Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oil Obtained from Chincho (Tagetes elliptica Sm) Leaves Grown in the Peruvian Andes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Essential Oil Extraction
2.2. Chromatographic Analysis
2.3. Antioxidant Analysis
2.3.1. DPPH Radical Scavenging Method
2.3.2. ABTS Radical Scavenging Method
2.3.3. Ferrous Ion Chelating (FIC) Ability
2.3.4. Ferric Reducing Antioxidant Power (FRAP)
2.3.5. Rancimat Assay
2.4. Antibacterial Activity
2.4.1. Microbial Strains
2.4.2. Agar-Well Diffusion Method
2.4.3. Determination of Concentration Effect
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Essential Oil
3.2. Antioxidant Activity of T. elliptica Essential Oil
3.3. Antibacterial Activity of T. elliptica Essential Oil
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Maqtari, Q.; Rehman, A.; Mahdi, A.; Al-Ansi, W.; Wei, M.; Yanyu, Z.; Phyo, H.M.; Galeboe, O.; Yao, W. Application of essential oils as preservatives in food systems: Challenges and future prospective—A review. Phytochem. Rev. 2022, 21, 1209–1246. [Google Scholar] [CrossRef]
- Kaderides, K.; Kyriakoudi, A.; Mourtzinos, I.; Goula, A. Potential of pomegranate peel extract as a natural additive in foods. Trends Food Sci. Technol. 2021, 115, 380–390. [Google Scholar] [CrossRef]
- Huang, X.; Gao, W.; Yun, X.; Qing, Z.; Zeng, J. Effect of natural antioxidants from marigolds (Tagetes erecta L.) on the oxidative stability of soybean oil. Molecules 2022, 27, 2865. [Google Scholar] [CrossRef] [PubMed]
- Demirpolat, A.; Akman, F.; Kazachenko, A.S. An experimental and theoretical study on essential oil of Aethionema sancakense: Characterization, Molecular Properties and RDG Analysis. Molecules 2022, 27, 6129. [Google Scholar] [CrossRef] [PubMed]
- Petrović, S.; Ušjak, L.; Milenković, M.; Arsenijević, J.; Drobac, M.; Drndarević, A.; Niketić, M. Thymus dacicus as a new source of antioxidant and antimicrobial metabolites. J. Funct. Foods 2017, 28, 114–121. [Google Scholar] [CrossRef]
- Loockerman, D.; Turner, B.; Jansen, R. Phylogenetic relationships within the Tageteae (Asteraceae) Based on Nuclear Ribosomal ITS and chloroplast ndhF Gene sequences. Syst. Bot. 2003, 28, 191–207. [Google Scholar]
- De La Cruz, H.; Vilcapoma, G.; Zevallos, P. Ethnobotanical study of medicinal plants used by the Andean people of Canta, Lima, Peru. J. Ethnopharmacol. 2007, 111, 284–294. [Google Scholar] [CrossRef]
- Huaraca-Aparco, R.; Delgado-Laime, M.; Tapia-Tadeo, F. Metabolitos bioactivos y actividad antioxidante in vitro del aceite esencial extraído de dos especies del género Tagetes. Rev. Colomb. Cienc. Químico Farm. 2022, 50, 3. [Google Scholar] [CrossRef]
- Hartwig de Oliveira, D.; Bork Abib, P.; Giacomini, R.X.; Lenardão, E.J.; Schiedeck, G.; Wilhelm, E.A.; Luchese, C.; Savegnago, L.; Guimarães Jacob, R. Antioxidant and antifungal activities of the flowers’ essential oil of Tagetes minuta, (Z)-tagetone and thiotagetone. J. Essent. Oil Res. 2018, 31, 160–169. [Google Scholar] [CrossRef]
- Saani, M.; Lawrence, R.; Lawrence, K. Evaluation of pigments from methanolic extract of Tagetes erecta and Beta vulgaris as antioxidant and antibacterial agent. Nat. Prod. Res. 2018, 32, 1208–1211. [Google Scholar] [CrossRef]
