Application of HPP for the Development of a Dessert Elaborated with Casein and Cocoa for a Dysphagia Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients
2.2. Experimental Design
2.2.1. Protein Solutions Preparation
2.2.2. Dessert Elaboration
2.2.3. HPP Treatment
2.3. IDDSI Measurements
2.4. Nutritional Composition and Antioxidant Properties of the Cocoa Dessert
2.4.1. Nutritional Composition
2.4.2. Extract Preparation for Antioxidant Properties
2.4.3. Total Polyphenol Content
2.4.4. ABTS Radical Scavenging Activity
2.4.5. DPPH Radical Scavenging Activity
2.5. Rheological Properties
2.5.1. Viscosity Properties
2.5.2. Viscoelastic Properties
2.6. Textural Properties
2.7. Color Measurements
2.8. Microbiological Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Selection of the Optimum HPP Treatment
3.2. Nutritional Composition and Antioxidant Properties of the Cocoa Dessert
3.3. Microbiological Analysis
3.4. Rheological Properties
3.5. Viscoelastic Properties
3.5.1. Oscillation Amplitude Sweep Tests
3.5.2. Oscillation Frequency Sweep Tests
3.6. Textural Properties
3.7. Color Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallegos, C.; Brito-de la Fuente, E.; Clavé, P.; Costa, A.; Assegehegn, G. Nutritional Aspects of Dysphagia Management, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 81. [Google Scholar]
- Hansen, T.; Nielsen, R.L.; Houlind, M.B.; Tavenier, J.; Rasmussen, L.J.H.; Jørgensen, L.M.; Treldal, C.; Beck, A.M.; Pedersen, M.M.; Andersen, O.; et al. Dysphagia Prevalence, Time Course, and Association with Probable Sarcopenia, Inactivity, Malnutrition, and Disease Status in Older Patients Admitted to an Emergency Department: A Secondary Analysis of Cohort Study Data. Geriatrics 2021, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, H.; A’yun, Q.; Sedaghat Doost, A.; De Meulenaer, B.; Van der Meeren, P. Conjugation of Milk Proteins and Reducing Sugars and Its Potential Application in the Improvement of the Heat Stability of (Recombined) Evaporated Milk. Trends Food Sci. Technol. 2021, 108, 287–296. [Google Scholar] [CrossRef]
- Carter, B.G.; Cheng, N.; Kapoor, R.; Meletharayil, G.H.; Drake, M.A. Invited Review: Microfiltration-Derived Casein and Whey Proteins from Milk. J. Dairy Sci. 2021, 104, 2465–2479. [Google Scholar] [CrossRef]
- Mithul Aravind, S.; Wichienchot, S.; Tsao, R.; Ramakrishnan, S.; Chakkaravarthi, S. Role of Dietary Polyphenols on Gut Microbiota, Their Metabolites and Health Benefits. Food Res. Int. 2021, 142, 110189. [Google Scholar] [CrossRef]
- Wickramasuriya, A.M.; Dunwell, J.M. Cacao Biotechnology: Current Status and Future Prospects. Plant Biotechnol. J. 2018, 16, 4–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinar, Z.Ö.; Atanassova, M.; Tumer, T.B.; Caruso, G.; Antika, G.; Sharma, S.; Sharifi-Rad, J.; Pezzani, R. Cocoa and Cocoa Bean Shells Role in Human Health: An Updated Review. J. Food Compos. Anal. 2021, 103, 104115. [Google Scholar] [CrossRef]
- Sorrenti, V.; Ali, S.; Mancin, L.; Davinelli, S.; Paoli, A.; Scapagnini, G. Cocoa Polyphenols and Gut Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients 2020, 12, 1908. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Uribe, D.; Gallego, V.; Bedoya, C.; Arango-Varela, S. Traceability of Polyphenols in Cocoa during the Postharvest and Industrialization Processes and Their Biological Antioxidant Potential. Heliyon 2021, 7, e07738. [Google Scholar] [CrossRef]
- Jaćimović, S.; Popović-Djordjević, J.; Sarić, B.; Krstić, A.; Mickovski-Stefanović, V.; Pantelić, N. Antioxidant Activity and Multi-Elemental Analysis of Dark Chocolate. Foods 2022, 11, 1445. [Google Scholar] [CrossRef]
