The Zoonotic Potential of Chronic Wasting Disease—A Review
Abstract
:1. Introduction
2. Chronic Wasting Disease
2.1. Historical Background North America
2.2. Geographical Expansion, Increasing Exposure and Prevalence
2.3. CWD in Northern Europe
2.4. CWD with Unusual Features in Moose and Red Deer in Northern Europe
3. Zoonotic Potential
3.1. Case Reports, Epidemiological Observations, and Active Surveillance
3.2. In Vitro Amplification Methods for Assessment of Transmission Barriers
3.3. Transmission of CWD to Transgenic Mice Expressing Human PrP
3.4. Transmission of CWD to Non-Human Primates
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASA | Amyloid seeding assay is a method by which recombinant prion protein is polymerized into amyloid fibrils in the presence of partly purified prion preparations. The newly generated fibrils that can be detected with dyes like Thioflavin T. |
BSE | Bovine spongiform encephalopathy is a prion disease of cattle caused by prion-contaminated meat and bone meal. |
CJD | General abbreviation of Creutzfeldt-Jakob disease in humans |
sCJD | Sporadic Creutzfeldt-Jakob disease, caused by spontaneous conversion of PrPC into PrPSc or by somatic mutation in PRNP which is the gene encoding PrP. |
sFI | Sporadic form of fatal insomnia. Extremely rare sporadic form of the inherited familial fatal insomnia |
FFI | Inherited prion disease caused by germ-line mutation in PRNP. |
gCJD | Inherited form of Creutzfeldt-Jakob disease, caused by germ-line mutation in PRNP. |
iCJD | Creutzfeldt-Jakob disease, caused by infection with prion-contaminated tissue grafts or medical preparations. |
vCJD | Variant Creutzfeldt-Jakob disease, caused by BSE-contaminated feedstuff |
CM | Cynomolgus macaques, Macaca fascicularis, Old World monkey used in experimental transmission studies of prion diseases, to test for zoonotic potential |
CWD | Chronic Wasting disease, is an infectious prion disease affecting cervid species |
FSE | Feline spongiform encephalopathy is prion disease of fields caused by intake of BSE-contaminated feedstuff |
GSS | Gerstmann-Straussler-Sheinker syndrome is a human prion disease caused by germ-line mutations in PRNP |
IHC | Immunohistochemistry is a commonly used method for selective identification of proteins in biological tissues by use of antibodies that binds specifically to the proteins of interest. |
Mo-sCWD | Moose sporadic CWD is a prion disease recently identified in Fennoscandia (Norway, Sweden, and Finland). The disease has an apparently sporadic occurrence, affecting old animals, and prions appear confined to the central nervous system i.e., not detectable in peripheral lymphoid tissues. Our understanding of this disease, including its epidemiology and potential to infect other species is still incomplete and an area of intense investigation. |
PMCA | Protein misfolding cyclic amplification is a method whereby in vitro nucleation-dependent conversion of PrPC into PrPSc is accelerated by use of periodic fragmentation of PrPSc fibrils by intense bursts of ultrasonic waves, followed by incubation, allowing new PrPSc fibrils to form, amplifying the original signal. The PMCA method is used for ultrasensitive detection of prions in tissue samples of environmental samples, and for investigation of many aspects of prions. |
PRNP | The gene encoding the prion protein |
PrP | General abbreviation of the prion protein |
PrPC | The physiological cellular prion protein |
PrPRes | A misfolded and proteinase K resistant protein core of the prion protein detected in gel-electrophoresis and protein immunoblots (western blots) |
PrPSc | An abnormal, pathogenic, and infectious conformer of the prion protein, isolated from patients with prion disease |
recPrP | Recombinant prion protein, produced in bacteria |
huPrP | Human prion protein |
PTA | Phosphotungstic acid is used to precipitate and thus concentrate prions from tissue preparations to enhance detection sensitivity |
QuIC | Quake induced conversion is a method for sensitive detection of misfolded PrP by in vitro conversion of an excess of recombinant PrP in the presence of a tissue derived seed, for instance from an animal suspected to be prion infected. While the PMCA method uses ultrasound to break apart PrP fibrils, the QuIC method achieves this by vigorous shaking (quaking). |
Rd-sCWD | Red deer sporadic CWD is a prion disease observed in three red deer in Norway with what appears to be sporadic occurrence. Prions appear confined to the central nervous system i.e., not detectable in peripheral lymphoid tissues. Our understanding of this disease, including its epidemiology and potential to infect other species is still incomplete and an area of intense investigation. |
RT-QuIC | Real-time quake induced conversion is a modified and improved variant of the QuIC method, allowing real-time detection of newly formed PrP aggregates with fluorescence detection of thioflavin T. The RT-QuIC method allows ultrasensitive detection of misfolded PrP in tissue samples, lymph, and environmental samples. |
SM | Squirrel monkey, Saimiri sciureus, New World monkey, used in experimental transmission studies of prion diseases, to test for zoonotic potential. |
ThT | Thioflavin T is a fluorescent dye which binds to proteins rich in beta-sheet structures, such as amyloid. Upon binding, the dye displays an enhanced fluorescence and emits at about 480 nm after excitation at 450 nm. ThT is widely used for detection of amyloid protein aggregates in tissues and in vitro, for instance with the RT-QuIC method. |
TSE | Transmissible spongiform encephalopathy is a previously used term for the group of neurodegenerative diseases today known as prion diseases |
WB | Western blot, a commonly used method for analysis of proteins, separated with electrophoresis and transferred to membranes for specific detection with antibodies raised against the protein(s) of interest. The term Western stems from a lab-jargon following a method for detection DNA, named after its inventor Edwin Southern. Similar detection of RNA is called Northern blot. |
WTD | White-tailed deer, Odocoileus virginianus. |
Zoonosis | An infectious disease that can be transmitted between animals and humans |
References
