Volatilomics Analysis of Jasmine Tea during Multiple Rounds of Scenting Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing and Collection of Tea Samples
2.2. Evaluation of Aroma Quality
2.3. HS-SPME Procedure and GC–MS Analysis
2.4. WTV Method
2.5. Multivariate Statistical Analysis Methods
2.5.1. Data Processing of Quantitative Descriptive Analysis
2.5.2. Coefficient of Variation
2.5.3. Correlation Analysis between Every Two Samples
2.5.4. Principal Component Analysis
2.5.5. Orthogonal Partial Least Squares-Discriminant Analysis and Differential VOCs Selected
2.5.6. K-Means Clustering Analysis
2.5.7. Partial Least Squares Regression Analysis
2.6. Quantification and Calculation of Odor Activity Values
3. Results and Discussion
3.1. Repeated Scenting Processes Improve the Aroma Quality of Jasmine Tea
3.2. Overview of VOC Profiling
3.3. Screening for Differential VOCs
3.4. Dynamic Changes of the Different VOCs of Jasmine Tea during Multiple Rounds of Scenting
3.4.1. Dynamic Changes of the Different VOCs in Subclass 1
3.4.2. Dynamic Changes of the Different VOCs in Subclass 2
3.4.3. Dynamic Changes of the Different VOCs in Subclass 3
3.4.4. Dynamic Changes of the Different VOCs in Subclass 4
No. | Volatile Compounds | Class | CAS | Odor Threshold (ug/kg) | OAV | |||||
---|---|---|---|---|---|---|---|---|---|---|
BT | R1 | R2 | R3 | R4 | T1 | |||||
Sub class 1 | ||||||||||
X1 | 2,3,5-Trimethylpyrazine | Heterocyclic compound | 14667-55-1 | 10 (*) | - | 11.85 | 35.39 | 34.65 | 38.17 | 34.71 |
X2 | Isoterpinene | Terpenoids | 586-62-9 | 260 (*) | 0.24 | 0.60 | 1.24 | 1.80 | 1.85 | 1.90 |
X3 | Fenchone | Terpenoids | 1195-79-5 | 500 (*) | 0.53 | 1.92 | 7.68 | 10.72 | 11.40 | 11.02 |
X4 | Levomenthol | Terpenoids | 2216-51-5 | 950 (*) | 0.02 | 0.04 | 0.05 | 0.06 | 0.06 | 0.06 |
X5 | α-Farnesene | Terpenoids | 502-61-4 | 87 (a) | 0.16 | 4.69 | 51.98 | 73.31 | 80.63 | 87.06 |
X6 | Geranyl acetate | Terpenoids | 105-87-3 | 100 (*) | - | - | 2.89 | 3.27 | 3.70 | 3.79 |
X7 | Linalool | Terpenoids | 78-70-6 | 50 (*) | 30.09 | 123.73 | 455.25 | 630.41 | 666.06 | 652.45 |
X8 | p-Cresol | Phenol | 106-44-5 | 2 (*) | - | 1.04 | 4.20 | 5.97 | 7.21 | 7.26 |
X9 | 2-Methoxy-phenol | Phenol | 90-05-1 | 0.17 (*) | 61.76 | 130.71 | 241.06 | 314.12 | 337.18 | 340.47 |
X10 | 4-Ethyl-2-methoxy-phenol | Phenol | 2785-89-9 | 25 (*) | - | 0.12 | 0.25 | 0.24 | 0.25 | 0.25 |
X11 | Methyleugenol | Phenol | 93-15-2 | 68 (*) | - | - | 0.04 | 0.06 | 0.07 | 0.08 |
X12 | 6-Methylhept-5-en-2-one | Ketone | 110-93-0 | 100 (*) | 0.09 | 0.42 | 1.62 | 1.90 | 2.01 | 1.99 |
X13 | 2-Methoxy-3-isopropylpyrazine | Heterocyclic compound | 25773-40-4 | 20 (*) | 0.99 | 4.27 | 20.18 | 31.25 | 32.95 | 31.63 |
X14 | Isomaltol | Heterocyclic compound | 3420-59-5 | 7.5 (*) | 0.38 | 1.93 | 7.18 | 8.55 | 9.26 | 9.05 |
X15 | 3,5-Dimethyl-2-ethylpyrazine | Heterocyclic compound | 13925-07-0 | 5 | 0.24 | 0.46 | 0.68 | 0.85 | 0.82 | 0.90 |