- Pure, A.E.; Yarmand, M.S.; Farhoodi, M.; Adedeji, A. Microwave Treatment to Modify Textural Properties of High Protein Gel Applicable as Dysphagia Food. J. Texture Stud. 2021, 52, 638–646. [Google Scholar] [CrossRef]
- Yoshioka, K.; Yamamoto, A.; Matsushima, Y.; Hachisuka, K. Effects of High Pressure on the Textural and Sensory Properties of Minced Fish Meat Gels for the Dysphagia Diet. Food Nutr. Sci. 2016, 7, 732–742. [Google Scholar] [CrossRef] [Green Version]
- Grau, R.; Hernández, S.; Verdú, S.; Barat, J.M.; Talens, P. Studying Process Variables to Obtain Undisturbed Shaped Soft Meat for People with Poor Oral Health. Meat Sci. 2022, 194, 108960. [Google Scholar] [CrossRef] [PubMed]
- Tokifuji, A.; Matsushima, Y.; Hachisuka, K.; Yoshioka, K. Texture, Sensory and Swallowing Characteristics of High-Pressure-Heat-Treated Pork Meat Gel as a Dysphagia Diet. Meat Sci. 2013, 93, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Sungsinchai, S.; Niamnuy, C.; Wattanapan, P.; Charoenchaitrakool, M.; Devahastin, S. Texture Modification Technologies and Their Opportunities for the Production of Dysphagia Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1898–1912. [Google Scholar] [CrossRef] [Green Version]
- Orlien, V. Structural Changes Induced in Foods by HPP; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128157824. [Google Scholar]
- Loveday, S.M.; Sarkar, A.; Singh, H. Innovative Yoghurts: Novel Processing Technologies for Improving Acid Milk Gel Texture. Trends Food Sci. Technol. 2013, 33, 5–20. [Google Scholar] [CrossRef]
- Roobab, U.; Inam-Ur-Raheem, M.; Khan, A.W.; Arshad, R.N.; Zeng, X.; Aadil, R.M. Innovations in High-Pressure Technologies for the Development of Clean Label Dairy Products: A Review. Food Rev. Int. 2021, 1–22. [Google Scholar] [CrossRef]
- Merel-Rausch, E.; Kulozik, U.; Hinrichs, J. Influence of Pressure Release Rate and Protein Concentration on the Formation of Pressure-Induced Casein Structures. J. Dairy Res. 2007, 74, 283–289. [Google Scholar] [CrossRef]
- Wang, L.; Moraru, C.I. High-Pressure Structuring of Milk Protein Concentrate: Effect of pH and Calcium. J. Dairy Sci. 2021, 104, 4074–4083. [Google Scholar] [CrossRef]
- Cadesky, L.; Walkling-Ribeiro, M.; Kriner, K.T.; Karwe, M.V.; Moraru, C.I. Structural Changes Induced by High-Pressure Processing in Micellar Casein and Milk Protein Concentrates. J. Dairy Sci. 2017, 100, 7055–7070. [Google Scholar] [CrossRef] [Green Version]
- Giura, L.; Urtasun, L.; Ansorena, D.; Astiasarán, I. Effect of Freezing on the Rheological Characteristics of Protein Enriched Vegetable Puree Containing Different Hydrocolloids for Dysphagia Diets. LWT 2022, 169, 114029. [Google Scholar] [CrossRef]
- Cartagena, M.; Giura, L. A Texture-Modified Dessert with High Nutritional Value Designed for People with Dysphagia: Effect of Refrigeration and Frozen Storage. Food Sci. Hum. Wellness, 2021; in press. [Google Scholar]
- Sim, S.Y.J.; Hua, X.Y.; Henry, C.J. A Novel Approach to Structure Plant-Based Yogurts Using High Pressure Processing. Foods 2020, 9, 1126. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.F.; Buckow, R.; Hemar, Y.; Kasapis, S. Structuring Dairy Systems through High Pressure Processing. J. Food Eng. 2013, 114, 106–122. [Google Scholar] [CrossRef]
- IDDSI Complete International Dysphagia Diet Standardisation Initiative. Iddsi 2019, 26. Available online: https://iddsi.org/framework (accessed on 17 January 2023).
