Microbial Diversity and Flavor Regularity of Soy Milk Fermented Using Kombucha
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fermented Soy Milk
2.3. Analysis of the Microbial Community
2.3.1. Dynamic Growth Curves
2.3.2. Genomic DNA Extraction for Bacteria and Fungi
2.3.3. PCR Amplification and High-Throughput Sequencing
2.3.4. Bioinformatics Analysis
2.4. Determination of Flavor
2.4.1. Electronic Nose and Tongue Analysis
2.4.2. Volatile Flavor Component Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Microbial Levels
3.2. Microbial Sequencing, Splicing, and Diversity Analysis
3.3. Common and Unique Operational Taxonomic Unit Analysis
3.4. Abundance and Dominant Strain Analysis
3.5. Cluster Analysis
3.6. Electronic Nose and Tongue Analysis
3.7. Volatile Flavor Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahsan, S.; Khaliq, A.; Chughtai, M.F.J.; Nadeem, M.; Din, A.A.; Hlebová, M.; Rebezov, M.; Khayrullin, M.; Mikolaychik, I.; Morozova, L.; et al. Functional exploration of bioactive moieties of fermented and non-fermented soy milk with reference to nutritional attributes. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 145–149. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.; Wan, Y.; Guo, S. Growth Characteristics of Lactic Acid Bacteria in Soymilk and Its Combined Fermentation with Yeast. Food Sci. Technol. Int. 2019, 40, 129–135. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, L.; Xing, G.; Xu, X.; Tu, C.; Dong, M. Effect of Co-Fermentation with Lactic Acid Bacteria and K. marxianus on Physicochemical and Sensory Properties of Goat Milk. Foods 2020, 9, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Liu, F.; Li, K.; Shi, X.; Ni, Y.; Li, B.; Zhuge, B. Evaluating the microbial ecology and metabolite profile in Kazak artisanal cheeses from Xinjiang, China. Food Res. Int. 2018, 111, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, N.; Wang, Q.; Liu, Z.; Lee, Y.-K.; Liu, X.; Zhao, J.; Zhang, H.; Chen, W. Microbial diversity and volatile profile of traditional fermented yak milk. J. Dairy Sci. 2020, 103, 87–97. [Google Scholar] [CrossRef]
- Barbosa, C.D.; Uetanabaro, A.P.T.; Santos, W.C.R.; Caetano, R.G.; Albano, H.; Kato, R.; Cosenza, G.P.; Azeredo, A.; Góes-Neto, A.; Rosa, C.A.; et al. Microbial–physicochemical integrated analysis of kombucha fermentation. LWT 2021, 148, 111788. [Google Scholar] [CrossRef]
- Hirst, M.B.; Richter, C.L. Review of Aroma Formation through Metabolic Pathways of Saccharomyces cerevisiae in Beverage Fermentations. Am. J. Enol. Vitic. 2016, 67, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Marsh, A.J.; O’Sullivan, O.; Hill, C.; Ross, R.P.; Cotter, P.D. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol. 2013, 38, 171–178. [Google Scholar] [CrossRef]
- Jampaphaeng, K.; Ferrocino, I.; Giordano, M.; Rantsiou, K.; Maneerat, S.; Cocolin, L. Microbiota dynamics and volatilome profile during stink bean fermentation (Sataw-Dong) with Lactobacillus plantarum KJ03 as a starter culture. Food Microbiol. 2018, 76, 91–102. [Google Scholar] [CrossRef]
- Geng, D.-H.; Liang, T.; Yang, M.; Wang, L.; Zhou, X.; Sun, X.; Liu, L.; Zhou, S.; Tong, L.-T. Effects of Lactobacillus combined with semidry flour milling on the quality and flavor of fermented rice noodles. Food Res. Int. 2019, 126, 108612. [Google Scholar] [CrossRef]
- Ayed, L.; Ben Abid, S.; Hamdi, M. Development of a beverage from red grape juice fermented with the Kombucha consortium. Ann. Microbiol. 2017, 67, 111–121. [Google Scholar] [CrossRef]