- Ibrahim, S.; Abdallah, H.; El-Halawany, A. Naturally occurring thiophenes: Isolation, purification, structural elucidation, and evaluation of bioactivities. Phytochem. Rev. 2016, 15, 197–220. [Google Scholar] [CrossRef]
- Ibrahim, S.; Mohamed, G. Tagetones A and B, new cytotoxic monocyclic diterpenoids from flowers of Tagetes minuta. Chin. J. Nat. Med. 2017, 15, 546–549. [Google Scholar] [CrossRef] [PubMed]
- González-Trujano, M.E.; Gutiérrez-Valentino, C.; Hernández-Aramburo, M.Y.; Díaz-Reval, M.I.; Pellicer, F. Identification of some bioactive metabolites and inhibitory receptors in the antinociceptive activity of Tagetes lucida Cav. Life Sci. 2019, 231, 116523. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Valussi, M.; Morais-Braga, M.; Carneiro, J.; Leal, A.; Coutinho, H.; Vitalini, S.; Kręgiel, D.; Antolak, H.; Sharifi-Rad, M.; et al. Tagetes spp. essential oils and other extracts: Chemical characterization and biological activity. Molecules 2018, 23, 2847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riaz, M.; Ahmad, R.; Rahman, N.; Khan, Z.; Dou, D.; Sechel, G.; Manea, R. Traditional uses, phyto-chemistry and pharmacological activities of Tagetes patula L. J. Ethnopharmacol. 2020, 255, 112718. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, H. The Asteraceae (Compositae) from Laraos district (Yauyos, Lima, Perú). Rev. Peru Biol. 2016, 23, 195–220. [Google Scholar] [CrossRef] [Green Version]
- Natividad, Á.; Cisneros, G.; Rojas, R.; Matos, A.; Ramos, R.M. Componentes antioxidantes del chincho (Tagetes elliptica Sm.): Vitamina C y Flavonoides. Investig. Valdizana 2009, 3, 94–99. Available online: https://revistas.unheval.edu.pe/index.php/riv/article/view/641 (accessed on 19 January 2023).
- Li, Y.; Erhunmwunsee, F.; Liu, M.; Yang, K.; Zheng, W.; Tian, J. Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chem. 2022, 382, 132312. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Rout, S.; Tambe, S.; Deshmukh, R.; Mali, S.; Cruz, J.; Srivastav, P.; Amin, P.; Gaikwad, K.; Andrade, E.; Oliveira, M. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci. Technol. 2022, 129, 421–439. [Google Scholar] [CrossRef]
- Kashyap, P.K.; Singh, S.; Singh, M.K.; Gupta, A.; Tandon, S.; Shanker, K.; Verma, R.K.; Verma, R.S. An efficient process for the extraction of lutein and chemical characterization of other organic volatiles from marigold (Tagetes erecta L.) flower. Food Chem. 2022, 396, 133647. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, W.; Wycliffe, W. Chapter 90-Tagetes (Tagetes minuta) Oils. In Essential Oils in Food Preservation. Flavor and Safety; Victor, R.P., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 791–802. [Google Scholar] [CrossRef]
- Alves-Silva, J.M.; Dias dos Santos, S.M.; Pintado, M.E.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Chemical composition and in vitro antimicrobial, antifungal and antioxidant properties of essential oils obtained from some herbs widely used in Portugal. Food Control. 2013, 32, 371–378. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins, B.D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Sudha, G.; Priya, M.S.; Shree, R.I.; Vadivukkarasi, S. In vitro free radical scavenging activity of raw Pepino fruit (Solanum muricatum Aiton). Int. J. Curr. Pharm. Res. 2011, 3, 137–140. [Google Scholar]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Sánchez-Zapata, E.; Fernández-López, J.; Pérez-Álvarez, J.A. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Fragr. J. 2010, 25, 13–19. [Google Scholar] [CrossRef]
