A New and Effective Method to Trace Tibetan Chicken by Amino Acid Profiling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Information
2.2. Amino Acid Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Components and Evaluation of Amino Acids in Tibetan Chicken
3.2. Differences in Amino Acids in Different Regions
3.3. Chemometric Analysis of Tibetan Chickens in Different Regions of Tibet
3.4. Correlation between Amino Acids and Altitude
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, H.; Wu, J.; Yu, W.; Gao, C.; He, R. Introduction of Highway Research and Design in Permafrost Regions of Qinghai-Tibet Plateau. Highway 1982, 7, 27–30. [Google Scholar]
- Yang, Y.; Hu, Z.; Lu, F.; Cai, Y. Progress of Recent 60 Years’ Climate Change and Its Environmental Impacts on the Qinghai-Xizang Plateau. Plateau Meteorol. 2022, 41, 1–10. [Google Scholar]
- Zhang, Y.; Li, B.; Liu, L.; Zheng, D. Redetermine the region and boundaries of Tibetan Plateau. Geogr. Res. 2021, 40, 1543–1553. [Google Scholar]
- Tang, J.; GeSang, J.; Tu, X.; Wang, M. Specificity of Tibetan chicken germplasm resources and its breeding and utilization in Shannan Prefecture of Tibet. Anim. Husb. Feed Sci. 2015, 7, 137–143. [Google Scholar]
- Chamba, Y.; Zhang, H.; Shang, P.; Ji, S.; Wang, Q. Carcass characteristics and meat quality of Tibetan chicken. J. China Agric. Univ. 2008, 13, 47–50. [Google Scholar]
- Cuom, D.; Danba, S. Preliminary analysis of climate in Tibet. Tibet Sci. Technol. 2002, 8, 49–51. [Google Scholar]
- Guo, W.; Ding, X.; Zhang, Y.; Liu, J. Characteristics, feeding management and species conservation of Tibetan chickens in China. Spec. Econ. Anim. Plants Chin. 2012, 15, 7–11. [Google Scholar]
- Zhaxi, C.; Zhao, S.; Zhang, T.; Dong, H.; Liu, H.; Zhao, Y. Stable isotopes verify geographical origin of Tibetan chicken. Food Chem. 2021, 358, 129893. [Google Scholar] [CrossRef]
- Yan, C. The diagnosis and prevention of Tibetan chicken infectious diseases. Chin. Livest. Poult. Breed. 2011, 7, 2. [Google Scholar]
- Zhang, T.; Wang, Q.; Li, J.; Zhao, S.; Qie, M.; Wu, X.; Bai, Y.; Zhao, Y. Study on the origin traceability of Tibet highland barley (Hordeum vulgare L.) based on its nutrients and mineral elements. Food Chem. 2021, 346, 128928. [Google Scholar] [CrossRef]
- Xie, L.; Zhao, S.; Rogers, K.M.; Xia, Y.; Zhang, B.; Suo, R.; Zhao, Y. A case of milk traceability in small-scale districts-Inner Mongolia of China by nutritional and geographical parameters. Food Chem. 2020, 316, 126332. [Google Scholar] [CrossRef]
- Qie, M.; Zhang, B.; Li, Z.; Zhao, S.; Zhao, Y. Data fusion by ratio modulation of stable isotope, multi-element, and fatty acids to improve geographical traceability of lamb. Food Control 2021, 120, 107549. [Google Scholar] [CrossRef]
- Sun, S.; Guo, B.; Wei, Y. Origin assignment by multi-element stable isotopes of lamb tissues. Food Chem. 2016, 213, 675–681. [Google Scholar] [CrossRef]
- Qi, J.; Li, Y.; Zhang, C.; Wang, C.; Wang, J.; Guo, W.; Wang, S. Geographic origin discrimination of pork from different Chinese regions using mineral elements analysis assisted by machine learning techniques. Food Chem. 2021, 337, 127779. [Google Scholar] [CrossRef] [PubMed]
- Vasilev, D.; Dimovska, N.; Hajrulai-Musliu, Z.; Teodorovic, V.; Nikolic, A.; Karabasil, N.; Dimitrijevic, M.; Mirilovic, M. Fatty acid profile as a discriminatory tool for the origin of lamb muscle and adipose tissue from different pastoral grazing areas in North Macedonia—A short communication. Meat Sci. 2020, 162, 108020. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Yue, Q.; Jia, S.; Wang, J.; Zheng, M.; Suo, R. Identification of Geographical Origin of Milk by Amino Acid Profile Coupled with Chemometric Analysis. J. Food Qual. 2022, 2022, 2001253. [Google Scholar] [CrossRef]