- Xiao, C.; Lu, Z.-M.; Zhang, X.-J.; Wang, S.-T.; Ao, L.; Shen, C.-H.; Shi, J.-S.; Xu, Z.-H. Bio-Heat Is a Key Environmental Driver Shaping the Microbial Community of Medium-Temperature Daqu. Appl. Environ. Microbiol. 2017, 83, e01550–e01617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Mao, J.; Meng, X.; Li, X.; Liu, Y.; Feng, H. Changes in flavour characteristics and bacterial diversity during the traditional fermentation of Chinese rice wines from Shaoxing region. Food Control 2014, 44, 58–63. [Google Scholar] [CrossRef]
- Dong, W.; Hu, R.; Long, Y.; Li, H.; Zhang, Y.; Zhu, K.; Chu, Z. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chem. 2019, 272, 723–731. [Google Scholar] [CrossRef]
- Shi, X.; Li, J.; Wang, S.; Zhang, L.; Qiu, L.; Han, T.; Wang, Q.; Chang, S.K.-C.; Guo, S. Flavor characteristic analysis of soymilk prepared by different soybean cultivars and establishment of evaluation method of soybean cultivars suitable for soymilk processing. Food Chem. 2015, 185, 422–429. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Bouajila, J.; Pace, M.; Leech, J.; Cotter, P.D.; Souchard, J.-P.; Taillandier, P.; Beaufort, S. Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int. J. Food Microbiol. 2020, 333, 108778. [Google Scholar] [CrossRef]
- Nguyen, N.K.; Nguyen, P.B.; Nguyen, H.T.; Le, P.H. Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid. LWT Food Sci. Technol. 2015, 64, 1149–1155. [Google Scholar] [CrossRef]
- Müller, R.; Nebel, M. On the use of sequence-quality information in OTU clustering. PeerJ 2021, 9, e11717. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, M.; Cao, X.; Zhang, X.; Li, J. Analysis of fungal diversity in homemade sourdough starters using high-throughput sequencing. Food Sci. 2018, 39, 186–194. [Google Scholar] [CrossRef]
- Ercolini, D. High-Throughput Sequencing and Metagenomics: Moving Forward in the Culture-Independent Analysis of Food Microbial Ecology. Appl. Environ. Microbiol. 2013, 79, 3148–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez Leal, J.; Valenzuela Suárez, L.; Jayabalan, R.; Huerta Oros, J.; Escalante-Aburto, A. A review on health benefits of kombucha nutritional compounds and metabolites. CyTA J. Food 2018, 16, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.R.; Zhang, F.R.; Liang, H.X.; Li, X.D. Preparation of Soybean Prebiotic Fermented Soymilk with Effect on Number of Probiotics. Food Res. Dev. 2020, 41, 139–146. [Google Scholar] [CrossRef]
- Stadie, J.; Gulitz, A.; Ehrmann, M.A.; Vogel, R.F. Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. Food Microbiol. 2013, 35, 92–98. [Google Scholar] [CrossRef]
- Liu, X.; Qian, M.; Shen, Y.; Qin, X.; Huang, H.; Yang, H.; He, Y.; Bai, W. An high-throughput sequencing approach to the preliminary analysis of bacterial communities associated with changes in amino acid nitrogen, organic acid and reducing sugar contents during soy sauce fermentation. Food Chem. 2021, 349, 129131. [Google Scholar] [CrossRef] [PubMed]
- Steele, J.; Broadbent, J.; Kok, J. Perspectives on the contribution of lactic acid bacteria to cheese flavor development. Curr. Opin. Biotechnol. 2013, 24, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Heema, R.; Gnanalakshmi, K.S. An Overview of Applications of Electronic Nose and Electronic Tongue in Food and Dairy Industry. Agric. Rev. 2022, 43, 327–333. [Google Scholar] [CrossRef]
- Van Mastrigt, O.; Gallegos Tejeda, D.; Kristensen, M.N.; Abee, T.; Smid, E.J. Aroma formation during cheese ripening is best resembled by Lactococcus lactis retentostat cultures. Microb. Cell Factories 2018, 17, 104. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Sui, Y.C.; Wu, H.W.; Zhou, C.B.; Hu, X.C.; Zhang, J. Flavour chemical dynamics during fermentation of kombucha tea. Emir. J. Food Agric. 2018, 30, 732–741. [Google Scholar] [CrossRef]