X16 | Indole | Heterocyclic compound | 120-72-9 | 140 (b) | - | 19.01 | 259.66 | 338.69 | 349.44 | 347.98 |
X17 | Heptyl acetate | Ester | 112-06-1 | 90 (*) | 0.02 | 0.03 | 0.05 | 0.07 | 0.09 | 0.07 |
X18 | cis-3-Hexenyl butyrate | Ester | 16491-36-4 | 32 (*) | 0.26 | 1.10 | 39.22 | 34.46 | 35.19 | 33.59 |
X19 | Ethyl (methylthio)acetate | Ester | 4455-13-4 | 25 (*) | - | 1.01 | 3.19 | 3.11 | 3.43 | 3.15 |
X20 | Methyl benzoate | Ester | 93-58-3 | 28 (*) | 11.71 | 50.76 | 894.01 | 969.62 | 1084.96 | 1100.48 |
X21 | 3-Methylbutyl 3-methylbutanoate | Ester | 659-70-1 | 20 (*) | 7.81 | 20.77 | 72.98 | 101.13 | 107.06 | 104.13 |
X22 | (Z)-3-hexen-1-ol acetate | Ester | 3681-71-8 | 13 (*) | 1.67 | 240.27 | 727.61 | 710.26 | 776.60 | 700.25 |
X23 | Ethyl enanthate | Ester | 106-30-9 | 2 (*) | 1.81 | 2.50 | 5.00 | 6.01 | 6.27 | 6.03 |
X24 | Ethyl hexahydrobenzoate | Ester | 3289-28-9 | 0.06 (*) | 7.00 | 14.00 | 48.00 | 39.00 | 45.33 | 56.33 |
X25 | Methyl salicylate | Ester | 119-36-8 | 40 (c) | 6.28 | 138.93 | 496.61 | 739.84 | 748.85 | 751.13 |
X26 | Methyl 2-(methylamino)benzoate | Ester | 85-91-6 | 20.3 (d) | - | 9.67 | 55.22 | 79.60 | 82.95 | 83.96 |
X27 | cis-3-Hexenyl hexanoate | Ester | 31501-11-8 | 16 (e) | - | 0.33 | 44.00 | 49.49 | 55.76 | 57.57 |
X28 | Octyl isobutyrate | Ester | 109-15-9 | 6 (*) | - | 3.29 | 24.89 | 36.70 | 40.78 | 41.44 |
X29 | N-Decyl ethanoate | Ester | 112-17-4 | 40 (*) | 0.10 | 0.14 | 0.25 | 0.28 | 0.30 | 0.32 |
X30 | Geranyl isobutyrate | Ester | 2345-26-8 | 450 (*) | 0.04 | 1.55 | 18.88 | 26.95 | 29.92 | 32.31 |
X31 | Methyl anthranilate | Ester | 134-20-3 | 3 (d) | - | 1728.31 | 11443.59 | 14252.70 | 14608.12 | 14252.21 |
X32 | (Z)-2-Decenal | Aldehyde | 2497-25-8 | 100 (*) | 0.43 | 0.68 | 1.19 | 1.31 | 1.49 | 1.61 |
X33 | (E)-2-Hexenal | Aldehyde | 6728-26-3 | 17 (f) | - | 22.79 | 73.96 | 72.31 | 70.32 | 63.58 |
X34 | (Z)-6-Nonenal | Aldehyde | 2277-19-2 | 1 (*) | 540.24 | 1735.64 | 5512.78 | 7485.60 | 7906.54 | 7634.56 |
X35 | 2-Nonenal | Aldehyde | 2463-53-8 | 0.5 (*) | 58.88 | 346.20 | 836.80 | 939.80 | 918.20 | 916.40 |
X36 | (E,Z)-2,6-Nonadienal | Aldehyde | 557-48-2 | 0.01 (*) | 108.00 | 192.00 | 296.00 | 360.00 | 420.00 | 436.00 |
X37 | (E,E)-2,4-Decadienal | Aldehyde | 25152-84-5 | 0.5 (*) | 0.96 | 4.28 | 25.88 | 26.92 | 29.84 | 29.48 |
X38 | Hotrienol | Alcohol | 20053-88-7 | 110 (*) | 11.85 | 52.06 | 203.28 | 282.91 | 298.85 | 293.09 |
X39 | (Z)-3-Hexen-1-ol | Alcohol | 928-96-1 | 200 (*) | - | 3.51 | 12.74 | 12.27 | 12.48 | 11.81 |
X40 | 2-Ethyl-1-hexanol | Alcohol | 104-76-7 | 270 (*) | - | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 |
X41 | (6Z)-Nonen-1-ol | Alcohol | 35854-86-5 | 1 (*) | 9.04 | 17.86 | 20.78 | 24.80 | 25.20 | 24.54 |
X42 | P-Hydroxybenzoic acid | Acid | 99-96-7 | 40,000 (*) | - | - | 0.08 | 0.12 | 0.13 | 0.15 |
Sub class 2 | ||||||||||
X43 | (Z)-2-Penten-1-ol | Alcohol | 1576-95-0 | 720 (*) | - | 0.29 | - | - | - | - |