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 1998, 95, 13363–13383. [Google Scholar] [CrossRef] [Green Version]
- Ironside, J.W.; Ritchie, D.L.; Head, M.W. Prion diseases. Handb. Clin. Neurol. 2017, 145, 393–403. [Google Scholar] [CrossRef]
- Babelhadj, B.; Di Bari, M.A.; Pirisinu, L.; Chiappini, B.; Gaouar, S.B.S.; Riccardi, G.; Marcon, S.; Agrimi, U.; Nonno, R.; Vaccari, G. Prion Disease in Dromedary Camels, Algeria. Emerg. Infect. Dis. 2018, 24, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Heggebo, R.; Press, C.M.; Gunnes, G.; Gonzalez, L.; Jeffrey, M. Distribution and accumulation of PrP in gut-associated and peripheral lymphoid tissue of scrapie-affected Suffolk sheep. J. Gen. Virol. 2002, 83, 479–489. [Google Scholar] [CrossRef]
- Sigurdson, C.J.; Williams, E.S.; Miller, M.W.; Spraker, T.R.; O’Rourke, K.I.; Hoover, E.A. Oral transmission and early lymphoid tropism of chronic wasting disease PrPres in mule deer fawns (Odocoileus hemionus). J. Gen. Virol. 1999, 80 Pt 10, 2757–2764. [Google Scholar] [CrossRef]
- van Keulen, L.J.; Schreuder, B.E.; Meloen, R.H.; Mooij-Harkes, G.; Vromans, M.E.; Langeveld, J.P. Immunohistochemical detection of prion protein in lymphoid tissues of sheep with natural scrapie. J. Clin. Microbiol. 1996, 34, 1228–1231. [Google Scholar] [CrossRef] [Green Version]
- Gough, K.C.; Maddison, B.C. Prion transmission: Prion excretion and occurrence in the environment. Prion 2010, 4, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Marin-Moreno, A.; Espinosa, J.C.; Fernandez-Borges, N.; Piquer, J.; Girones, R.; Andreoletti, O.; Torres, J.M. An assessment of the long-term persistence of prion infectivity in aquatic environments. Environ. Res. 2016, 151, 587–594. [Google Scholar] [CrossRef]
- Maddison, B.C.; Baker, C.A.; Terry, L.A.; Bellworthy, S.J.; Thorne, L.; Rees, H.C.; Gough, K.C. Environmental sources of scrapie prions. J. Virol. 2010, 84, 11560–11562. [Google Scholar] [CrossRef]
- Miller, M.W.; Williams, E.S.; Hobbs, N.T.; Wolfe, L.L. Environmental sources of prion transmission in mule deer. Emerg. Infect. Dis. 2004, 10, 1003–1006. [Google Scholar] [CrossRef]
- Hawkins, S.A.; Simmons, H.A.; Gough, K.C.; Maddison, B.C. Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination. Vet. Rec. 2015, 176, 99. [Google Scholar] [CrossRef]
- Georgsson, G.; Sigurdarson, S.; Brown, P. Infectious agent of sheep scrapie may persist in the environment for at least 16 years. J. Gen. Virol. 2006, 87, 3737–3740. [Google Scholar] [CrossRef]
- Head, M.W.; Ironside, J.W. Review: Creutzfeldt-Jakob disease: Prion protein type, disease phenotype and agent strain. Neuropathol. Appl. Neurobiol. 2012, 38, 296–310. [Google Scholar] [CrossRef]
- Parchi, P.; Capellari, S.; Chin, S.; Schwarz, H.B.; Schecter, N.P.; Butts, J.D.; Hudkins, P.; Burns, D.K.; Powers, J.M.; Gambetti, P. A subtype of sporadic prion disease mimicking fatal familial insomnia. Neurology 1999, 52, 1757–1763. [Google Scholar] [CrossRef]
- Baiardi, S.; Rossi, M.; Mammana, A.; Appleby, B.S.; Barria, M.A.; Cali, I.; Gambetti, P.; Gelpi, E.; Giese, A.; Ghetti, B.; et al. Phenotypic diversity of genetic Creutzfeldt-Jakob disease: A histo-molecular-based classification. Acta Neuropathol. 2021, 142, 707–728. [Google Scholar] [CrossRef]
- Douet, J.Y.; Huor, A.; Cassard, H.; Lugan, S.; Aron, N.; Mesic, C.; Vilette, D.; Barrio, T.; Streichenberger, N.; Perret-Liaudet, A.; et al. Prion strains associated with iatrogenic CJD in French and UK human growth hormone recipients. Acta Neuropathol. Commun. 2021, 9, 145. [Google Scholar] [CrossRef]
- Will, R.G.; Ironside, J.W.; Zeidler, M.; Cousens, S.N.; Estibeiro, K.; Alperovitch, A.; Poser, S.; Pocchiari, M.; Hofman, A.; Smith, P.G. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996, 347, 921–925. [Google Scholar] [CrossRef]
- Collinge, J.; Whitfield, J.; McKintosh, E.; Beck, J.; Mead, S.; Thomas, D.J.; Alpers, M.P. Kuru in the 21st century—An acquired human prion disease with very long incubation periods. Lancet 2006, 367, 2068–2074. [Google Scholar] [CrossRef]
- Collins, S.; McLean, C.A.; Masters, C.L. Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, and kuru: A review of these less common human transmissible spongiform encephalopathies. J. Clin. Neurosci. 2001, 8, 387–397. [Google Scholar] [CrossRef]
- Zou, W.Q.; Puoti, G.; Xiao, X.; Yuan, J.; Qing, L.; Cali, I.; Shimoji, M.; Langeveld, J.P.; Castellani, R.; Notari, S.; et al. Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein. Ann. Neurol. 2010, 68, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Acin, C.; Bolea, R.; Monzon, M.; Monleon, E.; Moreno, B.; Filali, H.; Marin, B.; Sola, D.; Betancor, M.; Guijarro, I.M.; et al. Classical and Atypical Scrapie in Sheep and Goats. Review on the Etiology, Genetic Factors, Pathogenesis, Diagnosis, and Control Measures of Both Diseases. Animals 2021, 11, 691. [Google Scholar] [CrossRef]
- Benestad, S.L.; Sarradin, P.; Thu, B.; Schonheit, J.; Tranulis, M.A.; Bratberg, B. Cases of scrapie with unusual features in Norway and designation of a new type, Nor98. Vet. Rec. 2003, 153, 202–208. [Google Scholar] [CrossRef]
- Ducrot, C.; Arnold, M.; de Koeijer, A.; Heim, D.; Calavas, D. Review on the epidemiology and dynamics of BSE epidemics. Vet. Res. 2008, 39, 15. [Google Scholar] [CrossRef] [Green Version]
- Dudas, S.; Czub, S. Atypical BSE: Current Knowledge and Knowledge Gaps. Food Saf. 2017, 5, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Casalone, C.; Zanusso, G.; Acutis, P.; Ferrari, S.; Capucci, L.; Tagliavini, F.; Monaco, S.; Caramelli, M. Identification of a second bovine amyloidotic spongiform encephalopathy: Molecular similarities with sporadic Creutzfeldt-Jakob disease. Proc. Natl. Acad. Sci. USA 2004, 101, 3065–3070. [Google Scholar] [CrossRef] [Green Version]
- Comoy, E.E.; Casalone, C.; Lescoutra-Etchegaray, N.; Zanusso, G.; Freire, S.; Marce, D.; Auvre, F.; Ruchoux, M.M.; Ferrari, S.; Monaco, S.; et al. Atypical BSE (BASE) transmitted from asymptomatic aging cattle to a primate. PLoS ONE 2008, 3, e3017. [Google Scholar] [CrossRef] [Green Version]
- Haley, N.J.; Hoover, E.A. Chronic wasting disease of cervids: Current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 2015, 3, 305–325. [Google Scholar] [CrossRef]