- Liu, X.; Lin, T.; Liu, H.; Shao, J.; He, L.; Li, Q.; Chen, X.; Wang, L. Distinguishment of Goat Meat Geographical Origin Based on Amino Acids Composition. Mod. Food Sci. Technol. 2013, 29, 2788–2792. [Google Scholar]
- Kang, M.; Wang, H.; Shi, X.; Chen, H.; Suo, R. Goat milk authentication based on amino acid ratio and chemometric analysis. J. Food Compos. Anal. 2022, 111, 104636. [Google Scholar] [CrossRef]
- Rebane, R.; Herodes, K. Evaluation of the botanical origin of estonian uni- and polyfloral honeys by amino acid content. J. Agric. Food Chem. 2008, 56, 10716–10720. [Google Scholar] [CrossRef]
- Li, L.-Q.; Baibado, J.T.; Shen, Q.; Cheung, H.-Y. Determination of the authenticity of plastron-derived functional foods based on amino acid profiles analysed by MEKC. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2017, 1070, 23–30. [Google Scholar] [CrossRef]
- Shao, J.; Chen, F.; Wu, Y.; Liu, H.; Li, Y. Amino acid characteristics of Gallus gallus domesticus Brisson from different habitats and quality evaluation of protein. Agric. Sci. Jiangsu Prov. 2020, 48, 186–191. [Google Scholar]
- Huang, D.; Qin, Q.; Li, L.; Chen, Q.; Liu, Y. Analysis of composition of amino acids in Centropus sinensis from different areas. Amino Acids Biot. Resour. 2012, 34, 42–44. [Google Scholar]
- Zhang, Y.; Wu, J.; He, S.; Yu, C.; Wang, R.; Su, Y. Comparative Study on Muscle Amino Acid Content of Different Strains of Aba Tibetan Chicken. Chin. Poult. 2020, 42, 17–20. [Google Scholar]
- Lu, H.; Zhou, Z.; Wu, Q.; Lu, L.; Hu, G.; Wan, H.; Huang, L.; Huang, Y. Amino acid analysis and nutritional evaluation of different-day-old Donglan black chicken. China Feed 2022, 11, 87–90. [Google Scholar]
- Zongyang, Q.; Zhang, H.; Shang, P.; Ji, S.; Wang, Q. Research on the slaughter performance and meat quality of Tibetan chicken. J. China Agric. Univ. 2008, 13, 4. [Google Scholar]
- Pellet, P.L.; Young, V.R. Nutritional evaluation of protein foods. Food Nutr. Bull. 1980, 4, 154. [Google Scholar]
- Wei, Y.; Guo, B.; Wei, S.; Sun, S.; Zhao, H. The principle of food geographical origin traceability and authenticity technique. Sci. Agric. Sin. 2012, 45, 5073–5081. [Google Scholar]
- Zhu, Q.; Tan, L.; Zhao, J.; Gao, X.; Pi, L.; Wang, T.; Li, Y. Analysis of nutritional compositions and quality evaluation of Yak meat from Qinghai Plateau regions. J. Food Sci. Biotechnol. 2021, 40, 97–111. [Google Scholar]
- Zhao, Y.; Tu, T.; Tang, X.; Zhao, S.; Qie, M.; Chen, A.; Yang, S. Authentication of organic pork and identification of geographical origins of pork in four regions of China by combined analysis of stable isotopes and multi-elements. Meat Sci. 2020, 165, 108129. [Google Scholar] [CrossRef]
- Qie, M.; Li, T.; Liu, C.C.; Zhao, Y. Direct analysis in real time high-resolution mass spectrometry for authenticity assessment of lamb. Food Chem. 2022, 390, 133143. [Google Scholar] [CrossRef]
- Zhao, S.; Qiu, C.; Zhang, T.; Hu, X.; Zhao, Y.; Cheng, X.; Ma, Y.; Qie, M.; Chen, C. Effects of Fertilizer on the Quality and Traceability of Tibet highland Barley (Hordeum vulgare L.): A Diagnosis Using Nutrients and Mineral Elements. Foods 2022, 11, 3397. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.S.; Liu, Y.R.; Lv, Y.; Duan, J.A.; Chen, S.Z.; Sun, J.; Song, Z.X.; Wu, X.M.; Liu, L. Quality markers of animal medicinal materials: Correlative analysis of musk reveals distinct metabolic changes induced by multiple factors. Phytomedicine 2018, 44, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Li, B.; Zhou, C.; He, Q.; Zheng, Y.; Tan, Z. Comparative Analysis of Metabolic Differences of Jersey Cattle in Different High-Altitude Areas. Front. Vet. Sci. 2021, 8, 713913. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.Z.; Liang, C.N.; Guo, X.; Wu, X.Y.; Wang, H.B.; Johnson, K.A.; Yan, P. Physiological insight into the high-altitude adaptations in domesticated yaks (Bos grunniens) along the Qinghai-Tibetan Plateau altitudinal gradient. Livest. Sci. 2014, 162, 233–239. [Google Scholar] [CrossRef]
