Dietary Fibre Impacts the Texture of Cooked Whole Grain Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Varieties
2.1.1. Non-Pigmented Rice
2.1.2. Pigmented Rice
2.2. Rice Bran Fraction Quantification
2.3. Dietary Fibre Analysis
2.4. Predictive Model for Dietary Fibre Content in Whole Grain Rice
2.5. Chemical Composition Analysis
2.6. Alkaline Degradation Test
2.7. Texture Profile Analysis
2.8. Radar Chart Image Creation
2.9. Statistical Analysis
Parameters | Measurement | Definition | 4-Point Scale | ||||
---|---|---|---|---|---|---|---|
<1 Slightly | <2 Moderately | <3 Very | <4 Extremely | ||||
Hardness | Determined by the peak height of the first curve | The force required to compress the food sample | Hard (N) | 0–10 | 10–20 | 20–30 | 30–40 |
Adhesiveness | Determined by negative force on the upstroke representing work to pull the plunger away from the sample | The degree to which the food sample sticks to the hand, mouth surface, or teeth | Sticky (N.s) | 0–0.1 | 0.1–0.2 | 0.2–0.3 | 0.3–0.4 |
Springiness | Determined by the ratio of distance travelled by the plunger on the two curves | The degree to which the deformed food sample returns to its original size and shape relating to sample recovery after the first compression | Springy (s/s) | 0–0.33 | 0.33–0.67 | 0.67–1.00 | 1.00–1.33 |
Cohesiveness | Determined by the ratio of the area under the second compression to the area under the first compression | The degree to which particles of food sample stick together | Cohesive (N.s/N.s) | 0–0.25 | 0.25–0.50 | 0.50–0.75 | 0.75–1.00 |
Gumminess | Calculated by hardness × cohesiveness | The energy required to disintegrate the food sample until it is ready to be swallowed | Gummy (N) | 0–5 | 5–10 | 10–15 | 15–20 |
Chewiness | Calculated by gumminess × springiness | The energy required to chew the food sample until it is ready to be swallowed | Chewy (N) | 0–5 | 5–10 | 10–15 | 15–20 |
4-Point scale/group | |||||||
<1 | <2 | <3 | <4 | ||||
SDF to IDF ratio | Low | Med | High | Very high | |||
0–0.16 | 0.16–0.28 | 0.28–0.40 | 0.40–0.54 |
3. Results
3.1. Development of a Simple Prediction Method for Determining the Dietary Fibre Content in Whole Grain Rice Based on Bran Fraction Weight
3.2. Variation in the Distribution of Dietary Fibre in Whole Grain Rice
3.3. Correlations of Dietary Fibre Profiles, Textural Characteristics, and Amylose Content of Whole Grain Rice
3.4. Influence of Dietary Fibre Profiles on the Softness of Whole Grain Rice
4. Discussion
4.1. More Accuracy in the Alternative Alkaline Method for Estimation of Dietary Fibre
4.2. Distribution of Soluble Dietary Fibre throughout Rice Endosperm
4.3. SDF to IDF Ratio as a Potential Biomarker for Selecting Eating Quality of Whole Grain Rice
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mir, S.A.; Shah, M.A.; Bosco, J.D.; Sunooj, K.V.; Farooq, S. A review on nutritional properties, health aspects, shelf life and consumption of brown rice in comparison to white rice. Cereal Chem. 2020, 97, 895–903. [Google Scholar] [CrossRef]
- Suwansri, S.; Meullenet, J.F.; Hankins, J.; Griffin, K. Preference maping of domestic /imported jasmine rice for US-Asian consumers. J. Food Sci. 2002, 67, 2420–2431. [Google Scholar] [CrossRef]
- Maleki, C.; Oliver, P.; Lewin, S.; Liem, G.; Keast, R. Preference mapping of different water-to-rice ratios in cooked aromatic white jasmine rice. J. Food Sci. 2020, 85, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Gondal, T.A.; Keast, R.S.J.; Shellie, R.A.; Jadhav, S.R.; Gamlath, S.; Mohebbi, M.; Liem, D.G. Consumer acceptance of brown and white rice varieties. Foods 2021, 10, 1950. [Google Scholar] [CrossRef] [PubMed]