X44 | 3-Carene | Terpenoids | 13466-78-9 | 37 (*) | 0.28 | 0.39 | 0.54 | 0.40 | 0.33 | 0.27 |
X45 | 1,3,8-P-Menthatriene | Terpenoids | 18368-95-1 | 15 (*) | 2.22 | 3.24 | 3.43 | 0.92 | 1.09 | 0.91 |
X46 | 1-Octene | Hydrocarbons | 111-66-0 | 0.5 (*) | 29.36 | 35.64 | 14.88 | 11.00 | 14.12 | 11.84 |
X47 | 3-Methoxy-2,5-dimethylpyrazine | Heterocyclic compound | 19846-22-1 | 0.1 (*) | 16.40 | 38.60 | 32.20 | 26.80 | 28.80 | 27.20 |
X48 | Methyl caproate | Ester | 106-70-7 | 70 (*) | - | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 |
X49 | Naphthalene | Aromatics | 91-20-3 | 500 (*) | 0.23 | 0.15 | 0.11 | 0.06 | 0.06 | 0.05 |
X50 | (1-Methylethyl)-benzene | Aromatics | 98-82-8 | 70 (*) | - | 0.02 | 0.02 | - | 0.01 | 0.01 |
X51 | Trans-Anethole | Aromatics | 4180-23-8 | 15 (*) | 0.00 | 0.51 | 0.34 | 0.21 | 0.18 | 0.24 |
Sub class 3 | ||||||||||
X52 | cis-Ocimene | Terpenoids | 3338-55-4 | 55 (*) | 0.63 | 2.01 | 6.61 | 4.41 | 4.03 | 3.55 |
X53 | β-Ionone | Terpenoids | 14901-07-6 | 3.5 (*) | 20.42 | 37.95 | 55.00 | 49.59 | 55.94 | 58.02 |
X54 | β-Myrcene | Terpenoids | 123-35-3 | 42 (e) | 0.43 | 0.57 | 1.08 | 0.76 | 0.69 | 0.55 |
X55 | 2,2-Dimethyl-3-hexanone | Ketone | 5405-79-8 | 0.82 (*) | - | 51.05 | 72.51 | 53.22 | 73.59 | 54.51 |
X56 | 2,2,6-Trimethylcyclohexan-1-one | Ketone | 2408-37-9 | 100 (*) | 0.14 | 0.38 | 0.41 | 0.36 | 0.42 | 0.40 |
X57 | 1-Hepten-3-one | Ketone | 2918-13-0 | 0.04 (*) | - | 25.50 | 23.50 | 24.00 | 18.50 | 16.50 |
X58 | Isopentyl acetate | Ester | 123-92-2 | 0.15 (*) | - | 53.20 | 92.00 | 54.40 | 44.93 | 40.80 |
X59 | Amyl acetate | Ester | 628-63-7 | 43 (*) | - | 0.11 | 0.16 | 0.14 | 0.13 | 0.11 |
X60 | 5-Decanolide | Ester | 705-86-2 | 66 (*) | 0.05 | 0.10 | 0.12 | 0.11 | 0.12 | 0.14 |
X61 | Geranyl formate | Ester | 105-86-2 | 200 (*) | 0.05 | 0.08 | 0.12 | 0.11 | 0.13 | 0.12 |
X62 | Octyl butyrate | Ester | 110-39-4 | 250 (*) | 0.20 | 0.50 | 0.59 | 0.55 | 0.63 | 0.56 |
X63 | Benzyl acetate | Ester | 140-11-4 | 270 (d) | 4.09 | 115.11 | 223.57 | 243.05 | 234.82 | 228.95 |
X64 | (E)-2-Nonenal | Aldehyde | 18829-56-6 | 0.19 (*) | - | 128.11 | 133.16 | 152.63 | 164.00 | 184.11 |
X65 | Benzaldehyde | Aldehyde | 100-52-7 | 3 (g) | 19.81 | 47.99 | 55.44 | 54.85 | 52.91 | 51.91 |
X66 | Benzeneacetaldehyde | Aldehyde | 122-78-1 | 4 (g) | 10.91 | 15.81 | 47.97 | 36.79 | 30.22 | 35.20 |
X67 | Undecanal | Aldehyde | 112-44-7 | 12.5 (*) | 0.09 | 0.16 | 0.26 | 0.22 | 0.25 | 0.28 |
X68 | 1-Hexanol | Alcohol | 111-27-3 | 5.6 (*) | 0.00 | 4.06 | 5.25 | 5.40 | 4.67 | 5.33 |
Sub class 4 | ||||||||||
X69 | Copaene | Terpenoids | 3856-25-5 | 140 (*) | 0.03 | 0.34 | 1.68 | 2.95 | 3.86 | 4.19 |
X70 | Selina-4(15),7(11)-diene | Terpenoids | 515-17-3 | 2600 (*) | - | - | 0.02 | 0.04 | 0.04 | 0.05 |
X71 | Geraniol | Terpenoids | 106-24-1 | 75 (e) | 0.04 | 0.37 | 1.47 | 2.14 | 2.56 | 3.35 |
X72 | Nerolidol | Terpenoids | 40716-66-3 | 10 (a) | 0.10 | 0.15 | 2.43 | 4.77 | 8.32 | 11.79 |
