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Abstract: Bio-mapping studies play an important role, as the data collected can be managed and
analyzed in multiple ways to look at process trends, find explanations about the effect of process
changes, activate a root cause analysis for events, and even compile performance data to demonstrate
to inspection authorities or auditors the effect of certain decisions made on a daily basis and their
effects over time in commercial settings not only from the food safety perspective but also from the
production side. This study presents an alternative analysis of bio-mapping data collected throughout
several months in a commercial poultry processing operation as described in the article “Bio-Mapping
Indicators and Pathogen Loads in a Commercial Broiler Processing Facility Operating with High
and Low Antimicrobial Interventions”. The conducted analysis identifies the processing shift effect
on microbial loads, attempts to find correlation between microbial indicators data and pathogens
loads, and identifies novel visualization approaches and conducts distribution analysis for microbial
indicators and pathogens in a commercial poultry processing facility. From the data analyzed,
a greater number of locations were statistically different between shifts under reduced levels of
chemical interventions with higher means at the second shift for both indicators and pathogens levels.
Minimal to negligible correlation was found when comparing aerobic counts and Enterobacteriaceae
counts with Salmonella levels, with significant variability between sampling locations. Distribution
analysis and visualization as a bio-map of the process resulted in a clear bimodality in reduced
chemical conditions for multiple locations mostly explained by shift effect. The development and use
of bio-mapping data, including proper data visualization, improves the tools needed for ongoing
decision making in food safety systems.

Keywords: data mining; poultry processing shift analysis; kernel density estimation; poultry
pathogen–indicator relationship

1. Introduction

The United States ranks among the largest and most efficient poultry producer in the
world and is considered highly competitive in global export markets [1,2]. The total value
of production from broilers, eggs, turkeys, and the value of sales from chickens in 2020 was
USD 35.5 billion, down 11 percent from USD 40.0 billion in 2019 [2,3]. Poultry processing
operations continuously seek to increase efficiency at all locations of the production process,
including disease control, breeding, feed compositions, and housing systems at grow-out
facilities [1]. High production levels are in tune with the large volumes of poultry meat
consumption (broilers, other chicken, and turkey) in the U.S., which are considerably higher
than beef or pork counterparts [4]. Poultry consumption is incentivized by becoming the
lowest-priced meat, with the average per capita consumption of chicken in the 95.6 pounds
range annually [5].
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The Center for Disease Control and Prevention (CDC) estimates that each year in the
United States, over 47.8 million people get sick, 127,839 people require hospitalization,
and 3037 die from foodborne diseases [6]. The World Health Organization estimates that
over 2 million people die each year from diarrheal diseases mainly caused by the ingestion
of contaminated foods [7]. Processing facilities remain concerned and actively search for
alternatives to control commonly originated pathogens associated with raw chicken, such
as Salmonella and Campylobacter spp., that can lead to foodborne illnesses caused by the
consumption of poultry meat products [8]. Salmonella causes about 1.35 million infections,
26,500 hospitalizations, and 420 deaths in the U.S. every year [9]. The CDC indicates that
Campylobacter affects around 1.5 million U.S. residents every year, and most cases are not
part of recognized outbreaks due to underreporting [10]. Despite the fact that both of
these microorganisms have been attributed to foodborne outbreaks across multiple food
categories [11], poultry meat remains one of the main targets of regulators and consumers
as responsible for illness from these two organisms, and efforts to reduce their contribution
are ongoing. To reduce consumer risk, microbial interventions are used in both the pre-
harvest and post-harvest production environments [8]. However, many poultry processors
continue to have post-intervention samples test positive, and compliance with the U.S.
Department of Agriculture (USDA) performance standards is an ongoing challenge [12,13].

Peroxyacetic acid (PAA) has become the leading choice in processing plants as an
antimicrobial applied in several carcass rinse locations, in pre-chiller and chiller applica-
tions, as well as post-chill immersion tanks; and the results of a recent study demonstrated
that PAA was the most effective antimicrobial currently in use in commercial settings [14].
Cross-contamination throughout the processing chain influences the contamination levels
of the entire production flock that is processed in the same line [15]. A 2011 study uncov-
ered a source of cross-contamination during the defeathering step, which concluded that
Campylobacter is transferred from an individual carcass to another [15]. Campylobacter is
one of the major causes of bacterial food-borne diarrheal diseases worldwide and can be
carried in the intestines, liver, and other organs of animals [7,10]. A previous study showed
that 43 of 680 samples from a cleaned and disinfected slaughter process, 70 of 300 neck skin
samples after chilling and 24 of 240 thigh samples were Salmonella-positive when all flocks
first had an initial Salmonella-negative status [16]. In any case, most processors evaluate
the hygienic performance of antimicrobial intervention schemes by collecting samples at
various stages of processing on an ongoing basis and analyzing for microbial indicators
and, in some instances, pathogen prevalence.

Poultry processors seek new technologies to assess process hygienic performance
to demonstrate compliance with performance standards. Rapid detection methods for
prevalence and recent developments in pathogen quantification are important and needed
for timely decision making in food safety management systems. These enumeration
methods gather information that helps and allows processors to potentially know the levels
of contamination such as that of Salmonella and Campylobacter spp. of each lot that enters
the processing line. It also facilitates the responsibilities of technical managers to focus
on the mitigation of food safety hazards in any way possible and to prevent other flocks
from becoming contaminated in the first place, especially from sampling locations with
greater microbial load. The areas of hanging, scalding, and plucking have consistently been
identified as the most contaminated sampling zones before commencement of slaughter [16].
Conventional microbiology and molecular methods have been used to identify differences
between shifts and how the levels of contamination of one flock can influence subsequent
flocks during processing [17]. Risk-based slaughter programming is expected to help
minimize the likelihood of cross-contamination from a Salmonella-positive to a Salmonella-
negative flock, but it depends on the pathogen loads of previous flocks [16]. The availability
of feasible pathogen quantification methods would be more valuable to determine the
efficacy of process control interventions, corrective actions, and final product microbial
performance to make rapid, within-shift food safety decisions [12].
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The USDA’s Food Safety and Inspection Service (FSIS) is responsible for the enforce-
ment of the Poultry Products Inspection Act. FSIS conducted the Raw Chicken Parts
Baseline Survey (RCPBS) to compare the percent of positive tests and levels of Salmonella
and Campylobacter as well as the levels of generic Escherichia coli, aerobic plate count (APC),
Enterobacteriaceae, and total coliforms as microbial indicators to determine if significant
differences existed between processing steps and production shifts. However, this study
did not show any statistically significant difference for any pathogen or indicator bacteria
for the percent of positive samples or levels of bacteria target between shifts (p > 0.05) [18].
In addition, the FSIS has overseen the modernization of poultry processing inspection
systems, and that entails the use of ongoing and comprehensive microbial data surveillance
to demonstrate process control and performance standards compliance.