- Se, C.H.; Khor, B.H.; Karupaiah, T. Prospects in development of quality rice for human nutrition. Malays. Appl. Biol. 2015, 44, 1–31. [Google Scholar]
- Villegas, R.; Liu, S.; Gao, Y.T.; Yang, G.; Li, H.; Zheng, W.; Shu, X.O. Prospective study of dietary carbohydrates, glycemic index, glycemic loads, and incidence of type 2 diabetes mellitus in middle-aged Chinese women. Arch. Intern. Med. 2007, 167, 2310–2316. [Google Scholar] [CrossRef] [Green Version]
- Nanri, A.; Mizoue, T.; Noda, M.; Takahashi, Y.; Kato, M.; Inoue, M.; Tsugane, S. Rice intake and type 2 diabetes in Japanese men and women: The Japan public health center-based prospective Study. Am. J. Clin. Nutr. 2010, 92, 1468–1477. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Spigelman, D.; van Dam, R.B.; Holmes, M.D.; Malik, V.S.; Willett, W.C.; Hu, F.B. White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch. Intern. Med. 2010, 170, 961–969. [Google Scholar] [CrossRef]
- Hu, E.A.; Pan, A.; Malik, V.; Sun, Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review. Br. Med. J. 2012, 344, e1454. [Google Scholar] [CrossRef] [Green Version]
- Trinidad, T.P.; Mallillin, A.C.; Encabo, R.R.; Sagum, R.S.; Felix, A.D.R.; Juliano, B.O. The effect of apparent amylose content and dietary fibre on the glycemic response of different varieties of cooked milled rice and brown rice. Int. J. Food Sci. Nutr. 2013, 64, 89–93. [Google Scholar] [CrossRef]
- Pletsch, E.A.; Hamaker, B.R. Brown rice compared to white rice slows gastric emptying in humans. Eur. J. Clin. Nutr. 2017, 72, 367–373. [Google Scholar] [CrossRef]
- Huang, M.; Li, X.; Hu, L.; Xiao, Z.; Chen, J.; Cao, F. Comparing texture and digestion properties between white and brown rice of indica cultivars preferred by Chinese consumers. Sci. Rep. 2021, 11, 19054. [Google Scholar] [CrossRef] [PubMed]
- Juliano, B.O. Rice: Overview. In Encyclopedia of Food Grains, 1st ed.; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; Academic Press: Oxford, UK, 2016; pp. 125–129. [Google Scholar] [CrossRef]
- Reddy, C.K.; Kimi, L.; Haripriya, S.; Kang, N. Effects of polishing on proximate composition, physicochemical characteristics, mineral composition and antioxidant properties of pigmented rice. Rice Sci. 2017, 24, 241–252. [Google Scholar] [CrossRef]
- Saleh, A.S.M.; Wang, P.; Wang, N.; Yang, L.; Xiao, Z. Brown rice versus white rice: Nutritional quality, potential health benefits, development of food products, and preservation technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1070–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Lin, Y.; Chen, H. Improving nutritional quality of rice for human health. Theor. Appl. Genet. 2020, 133, 1397–1413. [Google Scholar] [CrossRef]
- Carcea, M. Value of wholegrain rice in a healthy human nutrition. Agriculture 2021, 11, 720. [Google Scholar] [CrossRef]
- Mohan, V.; Anjana, R.M.; Gayathri, R.; Bai, M.R.; Lakshmipriya, N.; Ruchi, V.; Balasubramaniyam, K.K.; Jakir, M.M.; Shobana, S.; Unnikrishnan, R.; et al. Glycemic index of a novel high-fiber white rice variety developed in India—A randomized control trial study. Diabetes Technol. Ther. 2016, 18, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Panlasigui, L.N.; Thompson, L.U. Blood glucose lowering effects of brown rice in normal and diabetic subjects. Int. J. Food Sci. Nutr. 2006, 57, 151–158. [Google Scholar] [CrossRef]
- de Munter, J.S.L.; Hu, F.B.; Spiegelman, D.; Franz, M.; van Dam, R.M. Whole grain, bran, and germ intake and risk of type 2 diabetes: A prospective cohort study and systematic review. PLoS Med. 2007, 4, e261. [Google Scholar] [CrossRef]