- Forster, A.; Simon, K.; Schmidt, R.; Kaltner, D. What is it about antioxidative characteristics of hops? In Proceedings of the 28th EBC Congress, Budapest, Hungary, 12–17 May 2001. [Google Scholar]
- Lalas, L.; Dourtoglou, V. Use of rosemary extract in preventing oxidation during deep-fat frying of potato chips. J. Am. Oil Chem. Soc. 2003, 80, 579–583. [Google Scholar] [CrossRef]
- Tepe, B.; Daferera, D.; Sokmen, A.; Sokmen, M.; Polissiou, M. Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem. 2005, 90, 333–340. [Google Scholar] [CrossRef]
- Ruiz-Navajas, Y.; Viuda-Martos, M.; Sendra, E.; Perez-Alvarez, J.A.; Fernández-López, J. Chemical characterization and antibacterial activity of Thymus moroderi and Thymus piperella essential oils, two Thymus endemic species from southeast of Spain. Food Control. 2012, 27, 294–299. [Google Scholar] [CrossRef]
- Moghaddam, M.; Pirbalouti, A.G.; Babaei, K.; Farhadi, N. Chemical compositions of essential oil from the aerial parts of Tagetes patula L. and Tagetes erecta L. cultivated in northeastern Iran. J. Essent. Oil Bear. Plants 2021, 24, 990–997. [Google Scholar] [CrossRef]
- Aati, H.Y.; Emam, M.; Al-Qahtani, J.; Aati, S.; Aati, A.; Wanner, J.; Seif, M.M. Chemical composition of Tagetes patula flowers essential oil and hepato-therapeutic effect against carbon tetrachloride-Induced toxicity (In Vivo). Molecules 2022, 27, 7242. [Google Scholar] [CrossRef]
- Kyarimpa, C.M.; Böhmdorfer, S.; Wasswa, J.; Kiremire, B.T.; Ndiege, I.O.; Kabasa, J.D. Essential oil and composition of Tagetes minuta from Uganda. Larvicidal activity on Anopheles gambiae. Ind. Crop. Prod. 2014, 62, 400–404. [Google Scholar] [CrossRef]
- Omer, E.A.; Hendawy, S.F.; Ismail, R.F.; Petretto, G.L.; Rourke, J.P.; Pintore, G. Acclimatization study of Tagetes lucida L. in Egypt and the chemical characterization of its essential oils. Nat. Prod. Res. 2017, 31, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Gakuubi, M.M.; Wagacha, J.M.; Dossaji, S.F.; Wanzala, W. Chemical composition and antibacterial activity of essential oils of Tagetes minuta (Asteraceae) against selected plant pathogenic bacteria. Int. J. Food Microbiol. 2016, 2016, 7352509. [Google Scholar] [CrossRef] [Green Version]
- Almeida-Barbosa, L.C.; Andrade-Filomeno, C.; Teixeira, R.R. Chemical variability and biological activities of Eucalyptus spp., essential oils. Molecules 2016, 21, 1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, C.; Cachay, M.; Domínguez, M.; Velásquez, C.; Espinoza, G.; Ventosilla, P.; Rojas, R. Chemical composition, antioxidant and Mosquito larvicidal activities of essential oils from Tagetes filifolia, Tagetes minuta and Tagetes elliptica from Perú. Planta Med. 2011, 77, PE30. [Google Scholar] [CrossRef]
- Ali, N.A.; Sharopov, F.S.; Al-Kaf, A.G.; Hill, G.M.; Arnold, N.; Al-Sokari, S.S.; Setzer, W.N.; Wessjohann, L. Composition of essential oil from Tagetes minuta and its cytotoxic, antioxidant and antimicrobial activities. Nat. Prod. Commun. 2014, 9, 265–268. [Google Scholar] [CrossRef] [Green Version]