Poultry processors have assimilated modernization components, and the whole indus-
try is moving towards a modern inspection system that includes large datasets generation
that requires ongoing analysis and management for proper utilization in decision-making
activities. Since changing from traditional inspection systems where minimal data was
collected, chicken processing facilities are becoming more and more skilled at collecting
data and utilizing this information in food safety management systems. While data science
is a powerful tool that generates significant value on collected datasets and allows compa-
nies to have better knowledge and understanding of what is happening in the process on a
regular basis, the time and skills to capture the value of data science are currently in the
developmental stages, and the use of data analysis and visualization for decision making
and to find solutions to microbial control operations is somehow limited [19].

Bio-mapping studies play an important role, as the data collected and the ongoing
data collected through monitoring systems can be managed and analyzed in multiple
ways to look at process trends, find explanations about process changes, trigger root cause
analysis for specific microbial events, and even compile microbial performance data to
demonstrate the effect of certain decisions made on a daily basis and their effects over
time to inspection authorities or auditors in commercial settings. The overall goal of
this study was to show different perspectives and approaches for data analysis by taking
advantage of a comprehensive bio-mapping study compiled in a prior research project and
to demonstrate how this analysis can be used by the processor for making decisions that
are sound, robust, and supported by comprehensive information of the process.

2. Materials and Methods
2.1. Sample Collection, Indicator Enumeration, and Pathogen Detection and Quantification

This study presents an alternative analysis of bio-mapping data collected in a com-
mercial poultry processing operation as described in the article “Bio-Mapping Indicators
and Pathogen Loads in a Commercial Broiler Processing Facility Operating with High
and Low Antimicrobial Interventions” by De Villena et al. (2022) [2]. Consequently,
all the methodology for sample collection, antimicrobial intervention schemes, indicator
enumeration, and pathogen detection and quantification are described in detail in the
referenced publication. Briefly, whole birds and parts rinses were collected at ten different
locations throughout the slaughtering, evisceration, and deboning process (live receiv-
ing, rehanger, post-eviscerator, post-cropper, post-neck-breaker (Post-NB), post-inside-
outside bird washer 1 (Post-IOBW#1), post-inside-outside bird washer 2 (Post-IOBW#2),
pre-chilling, post-chilling, and parts (Wings)) under normal and reduced chemical inter-
vention levels for a total period of 25 months. Microbial indicators (aerobic counts and
Enterobacteriaceae) and pathogens (Campylobacter and Salmonella) were enumerated using
the TEMPO® system (BioMérieux, Paris, France) and BAX®-System-SalQuant® (Hygiena,
Camarillo, CA, USA). No additional sampling or microbial analysis was performed for the
preparation of this article, and all the raw data are exactly the same as used for De Villena’s
et al., 2022 publication. However, the data mining and statistical analysis approach utilized
for trend analysis and visualization of the data takes advantage of additional tools to extract
actionable information for food safety management decision making.
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2.2. Statistical Analysis

All data were analyzed using R (Version 4.1.3) statistical analysis software, and all
microbial counts (indicators and pathogens) were transformed to Log CFU/mL of rinse
with the exception of Salmonella counts, which were transformed to Log CFU/sample (Log
CFU/400 mL) due to low quantification levels and to enhance data visualization interpretation.
A p-value of 0.05 or less was used to determine statistically significant differences.

2.2.1. Shift Comparison

During a 25-month sampling period of operation, 1309 samples were collected, includ-
ing whole chicken carcass rinses and composite parts rinses, interchangeably during two
consecutives 8 h shifts (first and second shift) on a commercial poultry processing facility to
account for flock-to-flock variation and day-to-day process variability. After finishing the
second shift, the plant has a third shift where the facility is deeply cleaned and sanitized. A
t-test was performed to compare the counts’ differentiation between shifts at each sample
location for normal chemical intervention levels (CX) and reduced chemical levels (RC). If
parametric assumptions were not met, the Wilcoxon sum rank test or Mann–Whitney test
was used as a non-parametric alternative to determine statistically significant differences.

2.2.2. Indicators vs. Pathogens Correlation

During the experiment, all samples collected from the processing line were labeled in
a way that allowed for the enumeration of indicator microorganisms (aerobic counts and
Enterobacteriaceae) as well as pathogen bacterial levels (Salmonella and Campylobacter), thus
allowing us to compare the indicator vs. pathogen levels from the same collected sample.
For the correlation analysis, all samples that were not quantifiable for Salmonella were
removed from consideration, and Enterobacteriaceae and aerobic counts were transformed
to Log CFU/sample (Log CFU/400 mL), as was done for the pathogen levels, resulting in
370 samples. Moreover, a new grouping of sampling locations was done according to the
similarity of the processing step and the lack of statistically significant differences found
between sample locations (incoming = live receiving; feather removal = rehanger; viscera
removal = post-eviscerator, post-cropper, and post-neck-breaker; carcass wash = Post-IOBW
#1, Post-IOBW #2, and pre-chilling). The post-chilling and wings sampling points were
removed because of the very low prevalence and counts obtained during the duration of
the bio-mapping experiment. A Pearson correlation analysis was performed by comparing
counts for aerobic counts and Enterobacteriaceae with Salmonella.

2.2.3. Indicator and Pathogen Distribution

Microbial level distribution plots were generated using the “geom_density_ridges”
function from the ggridges package in R. The function computes and draws kernel density
estimates, which is a non-parametric approach to estimate the probability density function
of a continuous variable, in this case, microbial counts of indicators and pathogen levels.
The bandwidth was automatically calculated and provided by the function, and the scaling
factor was set to 1, indicating that the maximum point of any ridgeline touches the baseline
right above. Distribution plots were generated for indicator and pathogen microorganisms
for normal and reduced chemical interventions. Furthermore, distribution tables were
generated by converting the continuous variable “Log CFU/mL or sample” to a discrete
variable expressed as percentage of counts falling within a specific range for all indicator
and pathogen microorganisms analyzed in this study.