X73 | Eugenol | Phenol | 97-53-0 | 90 (*) | - | 0.33 | 3.68 | 8.06 | 10.29 | 12.37 |
X74 | 2-Undecanone | Ketone | 112-12-9 | 450 (*) | - | 0.18 | 2.58 | 4.59 | 5.30 | 5.23 |
X75 | Benzoic ether | Ester | 93-89-0 | 575 (*) | - | 0.15 | 1.06 | 1.50 | 1.95 | 2.22 |
X76 | Methyl enanthate | Ester | 106-73-0 | 4 (*) | - | 18.83 | 63.61 | 121.48 | 142.42 | 153.49 |
X77 | Isopentyl hexanoate | Ester | 2198-61-0 | 900 (*) | - | 0.01 | 0.03 | 0.03 | 0.04 | 0.04 |
X78 | Ethyl salicylate | Ester | 118-61-6 | 84 (*) | - | 0.41 | 1.39 | 3.29 | 3.72 | 4.25 |
X79 | Ethylcinnamate | Ester | 4192-77-2 | 1 (*) | - | 1.76 | 11.96 | 23.80 | 29.90 | 34.48 |
X80 | Ethyl pelargonate | Ester | 123-29-5 | 1200 (*) | - | 0.03 | 0.47 | 0.87 | 0.99 | 0.99 |
X81 | Hexyl caproate | Ester | 6378-65-0 | 6400 (*) | - | - | 0.00 | 0.00 | 0.01 | 0.01 |
X82 | Ethylcinnamate | Ester | 103-36-6 | 40 (*) | - | 0.03 | 0.26 | 0.52 | 0.67 | 0.77 |
X83 | Benzyl benzoate | Ester | 120-51-4 | 341 (d) | - | - | 0.33 | 1.03 | 1.95 | 2.19 |
X84 | 3-Hexen-1-ol benzoate | Ester | 25152-85-6 | 110 (*) | - | 3.31 | 129.72 | 229.91 | 271.66 | 276.12 |
X85 | (2-Nitroethyl)-benzene | Aromatics | 6125-24-2 | 2 (*) | - | - | 1.12 | 1.80 | 2.61 | 3.32 |
X86 | (E)-6-Nonenal | Aldehyde | 2277-20-5 | 0.07 (*) | 22.57 | 33.43 | 46.86 | 55.14 | 77.14 | 74.86 |
X87 | (E)-2-Dodecenal | Aldehyde | 20407-84-5 | 1.4 (*) | 0.33 | 0.90 | 6.50 | 13.20 | 17.14 | 19.70 |
X88 | Piperonal | Aldehyde | 120-57-0 | 3.9 (*) | - | 0.58 | 7.27 | 12.29 | 14.57 | 15.73 |
X89 | (2E,4Z)-2,4-Decadienal | Aldehyde | 25152-83-4 | 4.2 (*) | 0.04 | 0.05 | 0.14 | 0.18 | 0.26 | 0.22 |
X90 | Benzyl alcohol | Alcohol | 100-51-6 | 100 (h) | 0.22 | 21.71 | 82.16 | 158.27 | 186.52 | 202.63 |
X91 | Benzoic acid | Acid | 65-85-0 | 85 (*) | 0.08 | 1.10 | 7.16 | 10.10 | 13.22 | 14.99 |
Sub class 5 | ||||||||||
X92 | 3-Ethyl-2,5-dimethylpyrazine | Heterocyclic compound | 13360-65-1 | 25 (*) | 0.05 | 0.12 | 0.11 | 0.09 | 0.11 | 0.17 |
3.4.5. Dynamic Changes of the Different VOCs in Subclass 5
3.5. Correlation Analysis between Refreshing Aroma and Characteristic VOCs of Jasmine Tea
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ito, Y.; Sugimoto, A.; Kakuda, T.; Kubota, K. Identification of Potent Odorants in Chinese Jasmine Green Tea Scented with Flowers of Jasminum sambac. J. Agric. Food Chem. 2002, 50, 4878–4884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiong, Y.; An, H.; Li, J.; Li, Q.; Huang, J.; Liu, Z. Analysis of Volatile Components of Jasmine and Jasmine Tea during Scenting Process. Molecules 2022, 27, 479. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Chen, Y.; Zhang, P.; Ren, M.; Xu, H.; Wang, X. A novel quality evaluation index and strategies to identify scenting quality of jasmine tea based on headspace volatiles analysis. Food Sci. Biotechnol. 2013, 22, 331–340. [Google Scholar] [CrossRef]