- Kyarimpa, C.; Omolo, I.N.; Kabasa, J.D.; Nagawa, C.B.; Wasswa, J.; Kikawa, C.R. Evaluation of anti-oxidant properties in essential oil and solvent extracts from Tagetes minuta. Afr. J. Pure Appl. Chem. 2015, 9, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Miesbauer, O.; Eisner, P. Common trends and differences in antioxidant activity analysis of phenolic substances using single electron transfer based assays. Molecules 2021, 26, 1244. [Google Scholar] [CrossRef]
- Mlala, S.; Oyedeji, O.O.; Sewani-Rusike, C.R.; Oyedeji, A.O.; Nkeh-Chungag, B.N. Chemical composition and antioxidant activity of Tagetes minuta L. in Eastern Cape, South Africa. In Emerging Trends in Chemical Sciences; Ramasami, P., Bhowon, M.G., Laulloo, S.J., Kam Wah, H.L., Eds.; Springer Nature: Cham, Switzerland, 2017; pp. 23–36. [Google Scholar]
- Poma, P.; Labbozzetta, M.; Notarbartolo, M.; Bruno, M.; Maggio, A.; Rosselli, S.; Sajeva, M.; Zito, P. Chemical composition, in vitro antitumor and pro-oxidant activities of Glandora rosmarinifolia (Boraginaceae) essential oil. PLoS ONE 2018, 13, e0196947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, A.S.-Y.; Maran, S.; Yap, P.S.X.; Lim, S.H.E.; Yang, S.-K.; Cheng, W.-H.; Tan, Y.-H.; Lai, K.-S. Anti- and Pro-oxidant properties of essential oils against antimicrobial resistance. Antioxidants 2022, 11, 1819. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and their derivatives-recent development in biological and medical applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef] [PubMed]
- Jugreet, B.S.; Suroowan, S.; Rengasamy, R.R.K.; Mahomoodally, M.F. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci. Technol. 2020, 101, 89–105. [Google Scholar] [CrossRef]
- Thielmann, J.; Muranyi, P.; Kazman, P. Screening essential oils for their antimicrobial activities against the foodborne pathogenic bacteria Escherichia coli and Staphylococcus aureus. Heliyon 2019, 5, e01860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirazi, M.T.; Gholami, H.; Kavoosi, G.; Rowshan, V.; Tafsiry, A. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of Tagetes minuta and Ocimum basilicum essential oils. Food Sci. Nutr. 2014, 2, 146–155. [Google Scholar] [CrossRef]
- Safar, A.A.; Ghafoor, A.O.; Dastan, D. Chemical composition, antibacterial and antioxidant activities of Tagetes patula L. essential oil raised in Erbil, Iraq. J. Rep. Pharm. Sci. 2020, 9, 59–67. [Google Scholar] [CrossRef]
- Abdoul-Latif, F.M.; Elmi, A.; Merito, A.; Nour, M.; Risler, A.; Ainane, A.; Bignon, J.; Ainane, T. Essential oils of Tagetes minuta and Lavandula coronopifolia from Djibouti: Chemical composition, antibacterial activity and cytotoxic activity against various human cancer cell lines. Int. J. Plant Biol. 2022, 13, 315–329. [Google Scholar] [CrossRef]
- Gourich, A.A.; Bencheikh, N.; Bouhrim, M.; Regragui, M.; Rhafouri, R.; Drioiche, A.; Asbabou, A.; Remok, F.; Mouradi, A.; Addi, M.; et al. Comparative analysis of the chemical composition and antimicrobial activity of four moroccan north middle atlas medicinal plants’ essential oils: Rosmarinus officinalis L., Mentha pulegium L., Salvia officinalis L., and Thymus zygis subsp. gracilis (Boiss.) R. Morales. Chemistry 2022, 4, 1775–1788. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yusoff, K.; Lim, S.-H.E.; Chong, C.-M.; Lai, K.-S. Membrane Disruption Properties of Essential Oils—A Double-Edged Sword? Processes 2021, 9, 595. [Google Scholar] [CrossRef]