- (EU) No 1169/2011; Regulation (EU) No 1169/2011 of the European Parliament and of the Council on the Provision of Food Information to Consumers. Official Journal of the European Union: Luxembourg, 2011.
- Official Method 920. 15; Official Methods of Analysis of AOAC INTERNATIONAL (2000a), 17th ed. AOAC INTERNATIONAL: Gaithersburg, MD, USA, 2020.
- Official Method 948.22; Official Methods of Analysis of AOAC INTERNATIONAL (2000b), 17th ed. AOAC INTERNATIONAL: Gaithersburg, MD, USA, 2020.
- Official Method 925.51; Official Methods of Analysis of AOAC INTERNATIONAL (2000c), 17th ed. AOAC INTERNATIONAL: Gaithersburg, MD, USA, 2020.
- Official Method 985.29; Official Methods of Analysis of AOAC INTERNATIONAL (2000d), 17th ed. AOAC INTERNATIONAL: Gaithersburg, MD, USA, 2020.
- Official Method 985.14; Official Methods of Analysis of AOAC INTERNATIONAL (2000e), 17th ed. AOAC INTERNATIONAL: Gaithersburg, MD, USA, 2020.
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- de Ciriano, M.G.I.; Rehecho, S.; Calvo, M.I.; Cavero, R.Y.; Navarro, Í.; Astiasarán, I.; Ansorena, D. Effect of Lyophilized Water Extracts of Melissa Officinalis on the Stability of Algae and Linseed Oil-in-Water Emulsion to Be Used as a Functional Ingredient in Meat Products. Meat Sci. 2010, 85, 373–377. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Sharma, M.; Kristo, E.; Corredig, M.; Duizer, L. Effect of Hydrocolloid Type on Texture of Pureed Carrots: Rheological and Sensory Measures. Food Hydrocoll. 2017, 63, 478–487. [Google Scholar] [CrossRef]
- ISO 6721-10:2015; Plastics—Determination of Dynamic Mechanical Properties—Part 10: Complex Shear Viscosity Using a Parallel-Plate Oscillatory Rheometer. American National Standards Institute (ANSI): Washington, DC, USA, 2015.
- Espert, M.; Hernández, M.J.; Sanz, T.; Salvador, A. Rheological Properties of Emulsion Templated Oleogels Based on Xanthan Gum and Different Structuring Agents. Curr. Res. Food Sci. 2022, 5, 564–570. [Google Scholar] [CrossRef]
- Syahariza, Z.A.; Yong, H.Y. Evaluation of Rheological and Textural Properties of Texture-Modified Rice Porridge Using Tapioca and Sago Starch as Thickener. J. Food Meas. Charact. 2017, 11, 1586–1591. [Google Scholar] [CrossRef]
- Cserhalmi, Z.; Sass-Kiss, Á.; Tóth-Markus, M.; Lechner, N. Study of Pulsed Electric Field Treated Citrus Juices. Innov. Food Sci. Emerg. Technol. 2006, 7, 49–54. [Google Scholar] [CrossRef]
- AENOR UNE-EN ISO 7218; Microbiología de Los Alimentos Para Consumo Humano y Alimentación Animal. Requisitos Generales y Guía Para El Examen Microbiológico. AENOR: Madrid, Spain, 2008.
- (EC) No 2073/2005; Commission Regulation (EC) No 2073/2005 of Microbiological Criteria for Foodstuffs. Official Journal of the European Union: Luxembourg, 2005.