- Inoue, N.; Kuroda, K.; Sugimoto, A.; Kakuda, T.; Fushiki, T. Autonomic nervous responses according to preference for the odor of jasmine tea. Biosci. Biotechnol. Biochem. 2003, 67, 1206–1214. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zhao, F.; Wu, W.X.; Wang, P.J.; Ye, N.X. Comparison of Volatiles in Different Jasmine Tea Grade Samples Using Electronic Nose and Automatic Thermal Desorption—Gas Chromatography—Mass Spectrometry Followed by Multivariate Statistical Analysis. Molecules 2020, 25, 380. [Google Scholar] [CrossRef]
- An, H.M.; Ou, X.C.; Zhang, Y.B.; Li, S.; Xiong, Y.F.; Li, Q.; Huang, J.N.; Liu, Z.H. Study on the key volatile compounds and aroma quality of jasmine tea with different scenting technology. Food Chem. 2022, 385, 132718. [Google Scholar] [CrossRef]
- Chen, M.C.; Zhu, Y.J.; Liu, B.; Chen, Z.; Zheng, J.M.; Guan, M.D.; Shi, H.; Wang, Y.N.; Yang, W.W. Changes in the volatiles, chemical components, and antioxidant activities of Chinese jasmine tea during the scenting processes. Int. J. Food Prop. 2017, 20, 681–693. [Google Scholar] [CrossRef]
- Ito, Y.; Kubota, K. Sensory evaluation of the synergism among odorants present in concentrations below their odor threshold in a Chinese jasmine green tea infusion. Mol. Nutr. Food Res. 2005, 49, 61–68. [Google Scholar] [CrossRef]
- Zhou, C.Z.; Zhu, C.; Tian, C.Y.; Xu, K.; Huang, L.J.; Shi, B.Y.; Lai, Z.X.; Lin, Y.L.; Guo, Y.Q. Integrated volatile metabolome, multi-flux full-length sequencing, and transcriptome analyses provide insights into the aroma formation of postharvest jasmine (Jasminum sambac) during flowering. Postharvest Biol. Technol. 2022, 183, 111726. [Google Scholar] [CrossRef]
- Zhou, H.C.; Hou, Z.W.; Wang, D.X.; Ning, J.M.; Wei, S. Large scale preparation, stress analysis, and storage of headspace volatile condensates from Jasminum sambac flowers. Food Chem. 2019, 286, 170–178. [Google Scholar] [CrossRef]
- Bera, P.; Mukherjee, C.; Mitra, A. Enzymatic production and emission of floral scent volatiles in Jasminum sambac. Plant Sci. 2017, 256, 25–38. [Google Scholar] [CrossRef]
- Shen, J.; Rana, M.M.; Liu, G.; Ling, T.; Gruber, M.Y.; Wei, S. Differential Contribution of Jasmine Floral Volatiles to the Aroma of Scented Green Tea. J. Food Qual. 2017, 2017, 5849501. [Google Scholar] [CrossRef]
- Hara, Y.; Luo, S.; Wickremasinghe, L.R.; Yamanishi, T., IV. Processing of tea. Food Rev. Int. 1995, 11, 409–434. [Google Scholar]
- Yang, W.; He, W.; Zhang, J.; Zhu, X. Selection of the Best Dhool for Scented Tea. J. Tea Sci. 1998, 2, 11–16. [Google Scholar]
- Yu, Y.; Lyu, S.H.; Chen, D.; Lin, Y.; Chen, J.J.; Chen, G.X.; Ye, N.X. Volatiles Emitted at Different Flowering Stages of Jasminum sambac and Expression of Genes Related to α-Farnesene Biosynthesis. Molecules 2017, 22, 546. [Google Scholar] [CrossRef]