- Pirisinu, L.; Tran, L.; Chiappini, B.; Vanni, I.; Di Bari, M.A.; Vaccari, G.; Vikoren, T.; Madslien, K.I.; Vage, J.; Spraker, T.; et al. Novel Type of Chronic Wasting Disease Detected in Moose (Alces alces), Norway. Emerg. Infect. Dis. 2018, 24, 2210–2218. [Google Scholar] [CrossRef] [Green Version]
- Vikoren, T.; Vage, J.; Madslien, K.I.; Roed, K.H.; Rolandsen, C.M.; Tran, L.; Hopp, P.; Veiberg, V.; Heum, M.; Moldal, T.; et al. First Detection of Chronic Wasting Disease in a Wild Red Deer (Cervus elaphus) in Europe. J. Wildl. Dis. 2019, 55, 970–972. [Google Scholar] [CrossRef]
- Baron, T.; Bencsik, A.; Biacabe, A.G.; Morignat, E.; Bessen, R.A. Phenotypic similarity of transmissible mink encephalopathy in cattle and L-type bovine spongiform encephalopathy in a mouse model. Emerg. Infect. Dis. 2007, 13, 1887–1894. [Google Scholar] [CrossRef]
- Sigurdson, C.J.; Miller, M.W. Other animal prion diseases. Br. Med. Bull. 2003, 66, 199–212. [Google Scholar] [CrossRef]
- Kurt, T.D.; Sigurdson, C.J. Cross-species transmission of CWD prions. Prion 2016, 10, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Stahl, N.; Prusiner, S.B. Prions and prion proteins. FASEB J. 1991, 5, 2799–2807. [Google Scholar] [CrossRef]
- Basler, K.; Oesch, B.; Scott, M.; Westaway, D.; Walchli, M.; Groth, D.F.; McKinley, M.P.; Prusiner, S.B.; Weissmann, C. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 1986, 46, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Oesch, B.; Westaway, D.; Walchli, M.; McKinley, M.P.; Kent, S.B.; Aebersold, R.; Barry, R.A.; Tempst, P.; Teplow, D.B.; Hood, L.E.; et al. A cellular gene encodes scrapie PrP 27-30 protein. Cell 1985, 40, 735–746. [Google Scholar] [CrossRef]
- Brown, H.R.; Goller, N.L.; Rudelli, R.D.; Merz, G.S.; Wolfe, G.C.; Wisniewski, H.M.; Robakis, N.K. The mRNA encoding the scrapie agent protein is present in a variety of non-neuronal cells. Acta Neuropathol. 1990, 80, 1–6. [Google Scholar] [CrossRef]
- Salvesen, O.; Tatzelt, J.; Tranulis, M.A. The prion protein in neuroimmune crosstalk. Neurochem. Int. 2019, 130, 104335. [Google Scholar] [CrossRef]
- Wulf, M.A.; Senatore, A.; Aguzzi, A. The biological function of the cellular prion protein: An update. BMC Biol. 2017, 15, 34. [Google Scholar] [CrossRef] [Green Version]
- Linden, R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front. Mol. Neurosci. 2017, 10, 77. [Google Scholar] [CrossRef]
- Wang, L.Q.; Zhao, K.; Yuan, H.Y.; Wang, Q.; Guan, Z.; Tao, J.; Li, X.N.; Sun, Y.; Yi, C.W.; Chen, J.; et al. Cryo-EM structure of an amyloid fibril formed by full-length human prion protein. Nat. Struct. Mol. Biol. 2020, 27, 598–602. [Google Scholar] [CrossRef]
- Glynn, C.; Sawaya, M.R.; Ge, P.; Gallagher-Jones, M.; Short, C.W.; Bowman, R.; Apostol, M.; Zhou, Z.H.; Eisenberg, D.S.; Rodriguez, J.A. Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat. Struct. Mol. Biol. 2020, 27, 417–423. [Google Scholar] [CrossRef]
- Prusiner, S.B.; Scott, M.; Foster, D.; Pan, K.M.; Groth, D.; Mirenda, C.; Torchia, M.; Yang, S.L.; Serban, D.; Carlson, G.A.; et al. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 1990, 63, 673–686. [Google Scholar] [CrossRef]
- Priola, S.A. Prion protein and species barriers in the transmissible spongiform encephalopathies. Biomed. Pharmacother. 1999, 53, 27–33. [Google Scholar] [CrossRef]
- Goldmann, W. PrP genetics in ruminant transmissible spongiform encephalopathies. Vet. Res. 2008, 39, 30. [Google Scholar] [CrossRef] [Green Version]
- Tranulis, M.A. Influence of the prion protein gene, Prnp, on scrapie susceptibility in sheep. APMIS 2002, 110, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Bossers, A.; Schreuder, B.E.; Muileman, I.H.; Belt, P.B.; Smits, M.A. PrP genotype contributes to determining survival times of sheep with natural scrapie. J. Gen. Virol. 1996, 77 Pt 10, 2669–2673. [Google Scholar] [CrossRef]
- Goldmann, W.; Hunter, N.; Foster, J.D.; Salbaum, J.M.; Beyreuther, K.; Hope, J. Two alleles of a neural protein gene linked to scrapie in sheep. Proc. Natl. Acad. Sci. USA 1990, 87, 2476–2480. [Google Scholar] [CrossRef] [Green Version]
- Guere, M.E.; Vage, J.; Tharaldsen, H.; Benestad, S.L.; Vikoren, T.; Madslien, K.; Hopp, P.; Rolandsen, C.M.; Roed, K.H.; Tranulis, M.A. Chronic wasting disease associated with prion protein gene (PRNP) variation in Norwegian wild reindeer (Rangifer tarandus). Prion 2020, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Brandt, A.L.; Kelly, A.C.; Green, M.L.; Shelton, P.; Novakofski, J.; Mateus-Pinilla, N.E. Prion protein gene sequence and chronic wasting disease susceptibility in white-tailed deer (Odocoileus virginianus). Prion 2015, 9, 449–462. [Google Scholar] [CrossRef]
- Robinson, S.J.; Samuel, M.D.; O’Rourke, K.I.; Johnson, C.J. The role of genetics in chronic wasting disease of North American cervids. Prion 2012, 6, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Wilson, G.A.; Nakada, S.M.; Bollinger, T.K.; Pybus, M.J.; Merrill, E.H.; Coltman, D.W. Polymorphisms at the PRNP gene influence susceptibility to chronic wasting disease in two species of deer (Odocoileus Spp.) in western Canada. J. Toxicol. Environ. Health A 2009, 72, 1025–1029. [Google Scholar] [CrossRef]
- Kocisko, D.A.; Come, J.H.; Priola, S.A.; Chesebro, B.; Raymond, G.J.; Lansbury, P.T.; Caughey, B. Cell-free formation of protease-resistant prion protein. Nature 1994, 370, 471–474. [Google Scholar] [CrossRef] [Green Version]
- Haley, N.J.; Donner, R.; Henderson, D.M.; Tennant, J.; Hoover, E.A.; Manca, M.; Caughey, B.; Kondru, N.; Manne, S.; Kanthasamay, A.; et al. Cross-validation of the RT-QuIC assay for the antemortem detection of chronic wasting disease in elk. Prion 2020, 14, 47–55. [Google Scholar] [CrossRef]
- Haley, N.J.; Siepker, C.; Hoon-Hanks, L.L.; Mitchell, G.; Walter, W.D.; Manca, M.; Monello, R.J.; Powers, J.G.; Wild, M.A.; Hoover, E.A.; et al. Seeded Amplification of Chronic Wasting Disease Prions in Nasal Brushings and Recto-anal Mucosa-Associated Lymphoid Tissues from Elk by Real-Time Quaking-Induced Conversion. J. Clin. Microbiol. 2016, 54, 1117–1126. [Google Scholar] [CrossRef] [Green Version]