3. Results and Discussion

The collection of a large dataset of microbial indicator and pathogenic levels on the
same collected samples during a 25-month surveillance period created the opportunity
to analyze different process performance parameters including shift effects, correlation
between microbial estimations and sample combinations, pathogen/indicators, and data
distribution levels, among others. A detailed description about concentrations and type of
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interventions about the experiment can be found in De Villena’s et al., 2022 publication [2].
Briefly, the normal processing conditions included chemical interventions such as perox-
yacetic acid (PAA), PAA + sodium hydroxide, and sodium hypochlorite at several steps
in the evisceration, chilling, and deboning processes, respectively. The reduced chemical
processing conditions removed all chemical interventions from various locations except
for where needed as per the validated hazard analysis and critical control points (HACCP)
plan validated by the FSIS [2].

Differences between intervention conditions (normal vs. reduced) for all indicators
and pathogens throughout the processing line are described in De Villena’s et al., 2022
publication [2]. However, a summary is as follows:

(a) The use of pathogen quantification can improve the use of risk assessment where
interventions can target specific stages with higher loads of indicator and pathogen
bacteria.

(b) Non-difference between normal and reduced in chemical interventions in certain
locations suggests the application of chemical interventions in strategic locations.

(c) The use of prevalence as a sole measurement of food safety performance can lead to
inadequate results.

3.1. Shift Comparison

For shift effect assessments, aerobic counts and Enterobacteriaceae counts were eval-
uated under normal and reduced chemical conditions throughout the whole chicken
slaughter process. However, for visualization purposes, only Enterobacteriaceae counts are
presented in this paper in Figure 1, as both indicator bacteria showed similar trends during
the analysis. Moreover, the location “live receiving” was removed from Figures 1 and 2
because at that sampling location, there is no intervention applied on the birds, so there are
no differences between normal and reduced chemical intervention groups.

Enterobacteriaceae counts were significantly different (p < 0.05) between shifts under
normal chemical conditions at Post-IOBW #1 and Post-IOBW#2 locations, while under
reduced chemical conditions differences were found at rehanger, post-eviscerator, post-
cropper, post-neck breaker, and Post-IOBW #2. In all locations, for both microbial interven-
tion scheme conditions, the average counts were higher on the second shift when compared
with the first one, and those differences are more evident under reduced chemical condi-
tions. These results support the expected and inherent differences between shifts in most
food processing plants, where there is accumulation of bacteria throughout the production
day that can be responsible for an increase on the risk of cross-contamination between
carcasses and surfaces over the day of operation. Moreover, the effectiveness of the post-
operational sanitation process can be shown where, even though at the end of the day there
is a significant increase in the number of bacteria accumulated during the processing day,
a third shift focused on plant sanitization reduces those levels significantly. Data such as
this can be used to verify sanitation programs, adjust performance, and compare sanitation
systems for an operator.

There are some locations, such as post-chilling, where even under reduced chemical
conditions, no difference was observed between shifts (p = 0.12). The chilling step appears
to significantly overcome potential shift differences due to the nature of the rinsing effects
and chemical performance of the interventions applied (e.g., temperatures below 4 ◦C,
constant mechanical and rinsing action, and PAA at a set concentration (15–100 ppm)),
aimed at minimizing the accumulation of bacteria in the chilling system. Minimal numeric
differences can be explained by the variable incoming microbial loads of chicken carcasses
throughout the processing day, and this can be seen in the size of the boxplot figures.
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Figure 1. Enterobacteriaceae counts (Log CFU/mL) on each of the nine sampling locations under 
normal process interventions (above) and reduced chemical process interventions (below) on 
chicken and part rinses collected during different shifts. In each boxplot, the horizontal line crossing 
the box represents the median, the bottom and top of the box are the lower and upper quartiles, the 
vertical top line represents 1.5 times the interquartile range, and the vertical bottom line represents 
1.5 times the lower interquartile range. (a,b) For normal and reduced chemical interventions at each 
sampling locations, boxes with different letters are significantly different according to t-test analysis 
at p < 0.05. The points represent the actual data points. 

Figure 1. Enterobacteriaceae counts (Log CFU/mL) on each of the nine sampling locations under
normal process interventions (above) and reduced chemical process interventions (below) on chicken
and part rinses collected during different shifts. In each boxplot, the horizontal line crossing the box
represents the median, the bottom and top of the box are the lower and upper quartiles, the vertical
top line represents 1.5 times the interquartile range, and the vertical bottom line represents 1.5 times
the lower interquartile range. (a,b) For normal and reduced chemical interventions at each sampling
locations, boxes with different letters are significantly different according to t-test analysis at p < 0.05.
The points represent the actual data points.

Pre- and post-operational cleaning and sanitation procedures play a critical role in
food safety systems for commercial operations by protecting food from continuous contam-
ination with pathogenic microorganisms from equipment, surfaces, or workers; however,
evidence to demonstrate these effects in commercial settings with the effects of high and
low levels of antimicrobial interventions in the process is limited [20–22]. It has been
demonstrated that regular cleaning and disinfection is associated with major reductions
in pathogens responsible for food poisoning, and it is crucial that staff is properly trained
for conducting this activity [23–25]. Pre-operational procedures are sanitation activities
performed before production begins, while operational procedures are activities conducted
during production to keep equipment and surfaces as sanitary as possible to prevent
contamination of chicken carcasses [26]. Differences in chemical concentration levels in
the intervention locations clearly affect operational procedures in this study, as more
locations in the process were found different under reduced chemical conditions when
compared with normal chemical conditions. Even though significant statistical differ-
ences were noted among pathogen and indicator organisms between shifts, it is evident
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that operational and food safety consistency between shifts plays an important role in
controlling bacterial growth.
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ical interventions at each sampling location, boxes with different letters are significantly different 
according to Wilcoxon’s test analysis at p < 0.05. The points represent the actual data points. 
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Figure 2. Campylobacter counts (Log CFU/sample) and prevalence (solid lines) on each of the
nine sampling locations under normal process interventions (above) and reduced chemical process
interventions (below) on chicken and part rinses collected during different shifts. In each boxplot,
the horizontal line crossing the box represents the median, the bottom and top of the box are the
lower and upper quartiles, the vertical top line represents 1.5 times the interquartile range, and
the vertical bottom line represents 1.5 times the lower interquartile range. (a,b) For normal and
reduced chemical interventions at each sampling location, boxes with different letters are significantly
different according to Wilcoxon’s test analysis at p < 0.05. The points represent the actual data points.