- Zhang, W.J.; Cao, J.X.; Li, Z.G.; Li, Q.H.; Lai, X.F.; Sun, L.L.; Chen, R.H.; Wen, S.; Sun, S.L.; Lai, Z.X. HS-SPME and GC/MS volatile component analysis of Yinghong No. 9 dark tea during the pile fermentation process. Food Chem. 2021, 357, 129654. [Google Scholar] [CrossRef]
- Tao, M.; Guo, W.; Zhang, W.; Liu, Z. Characterization and Quantitative Comparison of Key Aroma Volatiles in Fresh and 1-Year-Stored Keemun Black Tea Infusions: Insights to Aroma Transformation during Storage. Foods 2022, 11, 628. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, F.; Sun, J.; Ni, L. Dynamic changes of volatile and phenolic components during the whole manufacturing process of Wuyi Rock tea (Rougui). Food Chem. 2022, 367, 130624. [Google Scholar] [CrossRef]
- Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88, 524–545. [Google Scholar] [CrossRef]
- Lai, Z.; Tsugawa, H.; Wohlgemuth, G.; Mehta, S.; Mueller, M.; Zheng, Y.; Ogiwara, A.; Meissen, J.; Showalter, M.; Takeuchi, K.; et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 2018, 15, 53–56. [Google Scholar] [CrossRef]
- Smirnov, A.; Qiu, Y.; Jia, W.; Walker, D.I.; Jones, D.P.; Du, X. ADAP-GC 4.0: Application of Clustering-Assisted Multivariate Curve Resolution to Spectral Deconvolution of Gas Chromatography–Mass Spectrometry Metabolomics Data. Anal. Chem. 2019, 91, 9069–9077. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Cao, G.; Hou, X.; Huang, M.; Du, P.; Tan, T.; Zhang, Y.; Zhou, H.; Liu, X.; Liu, L.; et al. Development of a widely targeted volatilomics method for profiling volatilomes in plants. Mol. Plant 2022, 15, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, C.; Xu, K.; Tian, C.; Zhang, M.; Lu, L.; Zhu, C.; Lai, Z.; Guo, Y. A Comprehensive Investigation of Macro-Composition and Volatile Compounds in Spring-Picked and Autumn-Picked White Tea. Foods 2022, 11, 3628. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.H.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Luo, L.; Ma, M.; Zeng, L. Characterization of Volatile Compounds and Sensory Analysis of Jasmine Scented Black Tea Produced by Different Scenting Processes. J. Food Sci. 2018, 83, 2718–2732. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhu, Y.; Ma, W.; Lin, Z.; Lv, H. Characterisation of the volatile compounds profile of Chinese pan-fried green tea in comparison with baked green tea, steamed green tea, and sun-dried green tea using approaches of molecular sensory science. Curr. Res. Food Sci. 2022, 5, 1098–1107. [Google Scholar] [CrossRef]
- Yin, P.; Kong, Y.; Liu, P.; Wang, J.; Zhu, Y.; Wang, G.; Sun, M.; Chen, Y.; Guo, G.; Liu, Z. A critical review of key odorants in green tea: Identification and biochemical formation pathway. Trends Food Sci. Technol. 2022, 129, 221–232. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, P.C.; Liu, P.P.; Song, X.W.; Guo, F.; Li, Y.Y.; Ni, D.J.; Jiang, C.J. Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling. Food Chem. 2019, 272, 313–322. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, H.; Zhu, Y.; Liu, X.; Guan, M.; Liu, B. Formation of aroma compounds in jasmine tea during scenting process. J. Food Saf. Qual. 2016, 7, 1546–1553. [Google Scholar]