- Castilla, J.; Morales, R.; Saa, P.; Barria, M.; Gambetti, P.; Soto, C. Cell-free propagation of prion strains. EMBO J. 2008, 27, 2557–2566. [Google Scholar] [CrossRef] [Green Version]
- Saborio, G.P.; Permanne, B.; Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 2001, 411, 810–813. [Google Scholar] [CrossRef]
- Detwiler, L.A. Scrapie. Rev. Sci. Tech. 1992, 11, 491–537. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, L.; Martin, S.; Siso, S.; Konold, T.; Ortiz-Pelaez, A.; Phelan, L.; Goldmann, W.; Stewart, P.; Saunders, G.; Windl, O.; et al. High prevalence of scrapie in a dairy goat herd: Tissue distribution of disease-associated PrP and effect of PRNP genotype and age. Vet. Res. 2009, 40, 65. [Google Scholar] [CrossRef] [Green Version]
- Pattison, I.H.; Smith, K. Experimental Scrapie in Goats: A Modification of Incubation Period and Clinical Response Following Pre-Treatment with Normal Goat Brain. Nature 1963, 200, 1342–1343. [Google Scholar] [CrossRef]
- Collinge, J.; Clarke, A.R. A general model of prion strains and their pathogenicity. Science 2007, 318, 930–936. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.F.; Desbruslais, M.; Joiner, S.; Sidle, K.C.; Gowland, I.; Collinge, J.; Doey, L.J.; Lantos, P. The same prion strain causes vCJD and BSE. Nature 1997, 389, 448–450. [Google Scholar] [CrossRef]
- Collinge, J. Medicine. Prion strain mutation and selection. Science 2010, 328, 1111–1112. [Google Scholar] [CrossRef]
- Marin-Moreno, A.; Huor, A.; Espinosa, J.C.; Douet, J.Y.; Aguilar-Calvo, P.; Aron, N.; Piquer, J.; Lugan, S.; Lorenzo, P.; Tillier, C.; et al. Radical Change in Zoonotic Abilities of Atypical BSE Prion Strains as Evidenced by Crossing of Sheep Species Barrier in Transgenic Mice. Emerg. Infect. Dis. 2020, 26, 1130–1139. [Google Scholar] [CrossRef]
- Foster, J.D.; Parnham, D.W.; Hunter, N.; Bruce, M. Distribution of the prion protein in sheep terminally affected with BSE following experimental oral transmission. J. Gen. Virol. 2001, 82, 2319–2326. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.D.; Parnham, D.; Chong, A.; Goldmann, W.; Hunter, N. Clinical signs, histopathology and genetics of experimental transmission of BSE and natural scrapie to sheep and goats. Vet. Rec. 2001, 148, 165–171. [Google Scholar] [CrossRef]
- Bartz, J.C.; Marsh, R.F.; McKenzie, D.I.; Aiken, J.M. The host range of chronic wasting disease is altered on passage in ferrets. Virology 1998, 251, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Williams, E.S.; Young, S. Chronic wasting disease of captive mule deer: A spongiform encephalopathy. J. Wildl. Dis. 1980, 16, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Escobar, L.E.; Pritzkow, S.; Winter, S.N.; Grear, D.A.; Kirchgessner, M.S.; Dominguez-Villegas, E.; Machado, G.; Townsend Peterson, A.; Soto, C. The ecology of chronic wasting disease in wildlife. Biol. Rev. Camb. Philos. Soc. 2020, 95, 393–408. [Google Scholar] [CrossRef]
- Hazards, E.P.o.B.; Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernandez Escamez, P.S.; Girones, R.; Herman, L.; Koutsoumanis, K.; et al. Chronic wasting disease (CWD) in cervids. EFSA J. 2017, 15, e04667. [Google Scholar] [CrossRef]
- Williams, E.S.; Miller, M.W. Chronic wasting disease in deer and elk in North America. Rev. Sci. Tech. 2002, 21, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.W.; Williams, E.S.; McCarty, C.W.; Spraker, T.R.; Kreeger, T.J.; Larsen, C.T.; Thorne, E.T. Epizootiology of chronic wasting disease in free-ranging cervids in Colorado and Wyoming. J. Wildl. Dis. 2000, 36, 676–690. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.W.; Fischer, J.R. The first five (or more) decades of Chronic Wasting Disease: Lessons for the five decades to come. In Proceedings of the Transactions of the North American Wildlife and Natural Resources Conference, Pittsburgh, PA, USA, 13–18 March 2016; Volume 81. [Google Scholar]
- Mathiason, C.K.; Hays, S.A.; Powers, J.; Hayes-Klug, J.; Langenberg, J.; Dahmes, S.J.; Osborn, D.A.; Miller, K.V.; Warren, R.J.; Mason, G.L.; et al. Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure. PLoS ONE 2009, 4, e5916. [Google Scholar] [CrossRef] [Green Version]
- Dube, C.; Mehren, K.G.; Barker, I.K.; Peart, B.L.; Balachandran, A. Retrospective investigation of chronic wasting disease of cervids at the Toronto Zoo, 1973–2003. Can. Vet. J. 2006, 47, 1185–1193. [Google Scholar] [PubMed]
- Kim, T.Y.; Shon, H.J.; Joo, Y.S.; Mun, U.K.; Kang, K.S.; Lee, Y.S. Additional cases of Chronic Wasting Disease in imported deer in Korea. J. Vet. Med. Sci. 2005, 67, 753–759. [Google Scholar] [CrossRef] [Green Version]
- Baeten, L.A.; Powers, B.E.; Jewell, J.E.; Spraker, T.R.; Miller, M.W. A natural case of chronic wasting disease in a free-ranging moose (Alces alces shirasi). J. Wildl. Dis. 2007, 43, 309–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreeger, T.J.; Montgomery, D.L.; Jewell, J.E.; Schultz, W.; Williams, E.S. Oral transmission of chronic wasting disease in captive Shira’s moose. J. Wildl. Dis. 2006, 42, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Expanding Distribution of Chronic Wasting Disease. Available online: https://www.usgs.gov/centers/nwhc/science/expanding-distribution-chronic-wasting-disease (accessed on 26 January 2023).
- Williams, E.S. Chronic wasting disease. Vet. Pathol. 2005, 42, 530–549. [Google Scholar] [CrossRef]
- Mitchell, G.B.; Sigurdson, C.J.; O’Rourke, K.I.; Algire, J.; Harrington, N.P.; Walther, I.; Spraker, T.R.; Balachandran, A. Experimental oral transmission of chronic wasting disease to reindeer (Rangifer tarandus tarandus). PLoS ONE 2012, 7, e39055. [Google Scholar] [CrossRef]
- Guere, M.E.; Vage, J.; Tharaldsen, H.; Kvie, K.S.; Bardsen, B.J.; Benestad, S.L.; Vikoren, T.; Madslien, K.; Rolandsen, C.M.; Tranulis, M.A.; et al. Chronic wasting disease in Norway-A survey of prion protein gene variation among cervids. Transbound. Emerg. Dis. 2022, 69, e20–e31. [Google Scholar] [CrossRef]
- Benestad, S.L.; Mitchell, G.; Simmons, M.; Ytrehus, B.; Vikoren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 2016, 47, 88. [Google Scholar] [CrossRef]
- Totalregnskap for Reindriftsnæringen. Available online: https://www.landbruksdirektoratet.no/nb/nyhetsrom/rapporter/totalregnskap-for-reindriftsnaeringen (accessed on 10 January 2023).