- Nassar, K.S.; Lu, J.; Pang, X.; Ragab, E.S.; Yue, Y.; Zhang, S.; Lv, J. Rheological and Microstructural Properties of Rennet Gel Made from Caprine Milk Treated by HP. J. Food Eng. 2020, 267, 109710. [Google Scholar] [CrossRef]
- Serna-Hernandez, S.O.; Escobedo-Avellaneda, Z.; García-García, R.; de Rostro-Alanis, M.J.; Welti-Chanes, J. High Hydrostatic Pressure Induced Changes in the Physicochemical and Functional Properties of Milk and Dairy products: A Review. Foods 2021, 10, 1867. [Google Scholar] [CrossRef] [PubMed]
- Ayyash, M.; Abdalla, A.; Abu-Jdayil, B.; Huppertz, T.; Bhaskaracharya, R.; Al-Mardeai, S.; Mairpady, A.; Ranasinghe, A.; Al-Nabulsi, A. Rheological Properties of Fermented Milk from Heated and High Pressure-Treated Camel Milk and Bovine Milk. LWT 2022, 156, 113029. [Google Scholar] [CrossRef]
- Massoud, R.; Belgheisi, S.; Massoud, A. Effect of High Pressure Homogenization on Improving the Quality of Milk and Sensory Properties of Yogurt: A Review. Int. J. Chem. Eng. Appl. 2016, 7, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Fadimu, G.J.; Le, T.T.; Gill, H.; Farahnaky, A.; Olatunde, O.O.; Truong, T. Enhancing the Biological Activities of Food Protein-Derived Peptides Using Non-Thermal Technologies: A Review. Foods 2022, 11, 1823. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhao, W.; Yu, W.; Lin, X.; Tao, S.; Prakash, S.; Dong, X. Validating the Textural Characteristics of Soft Fish-Based Paste through International Dysphagia Diet Standardisation Initiative Recommended Tests. J. Texture Stud. 2021, 52, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Duizer, L. Characterizing the Dynamic Textural Properties of Hydrocolloids in Pureed Foods—A Comparison between TDS and TCATA. Foods 2019, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Baugreet, S.; Kerry, J.P.; Botineştean, C.; Allen, P.; Hamill, R.M. Development of Novel Fortified Beef Patties with Added Functional Protein Ingredients for the Elderly. Meat Sci. 2016, 122, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Baugreet, S.; Kerry, J.P.; Allen, P.; Hamill, R.M. Optimisation of Protein-Fortified Beef Patties Targeted to the Needs of Older Adults: A Mixture Design Approach. Meat Sci. 2017, 134, 111–118. [Google Scholar] [CrossRef]
- (EC) No 1924/2006; Regulation 1924/2006 EC Regulation (EC) No 1924/2006 Of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Official Journal of the European Union: Luxembourg, 2006.
- Patras, A.; Brunton, N.P.; Da Pieve, S.; Butler, F. Impact of High Pressure Processing on Total Antioxidant Activity, Phenolic, Ascorbic Acid, Anthocyanin Content and Colour of Strawberry and Blackberry Purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 308–313. [Google Scholar] [CrossRef]
- Dhenge, R.; Langialonga, P.; Alinovi, M.; Lolli, V.; Aldini, A.; Rinaldi, M. Evaluation of Quality Parameters of Orange Juice Stabilized by Two Thermal Treatments (Helical Heat Exchanger and Ohmic Heating) and Non-Thermal (High-Pressure Processing). Food Control 2022, 141, 109150. [Google Scholar] [CrossRef]