- Zhang, J.; Fu, T.; Fu, T.; Lin, X.; Guo, C.; Rao, G.; Peng, S.; Fang, C. Correlation Analysis of Scenting Times and Aroma Components of Fuzhou Jasmine Tea. J. Tea Sci. 2021, 41, 113–121. [Google Scholar]
- Wang, P.; Gu, M.; Yang, W.; Hong, Y.; Jiang, M.; Lin, H.; Liao, Z.; Chen, S.; Jin, S.; She, W.; et al. High-resolution transcriptome and volatile assays provide insights into flower development and aroma formation in single- and double-petal jasmines (Jasminum sambac). Ind. Crop Prod. 2022, 189, 115846. [Google Scholar] [CrossRef]
- Zhao, G.; Luo, L.; Chang, R.; Chen, X.; Zeng, L. Aroma Characteristics of Jasmine during Postharvest Release of Fragrance. Food Sci. 2015, 36, 120–126. [Google Scholar] [CrossRef]
- Lan, X.; Liu, Z.; Wang, D.; Zhan, S.; Chen, W.; Su, W.; Sun, Y.; Ni, L. Characterization of volatile composition, aroma-active compounds and phenolic profile of Qingxin oolong tea with different roasting degrees. Food Biosci. 2022, 50, 101985. [Google Scholar] [CrossRef]
- Zhu, J.C.; Niu, Y.; Xiao, Z.B. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Food Chem. 2021, 339, 128136. [Google Scholar] [CrossRef]
- Buttery, R.G.; Teranishi, R.; Ling, L.C.; Turnbaugh, J.G. Quantitative and sensory studies on tomato paste volatiles. J. Agric. Food Chem. 1990, 38, 336–340. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Wang, J.; Sun, B.; Liu, Y.; Huang, M. Characterization of aroma-active compounds in Jasminum sambac concrete by aroma extract dilution analysis and odour activity value. Flavour Frag. J. 2021, 36, 197–206. [Google Scholar] [CrossRef]
- Wang, M.; Ma, W.; Shi, J.; Zhu, Y.; Lin, Z.; Lv, H. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Res. Int. 2020, 130, 108908. [Google Scholar] [CrossRef]
- Chen, X.; Sun, H.; Qu, D.; Yan, F.; Jin, W.; Jiang, H.; Chen, C.; Zhang, Y.; Li, C.; Xu, Z. Identification and characterization of key aroma compounds in Chinese high altitude and northernmost black tea (Camellia sinensis) using distillation extraction and sensory analysis methods. Flavour Frag. J. 2020, 35, 666–673. [Google Scholar] [CrossRef]
- Liao, X.; Yan, J.; Wang, B.; Meng, Q.; Zhang, L.; Tong, H. Identification of key odorants responsible for cooked corn-like aroma of green teas made by tea cultivar ‘Zhonghuang 1’. Food Res. Int. 2020, 136, 109355. [Google Scholar] [CrossRef]
- Gong, X.; Han, Y.; Zhu, J.; Hong, L.; Zhu, D.; Liu, J.; Zhang, X.; Niu, Y.; Xiao, Z. Identification of the aroma-active compounds in Longjing tea characterized by odor activity value, gas chromatography- olfactometry, and aroma recombination. Int. J. Food Prop. 2017, 20, S1107–S1121. [Google Scholar] [CrossRef]
