zhang, B.; Zhou, D.; Xie, J. Ultrasound assisted slightly acidic electrolyzed water treatment on the protein structure stability of vacuum-packaged sea bass (Lateolabrax japonicas) during refrigerated storage. J. Food Saf. 2022, 42, e13009. [Google Scholar] [CrossRef]
- Jiang, Q.; Nakazawa, N.; Hu, Y.; Wang, X.; Osako, K.; Okazaki, E. Evolution of tissue microstructure, protein properties, and oxidative stability of salted bigeye tuna (Thunnus obesus) meat during frozen storage. LWT 2021, 149, 111848. [Google Scholar] [CrossRef]
- Rahman, M.S.; Kasapis, S.; Guizani, N.; Al-Amri, O.S. State diagram of tuna meat: Freezing curve and glass transition. J. Food Eng. 2003, 57, 321–326. [Google Scholar] [CrossRef]
- Haraf, G.; Książkiewicz, J.; Wołoszyn, J.; Okruszek, A. Characteristic of meat colour of different duck populations. Arch. Anim. Breed. 2009, 52, 527–537. [Google Scholar] [CrossRef]
- Jeacocke, R.E. Continuous measurements of the pH of beef muscle in intact beef carcases. Int. J. Food Sci. Technol. 1977, 12, 375–386. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y.; Liu, Z.; Fan, L.; Dong, T.; Jin, Y.; Saldaña, M.D.A.; Sun, W. Sustained-release antibacterial pads based on nonwovens polyethylene terephthalate modified by β-cyclodextrin embedded with cinnamaldehyde for cold fresh pork preservation. Food Packag. Shelf Life 2020, 26, 100554. [Google Scholar] [CrossRef]
- GB5009.228-2016; National Food Safety Standard Determination of Volatile Basic Nitrogen in Food. Chinese Standard Publishing: Beijing, China, 2016.
- GB5009.5-2016National Food Safety Standard Determination of Crude Protein in Foods; Chinese Standard Publishing: Beijing, China, 2016.
- Wang, K.; Li, Y.; Zhang, Y.; Huang, M.; Xu, X.; Ho, H.; Huang, H.; Sun, J. Improving physicochemical properties of myofibrillar proteins from wooden breast of broiler by diverse glycation strategies. Food Chem. 2022, 382, 132328. [Google Scholar] [CrossRef]
- Qian, S.; Li, X.; Wang, H.; Mehmood, W.; Zhang, C.; Blecker, C.; Carocho, M. Effects of Frozen Storage Temperature and Duration on Changes in Physicochemical Properties of Beef Myofibrillar Protein. J. Food Qual. 2021, 2021, 8836749. [Google Scholar] [CrossRef]
- Zhang, R.; Yoo, M.J.Y.; Farouk, M.M. Oxidative stability, proteolysis, and in vitro digestibility of fresh and long-term frozen stored in-bag dry-aged lean beef. Food Chem. 2021, 344, 128601. [Google Scholar] [CrossRef] [PubMed]
- Bowker, B.C.; Eastridge, J.S.; Solomon, M.B. Measurement of muscle exudate protein composition as an indicator of beef tenderness. J. Food Sci. 2014, 79, C1292–C1297. [Google Scholar] [CrossRef]
- GB 5009.124-2016; National Food Safety Standard Determination of Crude Protein in Foods. Chinese Standard Publishing: Beijing, China, 2016.