- Bu, Z.; Luo, W.; Wei, J.; Peng, J.; Wu, J.; Xu, Y.; Yu, Y.; Li, L. Impacts of Thermal Processing, High Pressure, and CO2-Assisted High Pressure on Quality Characteristics and Shelf Life of Durian Fruit Puree. Foods, 2022; 11, 2717. [Google Scholar]
- Patras, A.; Brunton, N.; Da Pieve, S.; Butler, F.; Downey, G. Effect of Thermal and High Pressure Processing on Antioxidant Activity and Instrumental Colour of Tomato and Carrot Purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 16–22. [Google Scholar] [CrossRef]
- Godočiková, L.; Ivanišová, E.; Zaguła, G.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A.; Kowalczewski, P.Ł.; Kačániová, M. Antioxidant Activities and Volatile Flavor Components of Selected Single-Origin and Blend Chocolates. Molecules 2020, 25, 3648. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.; Gharibzahedi, T.; Mahdi, S. The Importance of Minerals in Human Nutrition: Bioavailability, Food Forti Fi cation, Processing Effects and Nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Mezger, T.G. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers; Vincentz network GmbH & Co. KG: Hannover, Germany, 2006. [Google Scholar] [CrossRef]
- Ishihara, S.; Nakauma, M.; Funami, T.; Odake, S.; Nishinari, K. Swallowing Profiles of Food Polysaccharide Gels in Relation to Bolus Rheology. Food Hydrocoll. 2011, 25, 1016–1024. [Google Scholar] [CrossRef]
- Nishinari, K.; Turcanu, M.; Nakauma, M.; Fang, Y. Role of Fluid Cohesiveness in Safe Swallowing. npj Sci. Food 2019, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Hadde, E.K.; Chen, J. Shear and Extensional Rheological Characterization of Thickened Fluid for Dysphagia Management. J. Food Eng. 2019, 245, 18–23. [Google Scholar] [CrossRef]
- Hadde, E.K.; Chen, J. Texture and Texture Assessment of Thickened Fluids and Texture-modified Food for Dysphagia Management. J. Texture Stud. 2021, 52, 4–15. [Google Scholar] [CrossRef]
- Hadde, E.K.; Cichero, J.A.Y.; Zhao, S.; Chen, W.; Chen, J. The Importance of Extensional Rheology in Bolus Control during Swallowing. Sci. Rep. 2019, 9, 16106. [Google Scholar] [CrossRef] [Green Version]
- Kongjaroen, A.; Methacanon, P.; Gamonpilas, C. On the Assessment of Shear and Extensional Rheology of Thickened Liquids from Commercial Gum-Based Thickeners Used in Dysphagia Management. J. Food Eng. 2022, 316, 110820. [Google Scholar] [CrossRef]
- Wang, L.; Moraru, C.I. Structure and Shelf Stability of Milk Protein Gels Created by Pressure-Assisted Enzymatic Gelation. J. Dairy Sci. 2021, 104, 3970–3979. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, T.; Kelly, A.L.; Fox, P.F. Effects of High Pressure on Constituents and Properties of Milk. Int. Dairy J. 2002, 12, 561–572. [Google Scholar] [CrossRef]
- Song, Q.; Li, R.; Song, X.; Clausen, M.P.; Orlien, V.; Giacalone, D. The Effect of High-Pressure Processing on Sensory Quality and Consumer Acceptability of Fruit Juices and Smoothies: A Review. Food Res. Int. 2022, 157, 111250. [Google Scholar] [CrossRef]
Amplitude Sweeps | ||||||
---|---|---|---|---|---|---|