Pathogenic organisms associated with poultry meat, specifically Salmonella and Campy-
lobacter, were also enumerated under normal and reduced chemical conditions throughout
the whole chicken slaughter process for shift comparison analysis. Figure 2 shows the
results for Campylobacter counts and prevalence for both intervention treatments. Even
though there are no statistically significant differences throughout all the processing loca-
tions, when they exist, the first shift always has the lower concentration of Campylobacter,
following similar trends as indicator microorganisms. On the other hand, the size of the
boxplots provides an estimate of the natural variability that exists in the samples collected,
and this variability is in general greater in boxplots for the first shift during normal chemical
conditions. These results suggest that during the first shift, the variability observed in the
samples is due to the irregularity of Campylobacter loads in incoming chicken carcasses,
but during the day, and due to the accumulation effect, the cross-contamination with the
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chicken carcasses reduces the variability of this pathogen load and increases the counts
overall [2,27,28]. This trend is also evident when analyzing the prevalence data, as second-
shift prevalence results are kept steady at high levels of contamination during the first steps
of production.

Furthermore, at the beginning of the shift, specifically during the first part of the
production shift (first shift), antimicrobial intervention levels, whether chemical or non-
chemical, are being adjusted more frequently as the first birds arrive to the plant for
processing. Depending on the performance of the operation, these parameters and/or
concentrations are adjusted until an equilibrium is achieved during the operations. Since
there is an effort to consider pre-harvest loads of pathogens as decision-making parameters
for customized processing, this type of data can be used to make such decisions.

3.2. Indicator vs. Pathogen Levels Correlation

The food processing industry uses estimations of microbial indicator organisms to
assess microbial control performance when pathogenic data are scarce or difficult to collect
in commercial settings [29]. The goal is to understand the dynamics of indicator organisms
levels at different processing steps to assume that pathogens loads will follow in similar
fashion to closely related indicator organisms [30,31]. However, evidence to show that
microbial indicator organisms data can be used to understand pathogen dynamics is limited
and at times counter argumentative. It is common to have high indicator organisms counts
in pathogen-negative samples and low indicator organisms levels in pathogen-positive
samples. The inclusion of pathogen quantitative data allows for a better indicator organism-
to-pathogen comparison. For this study, Pearson’s correlation analysis between indicator
organisms and pathogen levels was performed at four grouped sampling locations, as
shown in Figure 3. Correlation analysis showed that relationship between indicator organ-
isms and Salmonella exists in some areas, while in others, it does not, and when it does, the
strength of the correlation is usually low. Significant correlation coefficients were obtained
for aerobic counts and Salmonella at viscera removal and carcass wash locations and for
Enterobacteriaceae at incoming stages and viscera removal locations (p < 0.05). Significant
correlation coefficients for aerobic counts were 0.25 and 0.36 for viscera removal and carcass
locations, respectively, and for Enterobacteriaceae were 0.38 and 0.32 for incoming and
viscera removal locations, respectively.

The purpose of indicator organisms testing is to utilize a group of microorganisms to
identify trends in a food product, and the type of indicator organism is usually focused
in having a sentinel measuring method to understand the dynamics of specific foodborne
pathogens [32]. For example, E. coli indicator quantification looks at fecal coliforms, with
an emphasis on enteric pathogens such as E. coli [33], whereas Enterobacteriaceae quan-
tification has been used as a potential indicator of Salmonella levels, with corresponding
limitations in this approach [33]. The low correlation coefficient obtained in this study sug-
gests that risk assessment on a final product should not rely solely on indicator organisms
enumeration and pathogen prevalence but rather on pathogen quantification. Nonetheless,
Enterobacteriaceae and aerobic plate counts can be done for surveillance and statistical
process control analysis as well as for trend analysis for out-of-specification evaluations or
to identify upticks in microbial contamination caused by unusual patterns [34]. The com-
bination of pathogen quantification for risk assessment and risk-driven decision making
on top of trend analysis with indicator microorganisms can yield more robust datasets for
enhanced food safety management decisions.
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Figure 3. Pearson’s correlation analysis between Enterobacteriaceae (right) and mesophilic aerobic
counts (left) (Log CFU/sample) with Salmonella counts (Log CFU/sample) at each of the four com-
bined sampling locations on whole carcass chicken rinses. The points represent the actual data points.

For analysis purposes, it is important to mention that all samples found negative for
Salmonella or samples that were not quantifiable but found positive for prevalence using
the respective methodology were removed from the analysis. Indicator microorganism
count is not enough for accurate decision making on pathogen levels. In addition, due
to the increased interest in Campylobacter performance standards (not yet enforceable by
United States Department of Agriculture–Food Safety and Inspection Service), research has
been conducted to identify a good indicator for Campylobacter contamination with some
successful but very variable results [35]. Enterobacteriaceae and Escherichia coli have both
been evaluated as potential Campylobacter indicators, but the correlation is not consistent at
different levels of the indicator, where high concentration of Escherichia coli may indicate
high Campylobacter concentration, but low levels of Escherichia coli do not necessarily indicate
low levels of Campylobacter [35]. The arrival of novel pathogen quantification methodologies
for both Salmonella and Campylobacter provides opportunities to improve this type of needed
analysis and will better support decision making in poultry processing operations.

As poultry processors develop risk assessment strategies to improve food safety
performance, the need to have a holistic approach to pathogen data analysis is high. Such
an approach must include not only indicator organisms testing but also development of
statistical process control (SPC) models to further predict the microbial performance of
flocks coming into the processing facilities to minimize the food safety impact. The series of
microbial results that combine indicator data and pathogen quantification must be analyzed
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in tandem to develop in-plant performance standards that are not solely based on pathogen
prevalence, as is currently being the case.

3.3. Indicator and Pathogen Distribution

For chicken rinses and parts throughout the whole process, 98.5% and 99.9% of the
mesophilic aerobic count samples were above the limit of quantification (LOQ) (1 CFU/mL)
under normal and reduced chemical interventions, respectively, while 99.7% and 99.9%
were above LOQ for Enterobacteriaceae under normal and reduced chemical interventions,
respectively (Appendices A–D, Tables A1–A4). Tables for the distribution of pathogenic
microorganism levels were assembled for Salmonella and Campylobacter (Appendices E–H,
Tables A5–A8). These distributions are presented in ranges of factors of 10. The distribution
levels of microbial indicators and pathogens in commercial samples can vary due to a
number of reasons that include processing location, type of sample matrix, shift, and
application of chemical or physical interventions, among others. Kernel density estimation
for mesophilic aerobic counts for both normal and reduced chemical interventions at
all locations in a poultry processing plant were developed for distribution analysis, as
displayed in Figure 4.
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Figure 4. Kernel density estimation for mesophilic aerobic counts (Log CFU/mL) on each of the ten
sampling locations evaluated under normal process interventions (red) and reduced chemical process
(blue) intervention schemes on whole carcass chicken and part rinses. The dots represent the average
value for mesophilic aerobic counts on each sampling location under both process interventions
(normal and reduced) during different shifts (circle vs. triangle).
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Under reduced chemical conditions, a clear bimodality in the distribution can be
seen, especially in the initial processing locations of the slaughtering process evaluated
in this study. Further analysis was performed to understand the cause of the bimodality
during the distribution, and shift averages were plotted on top of the data distribution
plots, which perfectly match the two peaks of the bimodal kernel density estimation. If
the datasets are not analyzed as a distribution, the compilation of shift and other potential
variability effects may hinder proper analysis since the wide variability range will reduce
the likelihood of identifying evident patterns that can be hidden behind large datasets of
variable distribution caused by specific parameters. This type of analysis provides strong
support for clearly identifying all parameters associated with a given sample, such as lot,
shift, and time of collection, among others, so that proper data mining can be conducted,
adding additional value to bio-mapping data studies.