- Xu, J.G.; Liu, T.; Hu, Q.-P.; Cao, X.-M. Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules 2016, 21, 1194. [Google Scholar] [CrossRef] [PubMed]
- Senatore, F.; Napolitano, F.; Mohamed, M.A.H.; Harris, P.J.C.; Minkeni, P.N.S.; Henderson, J. Antibacterial activity of Tagetes minuta L. (Asteraceae) essential oil with different chemical composition. Flavour Fragr. J. 2004, 19, 574–578. [Google Scholar] [CrossRef]
No | Compound | Retention Time | Kovats Index | Area (%) |
---|---|---|---|---|
1 | α-pinene | 13.28 | 936 | 0.66 ± 0.01 |
2 | β-mircene | 14.53 | 986 | 0.87 ± 0.02 |
3 | β-Pinene | 14.91 | 990 | 0.62 ± 0.02 |
4 | α-phellandrene | 15.62 | 1005 | 1.71± 0.04 |
5 | β-trans-ocimene | 16.40 | 1022 | 4.66 ± 0.11 |
6 | β-phellandrene | 16.46 | 1029 | 0.22 ± 0.01 |
7 | eucalyptol | 16.51 | 1031 | 0.47± 0.01 |
8 | dihydrotagetone | 16.98 | 1045 | 14.38± 0.21 |
9 | β-linalool | 18.48 | 1098 | 0.45± 0.01 |
10 | allo-ocimene | 18.88 | 1131 | 0.50 ± 0.01 |
11 | cis-epoxyocimene | 18.97 | 1134 | 3.62 ± 0.04 |
12 | trans-epoxyocimene | 19.35 | 1140 | 0.85 ± 0.00 |
13 | (Z) trans-tagetone | 19.91 | 1143 | 5.15 ± 0.00 |
14 | (E) cis-tagetone | 20.11 | 1146 | 3.42 ± 0.06 |
15 | p-cymen-8-ol | 20.35 | 1171 | 0.59 ± 0.07 |
16 | α-terpineol | 21.61 | 1187 | 0.19 ± 0.01 |
17 | decanal | 21.72 | 1202 | 0.98 ± 0.01 |
18 | verbenone | 21.86 | 1214 | 0.97 ± 0.07 |
19 | (E) cis-Tagetenone | 22.64 | 1231 | 37.27 ± 0.24 |
20 | (Z) trans-Tagetenone | 22.84 | 1250 | 18.84 ± 0.29 |
21 | anisole | 23.28 | 1264 | 0.40 ± 0.01 |
22 | piperitone | 23.82 | 1281 | 0.40 ± 0.00 |
23 | β-caryophyllene | 28.10 | 1436 | 0.97 ± 0.00 |
24 | germacrene D | 29.71 | 1491 | 0.45 ± 0.01 |
25 | biciclogermacrene | 30.10 | 1510 | 0.46 ± 0.00 |
26 | guaiol | 31.42 | 1598 | 0.36 ± 0.00 |
27 | α-cadinol | 32.37 | 1656 | 0.54 ± 0.02 |
DPPH Assay | ||||
T. elliptica essential oil | BHT | AA | ||
Concentration (mg/mL) | % Inhibition of DPPH radical | Concentration (mg/mL) | % Inhibition of DPPH radical | % Inhibition of DPPH radical |
5 | 4.90 ± 2.36 a | 0.005 | 4.25 ± 0.18 a | 13.63 ± 2.78 a |
10 | 11.17 ± 2.15 b | 0.01 | 6.29 ± 0.79 b | 23.54 ± 2.83 b |
20 | 21.14 ± 1.78 c | 0.02 | 10.17 ± 1.52 c | 56.36 ± 1.85 c |
50 | 48.09 ± 1.60 d | 0.05 | 17.50 ± 0.40 d | 96.01 ± 0.17 d |
80 | 77.77 ± 2.85 e | 0.08 | 21.26 ± 0.21 e | 96.26 ± 0.23 d |
100 | 87.63 ± 0.57 f | 0.10 | 33.21 ± 2.59 f | 96.33 ± 0.13 d |
*IC50 (mg/mL) | 53.37 ± 1.43 | *IC50 (mg/mL) | 0.17 ± 0.01 | 0.02 ± 0.00 |
ABTS Assay | ||||
T. elliptica essential oil | BHT | AA | ||
Concentration (mg/mL) | % Inhibition of ABTS radical | Concentration (mg/mL) | % Inhibition of ABTS radical | Concentration (mg/mL) |
5 | 8.10 ± 0.85 f | 0.005 | 28.26 ± 2.01 f | 22.55 ± 2.01 f |
10 | 12.89 ± 1.51 e | 0.01 | 42.05 ± 0.68 e | 45.51 ± 0.58 e |
20 | 24.01 ± 0.81 d | 0.02 | 62.03 ± 0.63 d | 62.25 ± 0.22 d |
50 | 48.96 ± 0.97 c | 0.05 | 73.18 ± 0.20 c | 78.89 ± 0.18 c |
80 | 68.95 ± 1.59 b | 0.08 | 84.48 ± 1.90 b | 86.17 ± 0.23 b |
100 | 86.98 ± 0.58 a | 0.10 | 92.91 ± 1.40 a | 99.18 ± 0.09 a |