- Kim, H.; Hong, G.-P. Comparison of Superchilling and Supercooling on Extending the Fresh Quality of Beef Loin. Foods 2022, 11, 2729. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Ji, L.; Zhang, J.; Zhao, Z.; Zhang, R.; Bai, T.; Hou, B.; Wang, W. Flavor Composition and Microbial Community Structure of Mianning Ham. Front Microbiol. 2020, 11, 623775. [Google Scholar] [CrossRef]
- Velioglu, H.M.; Sezer, B.; Bilge, G.; Baytur, S.E.; Boyaci, I.H. Identification of offal adulteration in beef by laser induced breakdown spectroscopy (LIBS). Meat Sci. 2018, 138, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.Y.; Claus, J.R. Color stability of ground beef packaged in a low carbon monoxide atmosphere or vacuum. Meat Sci. 2011, 87, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jozwiak, M.; Meli, A.C.; Melka, J.; Rienzo, M.; d’Anglemont de Tassigny, A.; Saint, N.; Bize, A.; Sambin, L.; Scheuermann, V.; Cazorla, O.; et al. Concomitant systolic and diastolic alterations during chronic hypertension in pig. J. Mol. Cell Cardiol. 2019, 131, 155–163. [Google Scholar] [CrossRef]
- Dalmis, U.; Soyer, A. Effect of processing methods and starter culture (Staphylococcus xylosus and Pediococcus pentosaceus) on proteolytic changes in Turkish sausages (sucuk) during ripening and storage. Meat Sci. 2008, 80, 345–354. [Google Scholar] [CrossRef] [PubMed]
Way | Time | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 d | 2 d | 4 d | 6 d | 8 d | 10 d | 12 d | 15 d | 18 d | ||
L* | Refrigeration | 40.70 ± 0.37 a | 37.28 ± 1.23 bx | 36.84 ± 0.85 bxy | 36.72 ± 1.60 by | - | - | - | - | - |
Frozen | 40.70 ± 0.37 a | 30.31 ± 0.74 fy | 32.38 ± 0.14 ez | 29.68 ± 1.07 fw | 35.34 ± 0.71 bcy | 34.08 ± 0.55 cdy | 33.31 ± 0.84 dey | 36.19 ± 1.49 bx | 34.79 ± 0.47 bcdx | |
Micro-freezing | 40.70 ± 0.37 a | 37.42 ± 1.01 bx | 35.84 ± 0.47 cy | 34.16 ± 1.08 dz | 32.91 ± 0.06 dez | 32.83 ± 0.67 dey | 32.95 ± 0.44 dey | 33.83 ± 0.96 dex | 32.68 ± 0.16 ey | |
Ice temperature | 40.70 ± 0.37 a | 37.67 ± 1.43 cx | 37.75 ± 0.56 cx | 43.75 ± 1.15 ax | 40.50 ± 1.26 bx | 43.62 ± 0.72 ax | 44.09 ± 1.23 ax | - | - | |
a* | Refrigeration | 17.42 ± 0.59 a | 13.73 ± 2.05 by | 14.39 ± 0.66 by | 11.91 ± 1.64 by | - | - | - | - | - |
Frozen | 17.42 ± 0.59 ab | 18.59 ± 2.35 ax | 14.30 ± 0.69 cdyz | 13.19 ± 0.70 dey | 14.12 ± 0.53 cdy | 13.92 ± 0.78 cdy | 16.12 ± 1.79 bcy | 11.45 ± 0.54 ey | 15.07 ± 0.55 cdy | |
Micro-freezing | 17.42 ± 0.59 a | 14.31 ± 1.10 by | 13.26 ± 0.42 bcz | 13.81 ± 0.71 bcy | 11.53 ± 0.90 dez | 12.58 ± 1.05 cdy | 10.62 ± 0.55 ez | 8.84 ± 0.79 fx | 7.19 ± 0.61 gx | |
Ice temperature | 17.42 ± 0.59 c | 20.38 ± 1.85 bx | 19.72 ± 0.18 bcx | 23.82 ± 2.40 ax | 19.92 ± 0.59 bcx | 22.42 ± 0.91 abx | 21.71 ± 1.79 abx | - | - | |
b* | Refrigeration | 7.88 ± 0.39 a | 7.77 ± 1.03 ax | 8.22 ± 0.80 ax | 7.91 ± 0.60 axy | - | - | - | - | - |
Frozen | 7.88 ± 0.39 a | 8.31 ± 0.68 ax | 5.84 ± 0.26 dz | 6.73 ± 0.80 bcdy | 6.33 ± 0.31 cdy | 4.28 ± 0.11 ey | 7.27 ± 1.00 abcy | 4.01 ± 0.58 ey | 7.20 ± 0.68 abcx | |
Micro-freezing | 7.88 ± 0.39 a | 7.81 ± 0.84 ax | 7.18 ± 0.35 aby | 6.39 ± 0.67 cz | 6.18 ± 0.84 by | 7.37 ± 0.47 abx | 6.79 ± 1.05 abx | 6.72 ± 1.31 abx | 6.17 ± 0.30 bx | |