Based on the kernel density analysis, reduced chemical interventions appear to have a
wider distribution when compared to the normal chemical intervention levels. This may be
explained by the evident shift differences observed, which closely relates with the reduction
of chemical concentrations and their effect at keeping microbial loads low in comparison
to normal chemical interventions, which in turn show a narrower distribution due to the
ongoing antimicrobial activity despite the initial incoming loads. By the continuous use of
chemical interventions, there is a steady concentration effect of bacteria throughout both
shifts, as can be observed by the closeness of the averages plotted in the graph under the red
distribution bell, potentially reducing the possibility of microbial accumulation and overall
risk of product cross contamination. In the final processing steps (post-chilling and wings),
maintaining the intervention parameters turns out to be important as the effectiveness of
the intervention schemes in reducing bacterial concentration to similar end microbial loads
detected despite the higher concentration found in the second shift.

The same kernel distribution plot was made for Campylobacter counts and is displayed
in Figure 5. Similar microbial patterns as observed in the aerobic count data were seen
for this pathogen. The distribution patterns in early processing locations contrast sharply
with the more pronounced narrow distribution of Campylobacter in the post-chill and parts
locations. The concentration of Campylobacter in the pre-chilling location varied narrowly,
with less than 1 Log CFU/mL range, creating a “cone” effect on the data distribution,
which eliminates the shift effect seen in early processing locations. Similar effects can be
seen by the use of interventions in the IOBW stations. For wing samples, the distribution
comparison of normal chemical vs. reduced chemical shows that the use of antimicrobial
interventions helps standardize the pathogen levels and reduce variability, thus supporting
their use as process control systems in support of food safety management.

The distribution charts for Campylobacter help explain the relative inefficiency of some
of the antimicrobial interventions applied at different processing locations when analyzing
performance based on prevalence only, as detailed in Figure 2 [2]. Despite clearly evident
reductions in Campylobacter levels from incoming to final products shown in Figure 5, the
reductions are not sufficient to eliminate the organism from particular samples to render the
sample undetectable. A reduced carcass sampled for Campylobacter prevalence will show
as positive if detection methods are used to estimate microbial levels, but the concentration
of the pathogen on a per-sample basis will be significantly reduced but not to the level to
be detected as negative when full enrichment is applied for detection methodologies [2].
Anecdotical information from poultry processors states that some of the interventions
used in commercial plants work for Salmonella but not for Campylobacter reductions. If
the performance is measured by prevalence data, the results will indicate minimal effect
of the intervention scheme, but when seen through the quantification light, reductions
are significant but not enough to turn samples fully negative under pathogen-detection
systems based on sample enrichment.
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Figure 5. Kernel density estimation for Campylobacter counts (Log CFU/mL) on each of the ten
sampling locations evaluated under normal process interventions (red) and reduced chemical process
(blue) intervention schemes on whole carcass chicken and part rinses. The dots represent the average
value for Campylobacter counts on each sampling location under both process interventions (normal
and reduced) during different shifts (circle vs. triangle).

4. Conclusions

The development and use of bio-mapping data, including proper data visualization,
improves the tools needed for decision making in food safety for commercial poultry
operations. The correct planning and management of data already collected but further
analyzed allows companies to understand the microbiological aspect of their process
not only in the topics mentioned in this paper but also for other approaches that can
be evaluated, such as the development of statistical process control parameters, trend
analysis, risk analysis, and the use of this information as historical data in validation studies.
Nowadays, microbial data mining and analysis should be one of the basic components taken
into account in a food safety team in food processing companies at the moment of making
decisions, as data correctly used can give strong support and will permit the development
of further research ideas to improve the management of their food safety process.

Author Contributions: Conceptualization, J.F.D.V. and M.X.S.-P.; methodology, J.F.D.V., D.A.V.,
D.E.C., D.R.C.-V., R.L.J. and R.B.L.; validation, J.F.D.V., D.A.V., M.X.S.-P. and D.R.C.-V.; formal
analysis, D.A.V.; investigation, J.F.D.V., D.A.V. and M.X.S.-P.; resources, J.F.D.V., R.B.L. and D.R.C.-V.;
data curation, J.F.D.V., D.A.V. and M.X.S.-P.; writing—original draft preparation, D.A.V., V.L., D.E.C.
and S.E.B.; writing—review and editing, D.A.V., D.E.C., J.F.D.V. and M.X.S.-P.; visualization, D.A.V.;



Foods 2023, 12, 898 13 of 18

supervision, M.X.S.-P.; project administration, J.F.D.V. and D.R.C.-V.; funding acquisition, J.F.D.V. and
M.X.S.-P. All authors have read and agreed to the published version of the manuscript.

Funding: The current study was funded by the International Center for Food Industry Excellence (IC-
FIE) at Texas Tech University and was supported by in-kind contributions from Hygiena, BioMerieux,
and Wayne-Sanderson Farms for completion.

Data Availability Statement: Data available on request from the corresponding author. The data are
not publicly available due to privacy from the beef processing partner that allowed the project to be
conducted within their beef processing environment.

Acknowledgments: The authors would like to thank the ICFIE Food Microbiology Laboratory
personnel for their contributions to completing the current project.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Distribution of Enterobacteriaceae counts (Log CFU/mL) on each of the ten sampling
locations under normal process intervention on chicken and part rinses (n = 453 samples).