- Agren, E.O.; Soren, K.; Gavier-Widen, D.; Benestad, S.L.; Tran, L.; Wall, K.; Averhed, G.; Doose, N.; Vage, J.; Noremark, M. First Detection of Chronic Wasting Disease in Moose (Alces alces) in Sweden. J. Wildl. Dis. 2021, 57, 461–463. [Google Scholar] [CrossRef]
- Nonno, R.; Di Bari, M.A.; Pirisinu, L.; D’Agostino, C.; Vanni, I.; Chiappini, B.; Marcon, S.; Riccardi, G.; Tran, L.; Vikoren, T.; et al. Studies in bank voles reveal strain differences between chronic wasting disease prions from Norway and North America. Proc. Natl. Acad. Sci. USA 2020, 117, 31417–31426. [Google Scholar] [CrossRef]
- Tranulis, M.A.; Benestad, S.L.; Baron, T.; Kretzschmar, H. Atypical prion diseases in humans and animals. Prion Proteins 2011, 305, 23–50. [Google Scholar] [CrossRef]
- Tranulis, M.A.; Gavier-Widen, D.; Vage, J.; Noremark, M.; Korpenfelt, S.L.; Hautaniemi, M.; Pirisinu, L.; Nonno, R.; Benestad, S.L. Chronic wasting disease in Europe: New strains on the horizon. Acta Vet. Scand. 2021, 63, 48. [Google Scholar] [CrossRef]
- Moore, J.; Tatum, T.; Hwang, S.; Vrentas, C.; West Greenlee, M.H.; Kong, Q.; Nicholson, E.; Greenlee, J. Novel Strain of the Chronic Wasting Disease Agent Isolated From Experimentally Inoculated Elk with LL132 Prion Protein. Sci. Rep. 2020, 10, 3148. [Google Scholar] [CrossRef] [Green Version]
- Duque Velasquez, C.; Kim, C.; Haldiman, T.; Kim, C.; Herbst, A.; Aiken, J.; Safar, J.G.; McKenzie, D. Chronic wasting disease (CWD) prion strains evolve via adaptive diversification of conformers in hosts expressing prion protein polymorphisms. J. Biol. Chem. 2020, 295, 4985–5001. [Google Scholar] [CrossRef] [Green Version]
- Herbst, A.; Velasquez, C.D.; Triscott, E.; Aiken, J.M.; McKenzie, D. Chronic Wasting Disease Prion Strain Emergence and Host Range Expansion. Emerg. Infect. Dis. 2017, 23, 1598–1600. [Google Scholar] [CrossRef] [Green Version]
- Duque Velasquez, C.; Kim, C.; Herbst, A.; Daude, N.; Garza, M.C.; Wille, H.; Aiken, J.; McKenzie, D. Deer Prion Proteins Modulate the Emergence and Adaptation of Chronic Wasting Disease Strains. J. Virol. 2015, 89, 12362–12373. [Google Scholar] [CrossRef]
- Perrott, M.R.; Sigurdson, C.J.; Mason, G.L.; Hoover, E.A. Evidence for distinct chronic wasting disease (CWD) strains in experimental CWD in ferrets. J. Gen. Virol. 2012, 93, 212–221. [Google Scholar] [CrossRef]
- Bessen, R.A.; Robinson, C.J.; Seelig, D.M.; Watschke, C.P.; Lowe, D.; Shearin, H.; Martinka, S.; Babcock, A.M. Transmission of chronic wasting disease identifies a prion strain causing cachexia and heart infection in hamsters. PLoS ONE 2011, 6, e28026. [Google Scholar] [CrossRef]
- Raymond, G.J.; Raymond, L.D.; Meade-White, K.D.; Hughson, A.G.; Favara, C.; Gardner, D.; Williams, E.S.; Miller, M.W.; Race, R.E.; Caughey, B. Transmission and adaptation of chronic wasting disease to hamsters and transgenic mice: Evidence for strains. J. Virol. 2007, 81, 4305–4314. [Google Scholar] [CrossRef] [Green Version]
- Watson, N.; Brandel, J.P.; Green, A.; Hermann, P.; Ladogana, A.; Lindsay, T.; Mackenzie, J.; Pocchiari, M.; Smith, C.; Zerr, I.; et al. The importance of ongoing international surveillance for Creutzfeldt-Jakob disease. Nat. Rev. Neurol. 2021, 17, 362–379. [Google Scholar] [CrossRef]
- Bruce, M.E.; Will, R.G.; Ironside, J.W.; McConnell, I.; Drummond, D.; Suttie, A.; McCardle, L.; Chree, A.; Hope, J.; Birkett, C.; et al. Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 1997, 389, 498–501. [Google Scholar] [CrossRef]
- Gelpi, E.; Baiardi, S.; Nos, C.; Dellavalle, S.; Aldecoa, I.; Ruiz-Garcia, R.; Ispierto, L.; Escudero, D.; Casado, V.; Barranco, E.; et al. Sporadic Creutzfeldt-Jakob disease VM1: Phenotypic and molecular characterization of a novel subtype of human prion disease. Acta Neuropathol. Commun. 2022, 10, 114. [Google Scholar] [CrossRef]
- Galeno, R.; Di Bari, M.A.; Nonno, R.; Cardone, F.; Sbriccoli, M.; Graziano, S.; Ingrosso, L.; Fiorini, M.; Valanzano, A.; Pasini, G.; et al. Prion Strain Characterization of a Novel Subtype of Creutzfeldt-Jakob Disease. J. Virol. 2017, 91, e02390-16. [Google Scholar] [CrossRef] [Green Version]
- Petrovic, I.N.; Martin-Bastida, A.; Massey, L.; Ling, H.; O’Sullivan, S.S.; Williams, D.R.; Holton, J.L.; Revesz, T.; Ironside, J.W.; Lees, A.J.; et al. MM2 subtype of sporadic Creutzfeldt-Jakob disease may underlie the clinical presentation of progressive supranuclear palsy. J. Neurol. 2013, 260, 1031–1036. [Google Scholar] [CrossRef]
- Fatola, O.I.; Keller, M.; Balkema-Buschmann, A.; Olopade, J.; Groschup, M.H.; Fast, C. Strain Typing of Classical Scrapie and Bovine Spongiform Encephalopathy (BSE) by Using Ovine PrP (ARQ/ARQ) Overexpressing Transgenic Mice. Int. J. Mol. Sci. 2022, 23, 6744. [Google Scholar] [CrossRef]
- Bruce, M.E. Scrapie strain variation and mutation. Br. Med. Bull. 1993, 49, 822–838. [Google Scholar] [CrossRef]
- Bruce, M.E.; Fraser, H. Scrapie strain variation and its implications. Curr. Top. Microbiol. Immunol. 1991, 172, 125–138. [Google Scholar] [CrossRef]
- Uttley, L.; Carroll, C.; Wong, R.; Hilton, D.A.; Stevenson, M. Creutzfeldt-Jakob disease: A systematic review of global incidence, prevalence, infectivity, and incubation. Lancet Infect. Dis. 2020, 20, e2–e10. [Google Scholar] [CrossRef]
- Mawhinney, S.; Pape, W.J.; Forster, J.E.; Anderson, C.A.; Bosque, P.; Miller, M.W. Human prion disease and relative risk associated with chronic wasting disease. Emerg. Infect. Dis. 2006, 12, 1527–1535. [Google Scholar] [CrossRef]
- Anderson, C.A.; Bosque, P.; Filley, C.M.; Arciniegas, D.B.; Kleinschmidt-Demasters, B.K.; Pape, W.J.; Tyler, K.L. Colorado surveillance program for chronic wasting disease transmission to humans: Lessons from 2 highly suspicious but negative cases. Arch. Neurol. 2007, 64, 439–441. [Google Scholar] [CrossRef]