- Ye, E.Q.; Chacko, S.A.; Chou, E.L.; Kugizaki, M.; Liu, S. Greater whole grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J. Nutr. 2011, 142, 1304–1313. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Ikeuchi, T.; Araki, A.; Kasuga, K.; Watanabe, K.; Hirayama, M.; Ito, M.; Ohtsubo, K. Possibility for Prevention of Type 2 Diabetes Mellitus and Dementia Using Three Kinds of Brown Rice Blends after High-Pressure Treatment. Foods 2022, 11, 818. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Hirakawa, A.; Nishijima, C.; Ohtsubo, K.; Nakamura, K.; Beppu, S.; Tungtrakul, P.; Quin, S.J.; Tee, E.; Tsuno, T.; et al. The new concept of “medical rice”. Adv. Food Technol. Nutr. Sci. Open J. 2016, 2, 38–50. [Google Scholar] [CrossRef]
- Moongngarm, A.; Daomukda, N.; Khumpika, S. Chemical compositions, phytochemicals, and antioxidant capacity of rice bran, rice bran layer, and rice germ. APCBEE Procedia 2012, 2, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Forster, G.M.; Raina, K.; Kumar, A.; Kumar, S.; Agarwal, R.; Chen, M.H.; Bauer, J.E.; McClung, A.M.; Ryan, E.P. Rice varietal differences in bioactive bran components for inhibition of colorectal cancer cell growth. Food Chem. 2013, 141, 1545–1552. [Google Scholar] [CrossRef] [Green Version]
- Goufo, P.; Trindade, H. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dong, L.; Jia, X.; Liu, L.; Chi, J.; Huang, F.; Ma, Q.; Zhang, M.; Zhang, R. Bound phenolics ensure the anti-hyperglycemic effect of rice bran dietary fiber in db/db mice via activating the insulin signaling pathway in skeletal muscle and altering gut microbiota. J. Agric. Food Chem. 2020, 68, 4387–4398. [Google Scholar] [CrossRef]
- Mbanjo, E.G.M.; Kretzschmar, T.; Jones, H.; Ereful, N.; Blanchard, C.; Boyd, L.A.; Sreenivasulu, N. The genetic basis and nutritional benefits of pigmented rice grain. Front. Genet. 2020, 11, 229. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.; Lourenco, V.M.; Menezes, R.; Brites, C. Rice compounds with impact on diabetes control. Foods 2021, 10, 1992. [Google Scholar] [CrossRef]
- AACC. AACC holds midyear meeting. Cereal Food World 2000, 45, 327. [Google Scholar]
- Smith, C.E.; Tucker, K.L. Health benefits of cereal fibre: A review of clinical trials. Nutr. Res. Rev. 2011, 24, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Papandreou, D.; Noor, Z.T.; Rashed, M. The role of soluble, insoluble fibers and their bioactive compounds in cancer: A mini review. Food Nutr. Sci. 2015, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mudgil, D. The interaction between insoluble and soluble fiber. In Dietary Fiber for the Prevention of Cardiovascular Disease, 1st ed.; Samaan, R.A., Ed.; Academic Press: Oxford, UK, 2017; pp. 35–59. [Google Scholar] [CrossRef]
- Pasakawee, K.; Laokuldilok, T.; Srichairatanakool, S.; Utama-ang, N. Relationship among starch digestibility, antioxidant, and physicochemical properties of several rice varieties using principle component analysis. Curr. Appl. Sci. Technol. 2018, 18, 133–144. [Google Scholar] [CrossRef]
- Karupaiah, T.; Aik, C.K.; Heen, T.C.; Subramaniam, S.; Bhuiyan, A.R.; Fasahat, P.; Zain, A.M.; Wickneswari, R. A transgressive brown rice mediates favourable glycaemic and insulin responses. J. Sci. Food Agric. 2011, 91, 1951–1956. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.S.S.; Hymavathy, P.; Babu, V.R.; Longvah, T. Nutritional composition in relation to glycemic potential of popular Indian rice varieties. Food Chem. 2018, 238, 29–34. [Google Scholar] [CrossRef]