Range (Log
CFU/mL)

Sampling Point

Live
Receiving Rehanger Post-

Eviscerator
Post-

Cropper Post-NB Post-
IOBW#1

Post-
IOBW#2

Pre-
Chilling

Post-
Chilling Wings

<0.0 0.0%
(0/70)

0.0%
(0/40)

0.0%
(0/30)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/49)

7.1%
(1/14)

0.0%
(0/50)

0.0–1.0 0.0%
(0/70)

0.0%
(0/40)

0.0%
(0/30)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

14.0%
(7/50)

2.0%
(1/49)

50.0%
(7/14)

22.0%
(11/50)

>1.0–2.0 0.0%
(0/70)

5.0%
(2/40)

0.0%
(0/30)

2.0%
(1/50)

4.0%
(2/50)

10.0%
(5/50)

30.0%
(15/50)

38.8%
(19/49)

42.9%
(6/14)

48.0%
(24/50)

>2.0–3.0 0.0%
(0/70)

30.0%
(12/40)

20.0%
(6/30)

20.0%
(10/50)

20.0%
(10/50)

42.0%
(21/50)

24.0%
(12/50)

49.0%
(24/49)

0.0%
(0/14)

26.0%
(13/50)

>3.0–4.0 0.0%
(0/70)

20.0%
(8/40)

23.3%
(7/30)

44.0%
(22/50)

50.0%
(25/50)

40.0%
(20/50)

32.0%
(16/50)

8.2%
(4/49)

0.0%
(0/14)

4.0%
(2/50)

>4.0–5.0 5.7%
(4/70)

40.0%
(16/40)

33.3%
(10/30)

18.0%
(9/50)

18.0%
(9/50)

8.0%
(4/50)

0.0%
(0/50)

2.0%
(1/49)

0.0%
(0/14)

0.0%
(0/50)

>5.0–6.0 34.3%
(24/70)

5.0%
(2/40)

23.3%
(7/30)

16.0%
(8/50)

8.0%
(4/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/49)

0.0%
(0/14)

0.0%
(0/50)

>6.0–7.0 52.9%
(37/70)

0.0%
(0/40)

0.0%
(0/30)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/49)

0.0%
(0/14)

0.0%
(0/50)

>7.0 7.1%
(5/70)

0.0%
(0/40)

0.0%
(0/30)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/49)

0.0%
(0/14)

0.0%
(0/50)

Limit of quantification (LOQ): 1 CFU/mL.

Appendix B

Table A2. Distribution of Enterobacteriaceae counts (Log CFU/mL) on each of the ten sampling
locations under reduced process intervention on chicken and part rinses (n = 822 samples).

Range (Log
CFU/mL)

Sampling Point

Live
Receiving Rehanger Post-

Eviscerator
Post-

Cropper Post-NB Post-
IOBW#1

Post-
IOBW#2

Pre-
Chilling

Post-
Chilling Wings

<0.0 0.0%
(0/70)

0.0%
(0/89)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/80)

0.0%
(0/80)

0.0%
(0/90)

1.2%
(1/86)

0.0%
(0/80)

0.0–1.0 0.0%
(0/70)

0.0%
(0/89)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/80)

1.3%
(1/80)

0.0%
(0/90)

10.5%
(9/86)

6.3%
(5/80)

>1.0–2.0 0.0%
(0/70)

6.7%
(6/89)

1.1%
(1/90)

7.8%
(7/90)

1.1%
(1/90)

2.5%
(2/80)

7.5%
(6/80)

0.0%
(0/90)

51.2%
(44/86)

21.3%
(17/80)

>2.0–3.0 0.0%
(0/70)

14.6%
(13/89)

14.4%
(13/90)

17.8%
(16/90)

6.7%
(6/90)

27.5%
(22/80)

40.0%
(32/80)

13.3%
(12/90)

24.4%
(21/86)

35.0%
(28/80)

>3.0–4.0 0.0%
(0/70)

38.2%
(34/89)

35.6%
(32/90)

42.2%
(38/90)

31.1%
(28/90)

41.3%
(33/80)

32.5%
(26/80)

51.1%
(46/90)

12.8%
(11/86)

32.5%
(26/80)

>4.0–5.0 5.7%
(4/70)

30.3%
(27/89)

30.0%
(27/90)

21.1%
(19/90)

32.2%
(29/90)

25.0%
(20/80)

11.3%
(9/80)

22.2%
(20/90)

0.0%
(0/86)

2.5%
(2/80)

>5.0–6.0 34.3%
(24/70)

9.0%
(8/89)

18.9%
(17/90)

11.1%
(10/90)

22.2%
(20/90)

2.5%
(2/80)

5.0%
(4/80)

7.8%
(7/90)

0.0%
(0/86)

2.5%
(2/80)

>6.0–7.0 52.9%
(37/70)

1.1%
(1/89)

0.0%
(0/90)

0.0%
(0/90)

6.7%
(6/90)

1.3%
(1/80)

2.5%
(2/80)

5.6%
(5/90)

0.0%
(0/86)

0.0%
(0/80)

>7.0 7.1%
(5/70)

0.0%
(0/89)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/80)

0.0%
(0/80)

0.0%
(0/90)

0.0%
(0/86)

0.0%
(0/80)

Limit of quantification (LOQ): 1 CFU/mL.
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Appendix C

Table A3. Distribution of aerobic counts (Log CFU/mL) on each of the ten sampling locations under
normal process intervention on chicken and part rinses (n = 470 samples).

Range (Log
CFU/mL)

Sampling Point

Live
Receiving Rehanger Post-

Eviscerator
Post-

Cropper Post-NB Post-
IOBW#1

Post-
IOBW#2

Pre-
Chilling

Post-
Chilling Wings

<0.0 0.0%
(0/70)

0.0%
(0/40)

0.0%
(0/30)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

23.3%
(7/30)

0.0%
(0/50)

0.0–1.0 0.0%
(0/70)

0.0%
(0/40)

0.0%
(0/30)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

26.7%
(8/30)

0.0%
(0/50)

>1.0–2.0 0.0%
(0/70)

0.0%
(0/40)

0.0%
(0/30)

0.0%
(0/50)

0.0%
(0/50)

2.0%
(1/50)

0.0%
(0/50)

0.0%
(0/50)

16.7%
(5/30)

6.0%
(3/50)

>2.0–3.0 0.0%
(0/70)

2.5%
(1/40)

0.0%
(0/30)

2.0%
(1/50)

6.0%
(3/50)

50.0%
(25/50)

14.0%
(7/50)

16.0%
(8/50)

23.3%
(7/30)

42.0%
(21/50)

>3.0–4.0 0.0%
(0/70)

22.5%
(9/40)

23.3%
(7/30)

20.0%
(10/50)

34.0%
(17/50)

26.0%
(13/50)

62.0%
(31/50)

74.0%
(37/50)

10.0%
(3/30)

44.0%
(22/50)

>4.0–5.0 0.0%
(0/70)

45.0%
(18/40)

43.3%
(13/30)

38.0%
(19/50)

38.0%
(19/50)

22.0%
(11/50)

24.0%
(12/50)

10.0%
(5/50)

0.0%
(0/30)

8.0%
(4/50)

>5.0–6.0 0.0%
(0/70)

22.5%
(9/40)

23.3%
(7/30)

34.0%
(17/50)

22.0%
(11/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/30)

0.0%
(0/50)

>6.0–7.0 2.86%
(2/70)

7.5%
(3/40)

10.0%
(3/30)

6.0%
(3/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/30)

0.0%
(0/50)

>7.0 97.14%
(68/70)

0.0%
(0/40)

0.0%
(0/30)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/30)

0.0%
(0/50)

Limit of quantification (LOQ): 1 CFU/mL.