- Belay, E.D.; Gambetti, P.; Schonberger, L.B.; Parchi, P.; Lyon, D.R.; Capellari, S.; McQuiston, J.H.; Bradley, K.; Dowdle, G.; Crutcher, J.M.; et al. Creutzfeldt-Jakob disease in unusually young patients who consumed venison. Arch. Neurol. 2001, 58, 1673–1678. [Google Scholar] [CrossRef]
- Olszowy, K.M.; Lavelle, J.; Rachfal, K.; Hempstead, S.; Drouin, K.; Darcy, J.M., 2nd; Reiber, C.; Garruto, R.M. Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: Risk behaviours and health outcomes 2005–2011. Public Health 2014, 128, 860–868. [Google Scholar] [CrossRef]
- Kocisko, D.A.; Priola, S.A.; Raymond, G.J.; Chesebro, B.; Lansbury, P.T., Jr.; Caughey, B. Species specificity in the cell-free conversion of prion protein to protease-resistant forms: A model for the scrapie species barrier. Proc. Natl. Acad. Sci. USA 1995, 92, 3923–3927. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Morales, R.; Barria, M.A.; Soto, C. Estimating prion concentration in fluids and tissues by quantitative PMCA. Nat. Methods 2010, 7, 519–520. [Google Scholar] [CrossRef] [Green Version]
- Atarashi, R.; Wilham, J.M.; Christensen, L.; Hughson, A.G.; Moore, R.A.; Johnson, L.M.; Onwubiko, H.A.; Priola, S.A.; Caughey, B. Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat. Methods 2008, 5, 211–212. [Google Scholar] [CrossRef]
- Wilham, J.M.; Orru, C.D.; Bessen, R.A.; Atarashi, R.; Sano, K.; Race, B.; Meade-White, K.D.; Taubner, L.M.; Timmes, A.; Caughey, B. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog. 2010, 6, e1001217. [Google Scholar] [CrossRef]
- Colby, D.W.; Zhang, Q.; Wang, S.; Groth, D.; Legname, G.; Riesner, D.; Prusiner, S.B. Prion detection by an amyloid seeding assay. Proc. Natl. Acad. Sci. USA 2007, 104, 20914–20919. [Google Scholar] [CrossRef] [Green Version]
- Atarashi, R.; Sano, K.; Satoh, K.; Nishida, N. Real-time quaking-induced conversion: A highly sensitive assay for prion detection. Prion 2011, 5, 150–153. [Google Scholar] [CrossRef] [Green Version]
- Davenport, K.A.; Mosher, B.A.; Brost, B.M.; Henderson, D.M.; Denkers, N.D.; Nalls, A.V.; McNulty, E.; Mathiason, C.K.; Hoover, E.A. Assessment of Chronic Wasting Disease Prion Shedding in Deer Saliva with Occupancy Modeling. J. Clin. Microbiol. 2018, 56, e01243-17. [Google Scholar] [CrossRef] [Green Version]
- Henderson, D.M.; Davenport, K.A.; Haley, N.J.; Denkers, N.D.; Mathiason, C.K.; Hoover, E.A. Quantitative assessment of prion infectivity in tissues and body fluids by real-time quaking-induced conversion. J. Gen. Virol. 2015, 96, 210–219. [Google Scholar] [CrossRef]
- Henderson, D.M.; Manca, M.; Haley, N.J.; Denkers, N.D.; Nalls, A.V.; Mathiason, C.K.; Caughey, B.; Hoover, E.A. Rapid antemortem detection of CWD prions in deer saliva. PLoS ONE 2013, 8, e74377. [Google Scholar] [CrossRef] [Green Version]
- John, T.R.; Schatzl, H.M.; Gilch, S. Early detection of chronic wasting disease prions in urine of pre-symptomatic deer by real-time quaking-induced conversion assay. Prion 2013, 7, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.C.; Hannaoui, S.; John, T.R.; Dudas, S.; Czub, S.; Gilch, S. Early and Non-Invasive Detection of Chronic Wasting Disease Prions in Elk Feces by Real-Time Quaking Induced Conversion. PLoS ONE 2016, 11, e0166187. [Google Scholar] [CrossRef] [Green Version]
- Pulford, B.; Spraker, T.R.; Wyckoff, A.C.; Meyerett, C.; Bender, H.; Ferguson, A.; Wyatt, B.; Lockwood, K.; Powers, J.; Telling, G.C.; et al. Detection of PrPCWD in feces from naturally exposed Rocky Mountain elk (Cervus elaphus nelsoni) using protein misfolding cyclic amplification. J. Wildl. Dis. 2012, 48, 425–434. [Google Scholar] [CrossRef]
- Kramm, C.; Pritzkow, S.; Lyon, A.; Nichols, T.; Morales, R.; Soto, C. Detection of Prions in Blood of Cervids at the Asymptomatic Stage of Chronic Wasting Disease. Sci. Rep. 2017, 7, 17241. [Google Scholar] [CrossRef] [Green Version]
- McNulty, E.; Nalls, A.V.; Mellentine, S.; Hughes, E.; Pulscher, L.; Hoover, E.A.; Mathiason, C.K. Comparison of conventional, amplification and bio-assay detection methods for a chronic wasting disease inoculum pool. PLoS ONE 2019, 14, e0216621. [Google Scholar] [CrossRef]
- Bistaffa, E.; Vuong, T.T.; Cazzaniga, F.A.; Tran, L.; Salzano, G.; Legname, G.; Giaccone, G.; Benestad, S.L.; Moda, F. Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids. Sci. Rep. 2019, 9, 18595. [Google Scholar] [CrossRef] [Green Version]
- Raymond, G.J.; Bossers, A.; Raymond, L.D.; O’Rourke, K.I.; McHolland, L.E.; Bryant, P.K., 3rd; Miller, M.W.; Williams, E.S.; Smits, M.; Caughey, B. Evidence of a molecular barrier limiting susceptibility of humans, cattle and sheep to chronic wasting disease. EMBO J. 2000, 19, 4425–4430. [Google Scholar] [CrossRef] [Green Version]
- Barria, M.A.; Telling, G.C.; Gambetti, P.; Mastrianni, J.A.; Soto, C. Generation of a new form of human PrP(Sc) in vitro by interspecies transmission from cervid prions. J Biol. Chem. 2011, 286, 7490–7495. [Google Scholar] [CrossRef] [Green Version]
- Kurt, T.D.; Jiang, L.; Fernandez-Borges, N.; Bett, C.; Liu, J.; Yang, T.; Spraker, T.R.; Castilla, J.; Eisenberg, D.; Kong, Q.; et al. Human prion protein sequence elements impede cross-species chronic wasting disease transmission. J. Clin. Investig. 2015, 125, 2548. [Google Scholar] [CrossRef] [Green Version]
- Barria, M.A.; Libori, A.; Mitchell, G.; Head, M.W. Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions. Emerg. Infect. Dis. 2018, 24, 1482–1489. [Google Scholar] [CrossRef]
- Hamir, A.N.; Kunkle, R.A.; Cutlip, R.C.; Miller, J.M.; Williams, E.S.; Richt, J.A. Transmission of chronic wasting disease of mule deer to Suffolk sheep following intracerebral inoculation. J. Vet Diagn. Investig. 2006, 18, 558–565. [Google Scholar] [CrossRef] [Green Version]
- Hamir, A.N.; Kunkle, R.A.; Miller, J.M.; Greenlee, J.J.; Richt, J.A. Experimental second passage of chronic wasting disease (CWD(mule deer)) agent to cattle. J. Comp. Pathol. 2006, 134, 63–69. [Google Scholar] [CrossRef]