- Sasaki, S. Rice and prevention of type 2 diabetes: Narrative review of epidemiologic evidence. J. Nutr. Sci. Vitamiol. 2019, 65, S38–S41. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, D.J.; Jenskins, A.L.; Wolever, T.M.; Rao, A.V.; Thompson, L.U. Fiber and starchy foods: Gut function and implications in disease. Am. J. Gastroenterol. 1986, 81, 920–930. [Google Scholar]
- Kondo, K.; Morino, K.; Nishio, Y.; Ishikado, A.; Arima, H.; Nakao, K.; Nakagawa, F.; Nikami, F.; Sekine, O.; Nemoto, K.I.; et al. Fiber-rich diet with brown rice improves endothelial function in type2 diabetes mellitus: A randomized controlled trial. PLoS ONE 2017, 12, e0189869. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Bhandari, C.; Kumar, S.; Sharme, B.; Bhadwal, P.; Agnihotri, N. Dietary fibers: A way to a healthy microbiome. In Diet, Microbiome and Heath: Handbook of Food Bioengineering Volume 11, 1st ed.; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press: Oxford, UK, 2018; pp. 299–345. [Google Scholar] [CrossRef]
- Prasadi, N.; Joye, I.J. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef]
- Vitaglione, P.; Napolitano, A.; Fogliano, V. Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci. Technol. 2008, 19, 451–463. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [Green Version]
- Gujral, H.S.; Kumar, V. Effect of accelerated aging on the physicochemical and textural properties of brown and milled rice. J. Food Eng. 2003, 59, 117–121. [Google Scholar] [CrossRef]
- Parween, S.; Anonuevo, J.J.; Butardo, V.M., Jr.; Misra, G.; Anacleto, R.; Llorente, C.; Kosik, O.; Romero, M.V.; Bandonill, E.H.; Mendioro, M.S.; et al. Balancing the double-edged sword effect of increased resistant starch content and its impact on rice texture: Its genetics and molecular physiological mechanisms. Plant Biotechnol. J. 2020, 18, 1763–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Cik, T.; Lii, C.; Lai, P.; Chen, H. Effect of amylose content on structure, texture and–amylose reactivity of cooked rice. Food Sci. Tech. 2013, 54, 224–228. [Google Scholar] [CrossRef]
- Liu, Q.; Tao, Y.; Cheng, S.; Zhou, L.; Tian, J.; Xing, Z.; Liu, G.; Wei, H.; Zhang, H. Relating amylose and protein contents to eating quality in 105 varieties of Japonica rice. Cereal Chem. 2020, 97, 1303–1312. [Google Scholar] [CrossRef]
- Mestres, C.; Ribeyre, F.; Pons, B.; Fallet, V.; Matencio, F. Sensory texture of cooked rice is rather linked to chemical than to physical characteristics of raw grain. J. Cereal Sci. 2011, 53, 81–89. [Google Scholar] [CrossRef]
- Patindol, J.; Gu, X.; Wang, Y.J. Chemometric analysis of cooked rice texture in relation to starch fine structure and leaching characteristics. Starch 2010, 62, 188–197. [Google Scholar] [CrossRef]
- Li, H.; Prakash, S.; Nicholson, T.M.; Fitzgerald, M.A.; Gilber, R.G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem. 2016, 196, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Fitzgerald, M.; Prakash, S.; Nicholson, T.; Gilbert, R.G. The molecular structural features controlling stickiness in cookes rice, a major palatability determinant. Sci. Rep. 2017, 7, 43713. [Google Scholar] [CrossRef] [Green Version]
- Ritika, B.Y.; Satnam, M.; Baljeet, S.Y. Physicochemical, pasting, cooking and textural quality characteristics of some basmati and non-basmati rice varieties grown in India. Int. J. Agri. Technol. 2016, 12, 675–692. [Google Scholar]
- Bhat, F.M.; Riar, C.S. Physicochemical, cooking, and textural characteristics of grains of different rice (Oryza sativa L.) cultivars of temperate region of India and their interrelationships. J. Texture Stud. 2017, 48, 160–170. [Google Scholar] [CrossRef]