Appendix D

Table A4. Distribution of aerobic counts (Log CFU/mL) on each of the ten sampling locations under
reduced process intervention on chicken and part rinses (n = 846 samples).

Range (Log
CFU/mL)

Sampling Point

Live
Receiving Rehanger Post-

Eviscerator
Post-

Cropper Post-NB Post-
IOBW#1

Post-
IOBW#2

Pre-
Chilling

Post-
Chilling Wings

<0.0 0.0%
(0/70)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/80)

0.0%
(0/80)

0.0%
(0/90)

1.2%
(1/86)

0.0%
(0/80)

0.0–1.0 0.0%
(0/70)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/80)

0.0%
(0/80)

0.0%
(0/90)

22.1%
(19/86)

0.0%
(0/80)

>1.0–2.0 0.0%
(0/70)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/80)

0.0%
(0/80)

0.0%
(0/90)

51.2%
(44/86)

2.5%
(2/80)

>2.0–3.0 0.0%
(0/70)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

1.1%
(1/90)

3.8%
(3/80)

18.8%
(15/80)

13.3%
(12/90)

24.4%
(21/86)

22.5%
(18/80)

>3.0–4.0 0.0%
(0/70)

17.8%
(16/90)

25.6%
(23/90)

24.4%
(22/90)

17.7%
(16/90)

36.3%
(29/80)

51.3%
(41/80)

51.1%
(46/90)

12.8%
(11/86)

27.5%
(22/80)

>4.0–5.0 0.0%
(0/70)

30.0%
(27/90)

26.7%
(24/90)

33.3%
(30/90)

22.2%
(20/90)

31.3%
(25/80)

26.3%
(21/80)

22.2%
(20/90)

0.0%
(0/86)

35.0%
(28/80)

>5.0–6.0 0.0%
(0/70)

17.8%
(16/90)

30.0%
(27/90)

15.6%
(14/90)

28.9%
(26/90)

25.0%
(20/80)

3.8%
(3/80)

7.8%
(7/90)

0.0%
(0/86)

12.5%
(10/80)

>6.0–7.0 2.86%
(2/70)

31.1%
(28/90)

17.8%
(16/90)

25.6%
(23/90)

28.9%
(26/90)

3.0%
(2/80)

0.0%
(0/80)

5.6%
(5/90)

0.0%
(0/86)

0.0%
(0/80)

>7.0 97.14%
(68/70)

3.3%
(3/90)

0.0%
(0/90)

1.1%
(1/90)

1.1%
(0/90)

1.3%
(1/80)

0.0%
(0/80)

0.0%
(0/90)

0.0%
(0/86)

0.0%
(0/80)

Limit of quantification (LOQ): 1 CFU/mL.
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Appendix E

Table A5. Distribution of Salmonella counts (Log CFU/sample) on each of the ten sampling locations
under normal process intervention on chicken and part rinses (n = 490 samples).

Range (Log
CFU/Sample)

Sampling Point

Live
Receiving Rehanger Post-

Eviscerator
Post-

Cropper Post-NB Post-
IOBW#1

Post-
IOBW#2

Pre-
Chilling

Post-
Chilling Wings

Negative 5.7%
(4/70)

57.5%
(23/40)

53.3%
(16/30)

72.0%
(36/50)

84.0%
(42/50)

88.0%
(44/50)

90.0%
(45/50)

96.0%
(48/50)

100.0%
(0/50)

90.0%
(45/50)

0.3–1.0 21.43%
(15/70)

30.0%
(12/40)

20.0%
(6/30)

12.0%
(6/50)

14.0%
(7/50)

12.0%
(6/50)

10.0%
(5/50)

4.0%
(2/50)

0.0%
(0/50)

8.0%
(4/50)

>1.0–2.0 8.6%
(6/70)

7.5%
(3/40)

13.3%
(4/30)

2.0%
(1/50)

2.0%
(1/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

2.0%
(1/50)

>2.0–3.0 12.9%
(9/70)

2.5%
(1/40)

3.3%
(1/30)

2.0%
(1/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

>3.0–4.0 5.7%
(4/70)

0.0%
(0/40)

10.0%
(3/30)

2.0%
(1/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

>4.0–5.0 12.9%
(9/70)

2.5%
(1/40)

0.0%
(0/30)

2.0%
(1/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

>5.0–6.0 10.0%
(7/70)

0.0%
(0/40)

0.0%
(0/30)

2.0%
(1/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

>6.0 0.0%
(0/70)

0.0%
(0/40)

0.0%
(0/30)

2.0%
(1/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

Limit of quantification (LOQ): 0.3 Log CFU/sample.

Appendix F

Table A6. Distribution of Salmonella counts (Log CFU/sample) on each of the ten sampling locations
under reduced process intervention on chicken and part rinses (n = 850 samples).

Range (Log
CFU/Sample)

Sampling Point

Live
Receiving Rehanger Post-

Eviscerator
Post-

Cropper Post-NB Post-
IOBW#1

Post-
IOBW#2

Pre-
Chilling

Post-
Chilling Wings

Negative 5.7%
(4/70)

54.4%
(49/90)

60.0%
(54/90)

64.4%
(58/90)

66.7%
(60/90)

68.8%
(55/80)

83.8%
(67/80)

76.7%
(69/90)

98.9%
(89/90)

88.8%
(71/80)

0.3–1.0 21.43%
(15/70)

24.4%
(22/90)

14.4%
(13/90)

16.7%
(15/90)

10.0%
(9/90)

18.8%
(15/80)

11.3%
(9/80)

10.0%
(9/90)

1.1%
(1/90)

7.5%
(6/80)

>1.0–2.0 8.6%
(6/70)

4.4%
(4/90)

3.3%
(3/90)

5.6%
(5/90)

4.4%
(4/90)