- Moore, S.J.; West Greenlee, M.H.; Kondru, N.; Manne, S.; Smith, J.D.; Kunkle, R.A.; Kanthasamy, A.; Greenlee, J.J. Experimental Transmission of the Chronic Wasting Disease Agent to Swine after Oral or Intracranial Inoculation. J. Virol. 2017, 91, e00926-17. [Google Scholar] [CrossRef] [Green Version]
- Mathiason, C.K.; Nalls, A.V.; Seelig, D.M.; Kraft, S.L.; Carnes, K.; Anderson, K.R.; Hayes-Klug, J.; Hoover, E.A. Susceptibility of domestic cats to chronic wasting disease. J. Virol. 2013, 87, 1947–1956. [Google Scholar] [CrossRef] [Green Version]
- Sigurdson, C.J.; Mathiason, C.K.; Perrott, M.R.; Eliason, G.A.; Spraker, T.R.; Glatzel, M.; Manco, G.; Bartz, J.C.; Miller, M.W.; Hoover, E.A. Experimental chronic wasting disease (CWD) in the ferret. J. Comp. Pathol. 2008, 138, 189–196. [Google Scholar] [CrossRef]
- Marsh, R.F.; Kincaid, A.E.; Bessen, R.A.; Bartz, J.C. Interspecies transmission of chronic wasting disease prions to squirrel monkeys (Saimiri sciureus). J. Virol. 2005, 79, 13794–13796. [Google Scholar] [CrossRef] [Green Version]
- Kurt, T.D.; Bett, C.; Fernandez-Borges, N.; Joshi-Barr, S.; Hornemann, S.; Rulicke, T.; Castilla, J.; Wuthrich, K.; Aguzzi, A.; Sigurdson, C.J. Prion transmission prevented by modifying the beta2-alpha2 loop structure of host PrPC. J. Neurosci. 2014, 34, 1022–1027. [Google Scholar] [CrossRef] [Green Version]
- Kyle, L.M.; John, T.R.; Schatzl, H.M.; Lewis, R.V. Introducing a rigid loop structure from deer into mouse prion protein increases its propensity for misfolding in vitro. PLoS ONE 2013, 8, e66715. [Google Scholar] [CrossRef] [Green Version]
- Kurt, T.D.; Telling, G.C.; Zabel, M.D.; Hoover, E.A. Trans-species amplification of PrP(CWD) and correlation with rigid loop 170N. Virology 2009, 387, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Kong, Q.; Huang, S.; Zou, W.; Vanegas, D.; Wang, M.; Wu, D.; Yuan, J.; Zheng, M.; Bai, H.; Deng, H.; et al. Chronic wasting disease of elk: Transmissibility to humans examined by transgenic mouse models. J. Neurosci. 2005, 25, 7944–7949. [Google Scholar] [CrossRef] [Green Version]
- Tamguney, G.; Giles, K.; Bouzamondo-Bernstein, E.; Bosque, P.J.; Miller, M.W.; Safar, J.; DeArmond, S.J.; Prusiner, S.B. Transmission of elk and deer prions to transgenic mice. J. Virol. 2006, 80, 9104–9114. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, M.K.; Al-Doujaily, H.; Sigurdson, C.J.; Glatzel, M.; O’Malley, C.; Powell, C.; Asante, E.A.; Linehan, J.M.; Brandner, S.; Wadsworth, J.D.; et al. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein. J. Gen. Virol. 2010, 91, 2651–2657. [Google Scholar] [CrossRef]
- Wilson, R.; Plinston, C.; Hunter, N.; Casalone, C.; Corona, C.; Tagliavini, F.; Suardi, S.; Ruggerone, M.; Moda, F.; Graziano, S.; et al. Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein. J. Gen. Virol. 2012, 93, 1624–1629. [Google Scholar] [CrossRef]
- Race, B.; Williams, K.; Chesebro, B. Transmission studies of chronic wasting disease to transgenic mice overexpressing human prion protein using the RT-QuIC assay. Vet. Res. 2019, 50, 6. [Google Scholar] [CrossRef] [Green Version]
- Wadsworth, J.D.F.; Joiner, S.; Linehan, J.M.; Jack, K.; Al-Doujaily, H.; Costa, H.; Ingold, T.; Taema, M.; Zhang, F.; Sandberg, M.K.; et al. Humanised transgenic mice are resistant to chronic wasting disease prions from Norwegian reindeer and moose. J. Infect. Dis. 2021, 226, 933–937. [Google Scholar] [CrossRef]
- Hannaoui, S.; Zemlyankina, I.; Chang, S.C.; Arifin, M.I.; Beringue, V.; McKenzie, D.; Schatzl, H.M.; Gilch, S. Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD. Acta Neuropathol. 2022, 144, 767–784. [Google Scholar] [CrossRef]
- Hill, A.F.; Collinge, J. Subclinical prion infection. Trends Microbiol. 2003, 11, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Rendulich, J.; Stevenson, D.; O’Rourke, K.; Balachandran, A. Evaluation of Western blotting methods using samples with or without sodium phosphotungstic acid precipitation for diagnosis of scrapie and chronic wasting disease. Can. J. Vet. Res. 2005, 69, 193–199. [Google Scholar] [PubMed]
- Bian, J.; Kim, S.; Kane, S.J.; Crowell, J.; Sun, J.L.; Christiansen, J.; Saijo, E.; Moreno, J.A.; DiLisio, J.; Burnett, E.; et al. Adaptive selection of a prion strain conformer corresponding to established North American CWD during propagation of novel emergent Norwegian strains in mice expressing elk or deer prion protein. PLoS Pathog. 2021, 17, e1009748. [Google Scholar] [CrossRef]
- Comoy, E.E.; Mikol, J.; Deslys, J.P. Non-human primates in prion diseases. Cell Tissue Res. 2022. [Google Scholar] [CrossRef]
- Race, B.; Meade-White, K.D.; Phillips, K.; Striebel, J.; Race, R.; Chesebro, B. Chronic wasting disease agents in nonhuman primates. Emerg. Infect. Dis. 2014, 20, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Race, B.; Meade-White, K.D.; Miller, M.W.; Barbian, K.D.; Rubenstein, R.; LaFauci, G.; Cervenakova, L.; Favara, C.; Gardner, D.; Long, D.; et al. Susceptibilities of nonhuman primates to chronic wasting disease. Emerg. Infect. Dis. 2009, 15, 1366–1376. [Google Scholar] [CrossRef]
- Piccardo, P.; Cervenak, J.; Yakovleva, O.; Gregori, L.; Pomeroy, K.; Cook, A.; Muhammad, F.S.; Seuberlich, T.; Cervenakova, L.; Asher, D.M. Squirrel monkeys (Saimiri sciureus) infected with the agent of bovine spongiform encephalopathy develop tau pathology. J. Comp. Pathol. 2012, 147, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.; Brown, P.; Ironside, J.; Gibson, S.; Will, R.; Ritchie, D.; Kreil, T.R.; Abee, C. Clinical, neuropathological and immunohistochemical features of sporadic and variant forms of Creutzfeldt-Jakob disease in the squirrel monkey (Saimiri sciureus). J. Gen. Virol. 2007, 88, 688–695. [Google Scholar] [CrossRef]
- Gibbs, C.J., Jr.; Amyx, H.L.; Bacote, A.; Masters, C.L.; Gajdusek, D.C. Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates. J. Infect. Dis. 1980, 142, 205–208. [Google Scholar] [CrossRef]