- Gou, X.; Li, N.; Lian, L.S.; Yan, D.W.; Zhang, H.; Wu, C.X. Hypoxia adaptation and hemoglobin mutation in Tibetan chick embryo. Sci. China Ser. C-Life Sci. 2005, 48, 616–623. [Google Scholar] [CrossRef]
- Liang, S.; Dong, T.; Ye, H.; Zuo, J.; Feng, D. Effects of Amino Acids Nutrition on Immunity of Poultry. Feed Ind. 2021, 5, 26–33. [Google Scholar]
- Bao, H.G.; Wang, X.Y.; Li, J.Y.; Wu, C.X. Comparison of effects of hypoxia on glutathione and activities of related enzymes in livers of Tibet chicken and Silky chicken. Poult. Sci. 2011, 90, 648–652. [Google Scholar] [CrossRef]
- Corzo, A.; Kidd, M.T.; Burnham, D.J.; Miller, E.R.; Branton, S.L.; Gonzalez-Esquerra, R. Dietary amino acid density effects on growth and carcass of broilers differing in strain cross and sex. J. Appl. Poult. Res. 2005, 14, 1–9. [Google Scholar] [CrossRef]
- Wei, S.; Li, F.; Li, H. Research overview of influencing factors of chicken quality. Poult. Sci. 2008, 1, 4. [Google Scholar]
- Kering, M.K.; Guretzky, J.; Funderburg, E.; Mosali, J. Effect of Nitrogen Fertilizer Rate and Harvest Season on Forage Yield, Quality, and Macronutrient Concentrations in Midland Bermuda Grass. Commun. Soil Sci. Plant Anal. 2011, 42, 1958–1971. [Google Scholar] [CrossRef]
- Virtanen, A.I.; Linkola, H. Organic nitrogen compounds as nitrogen nutrition for higher plants. Nature 1946, 158, 515. [Google Scholar] [CrossRef] [PubMed]
- Cui, X. Organic nitrogen use by plants and its significance in some natural ecosystems. Acta Ecol. Sin. 2007, 27, 3500–3512. [Google Scholar]
- Sun, Y. Effects of Arbuscular Mycorrhizal Fungi in Uptake of Organic Nitrogen in Elymus Nutans. Master’s Thesis, The Northwest A&F University, Xianyang, China, 2015. [Google Scholar]
- Xu, M.; Li, X.; Cai, X.; Gai, J.; Li, X.; Christie, P.; Zhang, J. Soil microbial community structure and activity along a montane elevational gradient on the Tibetan Plateau. Eur. J. Soil Biol. 2014, 64, 6–14. [Google Scholar] [CrossRef]
City | Number | Longitude/°E | Latitude/°N | Average Altitude/m | Mean Annual Temperature/°C |
---|---|---|---|---|---|
Lhasa | 19 | 90.11 to 90.69 | 29.28 to 29.50 | 3817 | 7.4 |
Shannan | 27 | 91.40 to 92.49 | 29.15 to 29.30 | 3660 | 8.8 |
Linzhi | 27 | 91.03 to 92.90 | 29.65 to 30.02 | 3700 | 8.7 |
Xigaze | 16 | 88.27 to 88.43 | 29.06 to 29.44 | 3995 | 6.3 |
Predicted Group Membership a | Total | ||||||
---|---|---|---|---|---|---|---|
Region | Lhasa | Shannan | Linzhi | Xigaze | |||
Original | Count | Lhasa | 19 | 0 | 0 | 0 | 19 |
Shannan | 0 | 22 | 0 | 5 | 27 | ||
Linzhi | 0 | 0 | 27 | 0 | 27 | ||
Xigaze | 0 | 0 | 0 | 16 | 16 | ||
% | 100.0 | 81.5 | 100.0 | 100.0 | 94.4 b | ||
Cross-validation | Count | Lhasa | 19 | 0 | 0 | 0 | 19 |
Shannan | 0 | 21 | 0 | 6 | 27 | ||
Linzhi | 0 | 0 | 27 | 0 | 27 | ||
Xigaze | 0 | 0 | 0 | 16 | 16 | ||
% | 100.0 | 77.8 | 100.0 | 100.0 | 93.3 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qie, M.; Li, Y.; Hu, X.; Zhaxi, C.; Zhao, S.; Zhang, Z.; Yang, X.; Bai, L.; Zhao, Y. A New and Effective Method to Trace Tibetan Chicken by Amino Acid Profiling. Foods 2023, 12, 876. https://doi.org/10.3390/foods12040876
Qie M, Li Y, Hu X, Zhaxi C, Zhao S, Zhang Z, Yang X, Bai L, Zhao Y. A New and Effective Method to Trace Tibetan Chicken by Amino Acid Profiling. Foods. 2023; 12(4):876. https://doi.org/10.3390/foods12040876
Chicago/Turabian StyleQie, Mengjie, Yalan Li, Xiangyu Hu, Cidan Zhaxi, Shanshan Zhao, Zixuan Zhang, Xiaoting Yang, Lu Bai, and Yan Zhao. 2023. "A New and Effective Method to Trace Tibetan Chicken by Amino Acid Profiling" Foods 12, no. 4: 876. https://doi.org/10.3390/foods12040876
APA StyleQie, M., Li, Y., Hu, X., Zhaxi, C., Zhao, S., Zhang, Z., Yang, X., Bai, L., & Zhao, Y. (2023). A New and Effective Method to Trace Tibetan Chicken by Amino Acid Profiling. Foods, 12(4), 876. https://doi.org/10.3390/foods12040876