*IC50 (mg/mL) | 46.38 ± 2.16 | *IC50 (mg/mL) | 0.016 ± 0.00 | 0.017 ± 0.001 |
FIC Assay | ||||
T. elliptica essential oil | EDTA | |||
Concentration (mg/mL) | Chelating effect (%) | Concentration (mg/mL) | Chelating effect (%) | |
1.25 | --- | 0.005 | --- | |
2.50 | --- | 0.01 | --- | |
5 | --- | 0.02 | --- | |
12.50 | 27.48 ± 2.87 c | 0.05 | 41.47 ± 2.95 c | |
20 | 39.90 ± 1.44 b | 0.08 | 71.92 ± 3.46 b | |
25 | 58.92 ± 0.98 a | 0.10 | 80.22 ± 1.82 a | |
*IC50 (mg/mL) | 22.65 ± 0.80 | *IC50 (mg/mL) | 0.06 ± 0.00 |
T. elliptica Essential Oil | BHT | AA | ||
---|---|---|---|---|
Concentration (mg/mL) | TEAC* mMTrolox/L | Concentration (mg/mL) | TEAC* mMTrolox/L | TEAC* mMTrolox/L |
0.3125 | 0.06 ± 0.01 a | 0.0625 | 0.17 ± 0.01 a | 0.03 ± 0.0 a |
0.625 | 0.23 ± 0.02 a | 0.125 | 0.49 ± 0.02 a | 0.07 ± 0.0 a |
1.25 | 0.79 ± 0.04 a | 0.25 | 1.25 ± 0.05 b | 0.15 ± 0.01 b |
3.125 | 2.32 ± 0.42 b | 0.625 | 4.44 ± 0.17 c | 0.43 ± 0.00 c |
5 | 8.73 ± 0.53 c | 1 | 7.97 ± 0.21 d | 0.67 ± 0.05 d |
Antioxidant Activity Index (AAI) | |||
---|---|---|---|
Concentration (mg/mL) | T. elliptica Essential Oil | BHT | AA |
5 | 1.01 ± 0.03 a | 1.09 ± 0.07 b | 1.51 ± 0.04 c |
10 | 1.01 ± 0.04 a | 1.18 ± 0.07 b | 1.59 ± 0.13 c |
20 | 0.99 ± 0.04 a | 1.28 ± 0.11 a,b | 1.84 ± 0.25 b,c |
50 | 0.91 ± 0.03 a | 1.40 ± 0.13 a,b | 2.12 ± 0.27 a,b |
80 | 0.95 ± 0.04 a | 1.55 ± 0.20 a | 2.36 ± 0.10 a |
100 | 0.93 ± 0.03 a | 1.58 ± 0.07 a | 2.49 ± 0.22 a |
Diameter (Mean and SD) of Inhibition Zone (mm) Including Well Diameter of 6 mm | ||||
---|---|---|---|---|
Essential Oil | Volume (µL) | S. aureus | E. coli | S. infantis |
T. elliptica | 40 | 19.67 ± 0.57 a | 12.63 ± 0.56 a | 13.00 ± 1.00 a |
20 | 17.33 ± 0.16 b | 11.19 ± 1.20 ab | 12.33 ± 0.58 ab | |
10 | 15.57 ± 0.35 c | 10.87 ± 0.85 b | 11.23 ± 0.61 b | |
5 | 14.30 ± 0.23 d | 10.00 ± 1.00 b | 10.63 ± 0.55 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerrón-Mercado, F.; Perez-Alvarez, J.A.; Nolazco-Cama, D.; Salva-Ruíz, B.; Tellez-Monzon, L.; Fernández-López, J.; Viuda-Martos, M. Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oil Obtained from Chincho (Tagetes elliptica Sm) Leaves Grown in the Peruvian Andes. Foods 2023, 12, 894. https://doi.org/10.3390/foods12040894
Cerrón-Mercado F, Perez-Alvarez JA, Nolazco-Cama D, Salva-Ruíz B, Tellez-Monzon L, Fernández-López J, Viuda-Martos M. Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oil Obtained from Chincho (Tagetes elliptica Sm) Leaves Grown in the Peruvian Andes. Foods. 2023; 12(4):894. https://doi.org/10.3390/foods12040894
Chicago/Turabian StyleCerrón-Mercado, Francis, Jose Angel Perez-Alvarez, Diana Nolazco-Cama, Bettit Salva-Ruíz, Lena Tellez-Monzon, Juana Fernández-López, and Manuel Viuda-Martos. 2023. "Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oil Obtained from Chincho (Tagetes elliptica Sm) Leaves Grown in the Peruvian Andes" Foods 12, no. 4: 894. https://doi.org/10.3390/foods12040894
APA StyleCerrón-Mercado, F., Perez-Alvarez, J. A., Nolazco-Cama, D., Salva-Ruíz, B., Tellez-Monzon, L., Fernández-López, J., & Viuda-Martos, M. (2023). Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oil Obtained from Chincho (Tagetes elliptica Sm) Leaves Grown in the Peruvian Andes. Foods, 12(4), 894. https://doi.org/10.3390/foods12040894