- Race, B.; Williams, K.; Orru, C.D.; Hughson, A.G.; Lubke, L.; Chesebro, B. Lack of Transmission of Chronic Wasting Disease to Cynomolgus Macaques. J. Virol. 2018, 92, e00550-18. [Google Scholar] [CrossRef] [Green Version]
- Hayasaka, K.; Gojobori, T.; Horai, S. Molecular phylogeny and evolution of primate mitochondrial DNA. Mol. Biol. Evol. 1988, 5, 626–644. [Google Scholar] [CrossRef]
- Schatzl, H.M.; Da Costa, M.; Taylor, L.; Cohen, F.E.; Prusiner, S.B. Prion protein gene variation among primates. J. Mol. Biol. 1995, 245, 362–374. [Google Scholar] [CrossRef]
- Holznagel, E.; Yutzy, B.; Schulz-Schaeffer, W.; Kruip, C.; Hahmann, U.; Bierke, P.; Torres, J.M.; Kim, Y.S.; Thomzig, A.; Beekes, M.; et al. Foodborne transmission of bovine spongiform encephalopathy to nonhuman primates. Emerg. Infect. Dis. 2013, 19, 712–720. [Google Scholar] [CrossRef]
- Ono, F.; Tase, N.; Kurosawa, A.; Hiyaoka, A.; Ohyama, A.; Tezuka, Y.; Wada, N.; Sato, Y.; Tobiume, M.; Hagiwara, K.; et al. Atypical L-type bovine spongiform encephalopathy (L-BSE) transmission to cynomolgus macaques, a non-human primate. Jpn. J. Infect. Dis. 2011, 64, 81–84. [Google Scholar] [CrossRef]
- Lasmezas, C.I.; Comoy, E.; Hawkins, S.; Herzog, C.; Mouthon, F.; Konold, T.; Auvre, F.; Correia, E.; Lescoutra-Etchegaray, N.; Sales, N.; et al. Risk of oral infection with bovine spongiform encephalopathy agent in primates. Lancet 2005, 365, 781–783. [Google Scholar] [CrossRef]
- Comoy, E.E.; Mikol, J.; Luccantoni-Freire, S.; Correia, E.; Lescoutra-Etchegaray, N.; Durand, V.; Dehen, C.; Andreoletti, O.; Casalone, C.; Richt, J.A.; et al. Transmission of scrapie prions to primate after an extended silent incubation period. Sci. Rep. 2015, 5, 11573. [Google Scholar] [CrossRef] [Green Version]
- Hannaoui, S.; Cheng, G.; Wemheuer, W.; Schulz-Schaeffer, W.J.; Gilch, S.; Schatzl, M. Prion 2022 Conference abstract: Transmission of prion infectivity from CWD-infected macaque tissues to rodent models demonstrates the zoonotic potential of chronic wasting disease. Prion 2022, 16, 95–253. [Google Scholar] [CrossRef]
- VKM. Factors That Can Contribute to Spread of CWD—An Update on the Situation in Nordfjella. Opinion of the Panel of Biological Hazards; Norwegian Scientific Committee for Food and Environmenmt: Oslo, Norway, 2018; pp. 1–92. ISBN 978-82-8259-316-8. [Google Scholar]
- NVI. Norwegian CWD Surveillance—Live Updates. Web-Page in Norwegian. Available online: http://apps.vetinst.no/skrantesykestatistikk/NO/#omrade (accessed on 10 January 2023).
Disease | Mode of Occurrence | References |
---|---|---|
Creutzfeldt-Jakob disease | ||
Sporadic, sCJD | Sporadic | [14] |
Sporadic fatal insomnia | Sporadic | [15] |
Genetic CJD, gCJD | Familial, PRNP mutations | [16] |
Iatrogenic CJD, iCJD | Acquired, medical or surgical treatment | [17] |
Variant CJD, vCJD | Acquired, foodborne zoonosis | [18] |
Kuru | Acquired, cannibalism (disease eradicated) | [19] |
Gerstmann-Sträussler-Scheinker disease, GSS | Familial, PRNP mutations | [20] |
Fatal familiar insomnia, FFI | Familial, PRNP mutations | [20] |
Variable proteinase sensitive prionopathy VPSPr | Sporadic | [21] |
Disease and Species of Occurrence | Mode of Occurrence | References |
---|---|---|
Scrapie in sheep and goats | ||
Classical | Contagious | [22] |
Atypical/Nor98 | Sporadic | [23] |
Bovine spongiform encephalopathy in cattle, BSE | ||
Classical C-BSE | Foodborne | [24] |
Atypical L-BSE | Sporadic | [25,26] |
Atypical H-BSE | Sporadic | [25,27] |
Chronic wasting disease in deer, CWD | ||
Classical C-CWD | Contagious | [28] |
Moose sporadic CWD, Mo-sCWD | Sporadic | [29] |
Red deer sporadic CWD, Rd-sCWD | Sporadic | [30] |
Camelid prion disease | Contagious | [4] |
Transmissible mink encephalopathy TME | Foodborne (BSE L-form) | [31] |
Transmissible feline encephalopathy FSE | Foodborne (C-BSE) | [32] |
CWD Source | huPrP, 129MV | Readouts | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|
North America | Europe | Clinical signs | Brain pathology, IHC, PrPSc | WB PrPRes | Other | RT-QuIC | PMCA | Serial passage | ||
Elk | NA | Tg40,1X,129M Tg1, 2X, 129M | Neg. (0/29) Neg. (0/22) | NA | Neg. | PTA Neg. | NA | NA | NA | [137] |
Elk, MD 1, WTD 2 | NA | Tg440, 2X | Neg. (0/67) | Neg. (selected mice tested) | NA | NA | NA | NA | NA | [138] |
MD | NA | Tg152, 2X 129VV Tg45, 4X 129MM Tg35, 6X, 129MM | Neg. (0/41) | Neg. | Neg. | PTA Neg. | NA | NA | NA | [139] |
WTD | NA | HuMM129, 1X HuMV129, 1X HuVV129, 1X | Neg. (0/72) | NA | NA | IDEXX Spleen, Neg. | NA | NA | NA | [140] |
Elk and MD | NA | Tg(huPrP) 1-2X Tg(huPrPelk166−174) | Neg. (0/12) Pos. (7/8 Elk CWD), (3/4 MD CWD) | Neg. Pos. | Neg. Pos. | PTA Neg. Pos. | NA | NA | NA | [126] |
Elk, WTD, MD | NA | Tg66, 8-16X 129M TgRM, 2-4X 129M | 4/52 suspicious 0/45 | Neg. | Neg. | PTA Neg. | Inconclusive | NA | NA | [141] |
One reindeer, two moose | Tg35 2X, 129VV, Tg152c 6X 129MM | 0/19 RD CWD 0/39 MO CWD | Neg. | Neg. | NA | NA | NA | NA | [142] | |
WTD, Wisc-1, 116AG isolates | NA | Tg650, 6X, 129MM | Myoclonus, variable CNS signs in 93.8% | 1/5, remaining animals NA | 1/20 | NA | 7/18 Pos. Brain 8/18 Neg. brain 3/18 Inconclusive | NA | 2nd passage to Tg650 mice 5/10 Pos. Bank vole 4/9 Pos. | [143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tranulis, M.A.; Tryland, M. The Zoonotic Potential of Chronic Wasting Disease—A Review. Foods 2023, 12, 824. https://doi.org/10.3390/foods12040824
Tranulis MA, Tryland M. The Zoonotic Potential of Chronic Wasting Disease—A Review. Foods. 2023; 12(4):824. https://doi.org/10.3390/foods12040824
Chicago/Turabian StyleTranulis, Michael A., and Morten Tryland. 2023. "The Zoonotic Potential of Chronic Wasting Disease—A Review" Foods 12, no. 4: 824. https://doi.org/10.3390/foods12040824
APA StyleTranulis, M. A., & Tryland, M. (2023). The Zoonotic Potential of Chronic Wasting Disease—A Review. Foods, 12(4), 824. https://doi.org/10.3390/foods12040824