- Kaneko, S.; Kumazawa, K.; Nishimura, O. Studies on the Key Aroma Compounds in Soy Milk Made from Three Different Soybean Cultivars. J. Agric. Food Chem. 2011, 59, 12204–12209. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Arntfield, S.D. Binding of carbonyl flavours to canola, pea and wheat proteins using GC/MS approach. Food Chem. 2014, 157, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Daenen, L.; Saison, D.; Sterckx, F.; Delvaux, F.; Verachtert, H.; Derdelinckx, G. Screening and evaluation of the glucoside hydrolase activity in Saccharomyces and Brettanomyces brewing yeasts. J. Appl. Microbiol. 2008, 104, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-M.; Lu, Z.-M.; Shi, J.-S.; Xu, Z.-H. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar. Sci. Rep. 2016, 6, 26818. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Yukphan, P.; Vu, H.T.L.; Muramatsu, Y.; Ochaikul, D.; Nakagawa, Y. Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: The proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Ann. Microbiol. 2012, 62, 849–859. [Google Scholar] [CrossRef]
- Vilanova, M.; Martínez, C. First study of determination of aromatic compounds of red wine from Vitis vinifera cv. Castañal grown in Galicia (NW Spain). Eur. Food Res. Technol. 2007, 224, 431–436. [Google Scholar] [CrossRef]
Sample | Bacteria | Fungi | ||||||
---|---|---|---|---|---|---|---|---|
Clean_Paired_Reads | GC (%) | Num_Len | Avg_Len | Clean_Paired_Reads | GC (%) | Num_Len | Avg_Len | |
L | 78,093 | 52 | 64,595 | 430 | ND | ND | ND | ND |
LK0.5 | 97,688 | 49 | 81,353 | 429 | 86,035 | 59 | 73,704 | 281 |
LK1.0 | 101,065 | 50 | 84,554 | 428 | 98,194 | 60 | 89,125 | 284 |
LK2.0 | 102,385 | 53 | 82,093 | 423 | 94,918 | 60 | 85,786 | 283 |
K | 105,886 | 50 | 86,528 | 425 | 114,893 | 60 | 104,350 | 284 |
Sample | Bacteria | Fungi | ||||||
---|---|---|---|---|---|---|---|---|
Shannon | Simpson | Chao1 | Coverage | Shannon | Simpson | Chao1 | Coverage | |
L | 0.61 | 0.19 | 86.25 | 1.00 | ND | ND | ND | ND |
LK0.5 | 0.94 | 0.39 | 113.80 | 1.00 | 0.63 | 0.16 | 54.72 | 1.00 |
LK1.0 | 1.09 | 0.43 | 110.62 | 1.00 | 0.58 | 0.19 | 51.46 | 1.00 |
LK2.0 | 0.93 | 0.34 | 108.94 | 1.00 | 0.37 | 0.14 | 48.93 | 1.00 |
K | 1.46 | 0.58 | 102.11 | 1.00 | 0.74 | 0.22 | 56.35 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Yue, Q.; Chi, Q.; Liu, Y.; Tian, T.; Dai, S.; Yu, A.; Wang, S.; Wang, H.; Tong, X.; et al. Microbial Diversity and Flavor Regularity of Soy Milk Fermented Using Kombucha. Foods 2023, 12, 884. https://doi.org/10.3390/foods12040884
Peng X, Yue Q, Chi Q, Liu Y, Tian T, Dai S, Yu A, Wang S, Wang H, Tong X, et al. Microbial Diversity and Flavor Regularity of Soy Milk Fermented Using Kombucha. Foods. 2023; 12(4):884. https://doi.org/10.3390/foods12040884
Chicago/Turabian StylePeng, Xinhui, Qiang Yue, Qianqi Chi, Yanwei Liu, Tian Tian, Shicheng Dai, Aihua Yu, Shaodong Wang, Huan Wang, Xiaohong Tong, and et al. 2023. "Microbial Diversity and Flavor Regularity of Soy Milk Fermented Using Kombucha" Foods 12, no. 4: 884. https://doi.org/10.3390/foods12040884
APA StylePeng, X., Yue, Q., Chi, Q., Liu, Y., Tian, T., Dai, S., Yu, A., Wang, S., Wang, H., Tong, X., & Jiang, L. (2023). Microbial Diversity and Flavor Regularity of Soy Milk Fermented Using Kombucha. Foods, 12(4), 884. https://doi.org/10.3390/foods12040884