Ice temperature | 7.88 ± 0.39 a | 6.98 ± 1.48 abx | 6.53 ± 0.33 byz | 8.29 ± 0.36 abx | 8.71 ± 0.40 ax | 8.30 ± 1.20 abx | 6.74 ± 1.37 bx | - | - |
Amino Acid | Refrigeration | Frozen | Micro-Freezing | Ice Temperature | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 d | 6 d | 0 d | 6 d | 12 d | 18 d | 0 d | 6 d | 12 d | 18 d | 0 d | 6 d | 12 d | |
Asp | 0.28 | 0.22 | 0.28 | 0.27 | 0.23 | 0.30 | 0.28 | 0.27 | 0.24 | 0.28 | 0.28 | 0.27 | 0.26 |
Glu | 0.45 | 0.45 | 0.45 | 0.56 | 0.49 | 0.62 | 0.45 | 0.55 | 0.51 | 0.59 | 0.45 | 0.59 | 0.54 |
Ser | 0.35 | 0.33 | 0.35 | 0.36 | 0.37 | 0.34 | 0.35 | 0.34 | 0.34 | 0.34 | 0.35 | 0.38 | 0.40 |
Gly | 0.56 | 0.42 | 0.56 | 0.52 | 0.49 | 0.56 | 0.56 | 0.48 | 0.51 | 0.52 | 0.56 | 0.53 | 0.49 |
His | 0.62 | 0.43 | 0.62 | 0.47 | 0.53 | 0.52 | 0.62 | 0.45 | 0.46 | 0.48 | 0.62 | 0.62 | 0.59 |
Arg | 0.62 | 0.51 | 0.62 | 0.61 | 0.56 | 0.56 | 0.62 | 0.57 | 0.51 | 0.58 | 0.62 | 0.61 | 0.59 |
Thr | 0.70 | 0.64 | 0.70 | 0.71 | 0.70 | 0.70 | 0.70 | 0.67 | 0.69 | 0.70 | 0.70 | 0.79 | 0.76 |
Ala | 0.38 | 0.26 | 0.38 | 0.34 | 0.32 | 0.38 | 0.38 | 0.33 | 0.32 | 0.36 | 0.38 | 0.37 | 0.35 |
Pro | 1.02 | 0.85 | 1.02 | 0.96 | 0.90 | 0.87 | 1.02 | 0.88 | 0.99 | 0.92 | 1.02 | 1.00 | 0.98 |
Tyr | 0.65 | 0.58 | 0.65 | 0.62 | 0.66 | 0.58 | 0.65 | 0.62 | 0.64 | 0.63 | 0.65 | 0.71 | 0.77 |
Val | 0.50 | 0.39 | 0.50 | 0.46 | 0.44 | 0.49 | 0.50 | 0.49 | 0.42 | 0.49 | 0.50 | 0.51 | 0.52 |
Met | 0.47 | 0.39 | 0.47 | 0.39 | 0.45 | 0.38 | 0.47 | 0.44 | 0.39 | 0.40 | 0.47 | 0.52 | 0.57 |
Ile | 0.50 | 0.41 | 0.50 | 0.48 | 0.45 | 0.52 | 0.50 | 0.48 | 0.45 | 0.52 | 0.50 | 0.51 | 0.51 |
Leu | 0.90 | 0.72 | 0.90 | 0.84 | 0.83 | 0.91 | 0.90 | 0.84 | 0.83 | 0.90 | 0.90 | 0.91 | 0.93 |
Phe | 0.95 | 0.76 | 0.95 | 0.81 | 0.83 | 0.75 | 0.95 | 0.80 | 0.83 | 0.78 | 0.95 | 0.95 | 0.95 |
Lys | 0.27 | 0.09 | 0.27 | 0.16 | 0.18 | 0.27 | 0.27 | 0.24 | 0.15 | 0.25 | 0.27 | 0.26 | 0.24 |
TAA | 9.22 | 7.47 | 9.22 | 8.57 | 8.43 | 8.75 | 9.22 | 8.45 | 8.30 | 8.74 | 9.22 | 9.51 | 9.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, R.; Yan, L.; Xiao, S.; Hou, B.; Zhou, X.; Wang, W.; Bai, T.; Zhu, K.; Cheng, J.; Zhang, J. Effects of Different Low-Temperature Storage Methods on the Quality and Processing Characteristics of Fresh Beef. Foods 2023, 12, 782. https://doi.org/10.3390/foods12040782
Cao R, Yan L, Xiao S, Hou B, Zhou X, Wang W, Bai T, Zhu K, Cheng J, Zhang J. Effects of Different Low-Temperature Storage Methods on the Quality and Processing Characteristics of Fresh Beef. Foods. 2023; 12(4):782. https://doi.org/10.3390/foods12040782
Chicago/Turabian StyleCao, Ruiqi, Lixiu Yan, Shujian Xiao, Bo Hou, Xingchen Zhou, Wei Wang, Ting Bai, Kaixian Zhu, Jie Cheng, and Jiamin Zhang. 2023. "Effects of Different Low-Temperature Storage Methods on the Quality and Processing Characteristics of Fresh Beef" Foods 12, no. 4: 782. https://doi.org/10.3390/foods12040782
APA StyleCao, R., Yan, L., Xiao, S., Hou, B., Zhou, X., Wang, W., Bai, T., Zhu, K., Cheng, J., & Zhang, J. (2023). Effects of Different Low-Temperature Storage Methods on the Quality and Processing Characteristics of Fresh Beef. Foods, 12(4), 782. https://doi.org/10.3390/foods12040782