Sampling Time (Days) | Yield StrainLVR (%) | Yield StressLVR (Pa) | Flow Point (Pa) | |||
Control | HPP | Control | HPP | Control | HPP | |
T = 0 | 1.382 ± 0.025 | 6.022 ± 0.525 A,* | 0.025 ± 0.003 | 27.921 ± 2.951 A,* | 0 | 79.5 ± 3.4 A,* |
HPP T = 14 | - | 4.001 ± 0.583 B | - | 3.085 ± 0.966 B | - | 22.5 ± 1.6 B |
HPP T = 28 | - | 4.471 ± 0.26 B | - | 0.625 ± 0.064 B | - | 9.9 ± 0.4 C |
Frequency Sweeps (1 Hz) | ||||||||
---|---|---|---|---|---|---|---|---|
Sampling Time (Days) | Storage Modulus (Pa) 1 Hz | Loss Modulus (Pa) 1 Hz | Tan (Delta) 1 Hz | Complex Viscosity (Pa.s) 1 Hz | ||||
Control | HPP | Control | HPP | Control | HPP | Control | HPP | |
T = 0 | 0.7 ± 0.1 | 533.6 ± 43.07 A,* | 1.8 ± 0.1 | 87.8 ± 7.8 A,* | 2.692 ± 0.103 | 0.165 ± 0.001 A,* | 0.3 ± 0.0 | 85.9 ± 7 A,* |
HPP T = 14 | - | 74.1 ± 18.84 B | - | 26.9 ± 2.7 B | - | 0.374 ± 0.063 B | - | 12.6 ± 2.9 B |
HPP T = 28 | - | 20.3 ± 2.31 B | - | 13.9 ± 0.8 C | - | 0.686 ± 0.039 C | - | 3.9 ± 0.4 C |
Sampling Time (Days) | Firmness (N) | Consistency (N.sec) | Cohesiveness (N) | Index of Viscosity (N.sec) | ||||
---|---|---|---|---|---|---|---|---|
Control | HPP | Control | HPP | Control | HPP | Control | HPP | |
T = 0 | 0.19 ± 0.01 | 6.87 ± 0.34 A,* | 3.04 ± 0.06 | 84.67 ± 3.05 A,* | 0.15 ± 0.01 | 6.54 ± 0.27 A,* | 0.09 ± 0.01 | 6.52 ± 1.2 A,* |
T = 14 | - | 2.55 ± 0.11 B | - | 37.94 ± 2.79 B | - | 2.20 ± 0.21 B | - | 3.19 ± 0.33 B |
T = 28 | - | 0.53 ± 0.038 C | - | 6.83 ± 0.48 C | - | 0.48 ± 0.02 C | - | 0.70 ± 0.03 C |
Sampling Time (Days) | CIEL*a*b* | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | c* | h* | ||||||
Control | HPP | Control | HPP | Control | HPP | Control | HPP | Control | HPP | |
T = 0 | 35.76 ± 0.49 | 33.53 ± 0.32 A,* | 7.37 ± 0.08 | 6.81 ± 0.14 A,* | 7.29 ± 0.16 | 6.64 ± 0.35 A,* | 10.37 ± 0.17 | 9.51 ± 0.35 A,* | 44.64 ± 0.32 | 44.29 ± 0.91 A |
T = 14 | - | 33.49 ± 0.04 A | - | 6.19 ± 0.05 B | - | 5.9 ± 0.08 B | - | 8.55 ± 0.09 B | - | 43.63 ± 0.18 A |
T = 28 | - | 35.11 ± 0.12 B | - | 7.84 ± 0.07 C | - | 7.66 ± 0.08 C | - | 10.96 ± 0.1 C | - | 44.32 ± 0.06 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giura, L.; Urtasun, L.; Astiasaran, I.; Ansorena, D. Application of HPP for the Development of a Dessert Elaborated with Casein and Cocoa for a Dysphagia Diet. Foods 2023, 12, 882. https://doi.org/10.3390/foods12040882
Giura L, Urtasun L, Astiasaran I, Ansorena D. Application of HPP for the Development of a Dessert Elaborated with Casein and Cocoa for a Dysphagia Diet. Foods. 2023; 12(4):882. https://doi.org/10.3390/foods12040882
Chicago/Turabian StyleGiura, Larisa, Leyre Urtasun, Iciar Astiasaran, and Diana Ansorena. 2023. "Application of HPP for the Development of a Dessert Elaborated with Casein and Cocoa for a Dysphagia Diet" Foods 12, no. 4: 882. https://doi.org/10.3390/foods12040882
APA StyleGiura, L., Urtasun, L., Astiasaran, I., & Ansorena, D. (2023). Application of HPP for the Development of a Dessert Elaborated with Casein and Cocoa for a Dysphagia Diet. Foods, 12(4), 882. https://doi.org/10.3390/foods12040882