- Li, X.; Jin, J.; Sun, C.; Ye, D.; Liu, Y. Simultaneous determination of six main types of lipid-soluble pigments in green tea by visible and near-infrared spectroscopy. Food Chem. 2019, 270, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Cadwallader, K.R.; Liu, Y.; Huang, M.; Sun, B. Characterization of typical potent odorants in raw and cooked Toona sinensis (A. Juss.) M. Roem. by instrumental-sensory analysis techniques. Food Chem. 2019, 282, 153–163. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Ou, X.; Xiong, Y.; Zhang, Y.; Li, J.; Li, Q.; Li, Q.; Li, S.; Huang, J. Study on the Characteristic Aroma Components of Jasmine Tea. J. Tea Sci. 2020, 40, 225–237. [Google Scholar]
- McGinty, D.; Vitale, D.; Letizia, C.S.; Api, A.M. Fragrance material review on benzyl acetate. Food Chem. Toxicol. 2012, 50, S363–S384. [Google Scholar] [CrossRef]
- Edris, A.E.; Chizzola, R.; Franz, C. Isolation and characterization of the volatile aroma compounds from the concrete headspace and the absolute of Jasminum sambac (L.) Ait. (Oleaceae) flowers grown in Egypt. Eur. Food Res. Technol. 2008, 226, 621. [Google Scholar] [CrossRef]
- Dudareva, N.; Murfitt, L.M.; Mann, C.J.; Gorenstein, N.; Kolosova, N.; Kish, C.M.; Bonham, C.; Wood, K. Developmental Regulation of Methyl Benzoate Biosynthesis and Emission in Snapdragon Flowers. Plant Cell 2000, 12, 949–961. [Google Scholar] [CrossRef]
- Fan, W.; Xu, Y.; Jiang, W.; Li, J. Identification and Quantification of Impact Aroma Compounds in 4 Nonfloral Vitis vinifera Varieties Grapes. J. Food Sci. 2010, 75, S81–S88. [Google Scholar] [CrossRef]
- Janzantti, N.S.; Monteiro, M. Changes in the aroma of organic passion fruit (Passiflora edulis Sims f. flavicarpa Deg.) during ripeness. LWT-Food Sci. Technol. 2014, 59, 612e–620e. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Y.; Zhang, S.; Luo, L.; Zeng, L. Effect of brewing conditions on phytochemicals and sensory profiles of black tea infusions: A primary study on the effects of geraniol and β-ionone on taste perception of black tea infusions. Food Chem. 2021, 354, 129504. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhou, C.; Tian, C.; Xu, K.; Lai, Z.; Lin, Y.; Guo, Y. Volatilomics Analysis of Jasmine Tea during Multiple Rounds of Scenting Processes. Foods 2023, 12, 812. https://doi.org/10.3390/foods12040812
Zhang C, Zhou C, Tian C, Xu K, Lai Z, Lin Y, Guo Y. Volatilomics Analysis of Jasmine Tea during Multiple Rounds of Scenting Processes. Foods. 2023; 12(4):812. https://doi.org/10.3390/foods12040812
Chicago/Turabian StyleZhang, Cheng, Chengzhe Zhou, Caiyun Tian, Kai Xu, Zhongxiong Lai, Yuling Lin, and Yuqiong Guo. 2023. "Volatilomics Analysis of Jasmine Tea during Multiple Rounds of Scenting Processes" Foods 12, no. 4: 812. https://doi.org/10.3390/foods12040812
APA StyleZhang, C., Zhou, C., Tian, C., Xu, K., Lai, Z., Lin, Y., & Guo, Y. (2023). Volatilomics Analysis of Jasmine Tea during Multiple Rounds of Scenting Processes. Foods, 12(4), 812. https://doi.org/10.3390/foods12040812