1.3%
(1/80)

2.5%
(2/80)

4.4%
(4/90)

0.0%
(0/90)

0.0%
(0/80)

>2.0–3.0 12.9%
(9/70)

7.8%
(7/90)

10.0%
(9/90)

6.7%
(6/90)

13.3%
(12/90)

6.3%
(5/80)

2.5%
(2/80)

6.7%
(6/90)

0.0%
(0/90)

1.3%
(1/80)

>3.0–4.0 28.6%
(20/70)

5.6%
(5/90)

10.0%
(9/90)

4.4%
(4/90)

4.4%
(4/90)

3.8%
(3/80)

0.0%
(0/80)

2.2%
(2/90)

0.0%
(0/90)

2.5%
(2/80)

>4.0–5.0 12.9%
(9/70)

1.1%
(1/90)

2.2%
(2/90)

2.2%
(2/90)

1.1%
(1/90)

1.3%
(1/80)

0.0%
(0/80)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/80)

>5.0–6.0 10.0%
(7/70)

2.2%
(2/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/80)

0.0%
(0/80)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/80)

>6.0 0.0%
(0/70)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/80)

0.0%
(0/80)

0.0%
(0/90)

0.0%
(0/90)

0.0%
(0/80)

Limit of quantification (LOQ): 0.3 Log CFU/sample.
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Appendix G

Table A7. Distribution of Campylobacter counts (Log CFU/mL) on each of the ten sampling locations
under normal process intervention on chicken and part rinses (n = 910 samples).

Range (Log
CFU/mL)

Sampling Point

Live
Receiving Rehanger Post-

Eviscerator
Post-

Cropper Post-NB Post-
IOBW#1

Post-
IOBW#2

Pre-
Chilling

Post-
Chilling Wings

Negative 0.0%
(0/70)

10.0%
(4/40)

6.7%
(2/30)

0.0%
(0/50)

0.0%
(0/50)

2.0%
(1/50)

4.1%
(2/50)

8.0%
(4/50)

82.5%
(33/40)

66.0%
(33/50)

0.3–1.0 0.0%
(0/70)

10.0%
(4/40)

3.3%
(1/30)

6.0%
(3/50)

6.0%
(3/50)

12.0%
(6/50)

22.4%
(11/50)

30.0%
(15/50)

7.5%
(3/40)

20.0%
(10/50)

>1.0–2.0 0.0%
(0/70)

25.0%
(10/40)

26.7%
(8/30)

28.0%
(14/50)

28.0%
(14/50)

46.0%
(23/50)

59.2%
(29/50)

48.0%
(24/50)

10.0%
(4/40)

14.0%
(7/50)

>2.0–3.0 17.1%
(12/70)

40.0%
(16/40)

43.3%
(13/30)

42.0%
(21/50)

42.0%
(21/50)

34.0%
(17/50)

12.2%
(6/50)

14.0%
(7/50)

0.0%
(0/40)

0.0%
(0/50)

>3.0–4.0 5.7%
(4/70)

15.0%
(6/40)

20.0%
(6/30)

24.0%
(12/50)

24.0%
(12/50)

6.0%
(3/50)

2.0%
(1/50)

0.0%
(0/50)

0.0%
(0/40)

0.0%
(0/50)

>4.0–5.0 10.0%
(7/70)

0.0%
(0/40)

0.0%
(0/30)

6.0%
(3/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/40)

0.0%
(0/50)

>5.0–6.0 25.7%
(18/70)

0.0%
(0/40)

0.0%
(0/30)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/40)

0.0%
(0/50)

>6.0 41.4%
(29/70)

0.0%
(0/40)

0.0%
(0/30)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/50)

0.0%
(0/40)

0.0%
(0/50)

Limit of quantification (LOQ): 1 CFU/mL.

Appendix H

Table A8. Distribution of Campylobacter counts (Log CFU/mL) on each of the ten sampling locations
under reduced process intervention on chicken and part rinses (n = 853 samples).

Range (Log
CFU/mL)

Sampling Point

Live
Receiving Rehanger Post-

Eviscerator
Post-

Cropper Post-NB Post-
IOBW#1

Post-
IOBW#2

Pre-
Chilling

Post-
Chilling Wings

Negative 0.0%
(0/70)

13.3%
(12/90)

11.2%
(10/89)

10.0%
(0/90)

4.5%
(4/89)

7.6%
(6/79)

16.3%
(13/80)

26.1%
(23/88)

89.6%
(86/96)

43.9%
(36/82)

0.0–1.0 0.0%
(0/70)

6.7%
(6/90)

5.6%
(5/89)

6.7%
(6/90)

6.7%
(6/89)

21.5%
(17/79)

12.5%
(10/80)

13.6%
(12/88)

5.2%
(5/96)

24.4%
(20/82)

>1.0–2.0 0.0%
(0/70)

26.7%
(24/90)

15.7%
(14/89)

25.6%
(23/90)

21.3%
(19/89)

35.4%
(28/79)

48.8%
(39/80)

42.0%
(37/88)

2.1%
(2/96)

30.5%
(25/82)

>2.0–3.0 17.1%
(12/70)

30.0%
(27/90)

42.7%
(38/89)

40.0%
(36/90)

41.6%
(37/89)

30.4%
(24/79)

20.0%
(16/80)

13.6%
(12/88)

3.1%
(3/96)

1.2%
(1/82)

>3.0–4.0 5.7%
(4/70)

23.3%
(21/90)

24.7%
(22/89)

17.8%
(16/90)

25.8%
(23/89)

5.1%
(4/79)

2.5%
(2/80)

4.5%
(4/88)

0.0%
(0/96)

0.0%
(0/82)

>4.0–5.0 10.0%
(7/70)

0.0%
(0/90)

0.0%
(0/89)

0.0%
(0/90)

0.0%
(0/89)

0.0%
(0/79)

0.0%
(0/80)

0.0%
(0/88)

0.0%
(0/96)

0.0%
(0/82)

>5.0–6.0 25.7%
(18/70)

0.0%
(0/90)

0.0%
(0/89)

0.0%
(0/90)

0.0%
(0/89)

0.0%
(0/79)

0.0%
(0/80)

0.0%
(0/88)

0.0%
(0/96)

0.0%
(0/82)

>6.0 41.4%
(29/70)

0.0%
(0/90)

0.0%
(0/89)

0.0%
(0/90)

0.0%
(0/89)

0.0%
(0/79)

0.0%
(0/80)

0.0%
(0/88)

0.0%
(0/96)

0.0%
(0/82)

Limit of quantification (LOQ): 1 CFU/mL.
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