- Chen, F.; Yang, C.; Liu, L.; Liu, T.; Wang, Y.; Wang, L.; Shi, Y.; Campanella, O.H. Differences, correlation of composition, taste and texture characteristics of rice from Heilongjiang China. J. Rice Res. 2017, 5, 1000178. [Google Scholar] [CrossRef]
- Cuevas, R.P.O.; Domingo, C.J.; Sreenivasulu, N. Multivariate-based classification of predicting cooking quality ideotypes in rice (Oryza sativa L.) indica germplasm. Rice 2018, 11, 56-d69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daou, C.; Zhang, H. Functional and physiological properties of total, soluble, and insoluble dietary fibres derived from defatted rice bran. J. Food Sci. Technol. 2014, 51, 3878–3885. [Google Scholar] [CrossRef] [Green Version]
- Tao, K.; Yu, W.; Prakash, S.; Gilbert, R.G. Investigating cooked rice textural properties by instrumental measurements. Food Sci. Hum. Wellness 2020, 9, 130–135. [Google Scholar] [CrossRef]
- Prosky, L.; Asp, N.G.; Schweizer, T.F.; DeVries, J.W.; Furda, I. Determination of insoluble and soluble dietary fiber in foods and food products: Collaborative study. J. AOAC Int. 1992, 75, 360–367. [Google Scholar] [CrossRef]
- McCleary, B.V.; DeVries, J.W.; Rader, J.I.; Cohen, G.; Prosky, L.; Mugford, D.C.; Champ, M.; Okuma, K. Determination of Total Dietary Fiber (CODEX Definition) by Enzymatic-Gravimetric Method and Liquid Chromatography: Collaborative Study. J. AOAC Int. 2010, 93, 221–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juliano, B.O. Rice starch properties and grain quality. Denpun Kagaku 1992, 39, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Pang, Y.; Ali, J.; Wang, W.; Franje, N.J.; Revilleza, J.E.; Xu, J.; Li, Z. Relationship of Rice Grain Amylose, Gelatinization Temperature and Pasting Properties for Breeding Better Eating and Cooking Quality of Rice Varieties. PLoS ONE 2016, 11, e0168483. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ding, Q.; Wang, W.; Pan, Y.; Tan, C.; Qiu, Y.; Chen, Y.; Li, H.; Li, Y.; Ye, N.; et al. Targeted deletion of the first intron of the Wxb Allele via CRISPR/Cas9 significantly increases grain amylose content in rice. Rice 2022, 15, 1. [Google Scholar] [CrossRef]
- Gujral, H.S.; Singh, J.; Sodhi, N.S.; Singh, N. Effect of milling variables on the degree of milling of unparboiled and parboiled rice. Int. J. Food Prop. 2002, 5, 193–204. [Google Scholar] [CrossRef]
- Bautista, R.C.; Siebenmorgen, T.J. Evaluation of laboratory mills for milling small samples of rice. Appl. Eng. Agric. 2002, 18, 577–583. [Google Scholar] [CrossRef]
- Little, R.R.; Hilder, G.B.; Dawson, E.H. Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem. 1958, 35, 111–126. [Google Scholar]
- Bhattacharya, K.R.; Sowbhagya, C.M. An improved alkali reaction test for rice quality. J. Food Technol. 1972, 7, 323–331. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, X.; Turcotte, F.; Deschênes, J.S.; Tremblay, R.; Jolicoeur, M. Current lipid extraction methods are significantly enhanced adding a water treatment step in Chlorella protothecoides. Microb. Cell Fact. 2017, 16, 26. [Google Scholar] [CrossRef] [Green Version]
- Ohkuma, K.; Matsuda, I.; Katta, Y. New method for determining total dietary fiber by liquid chromatography. J. AOAC Int. 2000, 83, 1013–1019. [Google Scholar] [CrossRef] [Green Version]
- Nádvorníková, M.; Banout, J.; Herák, D.; Verner, V. Evaluation of physical properties of rice used in traditional Kyrgyz cuisine. Food Sci. Nutr. 2018, 6, 1778–1787. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.H.; McClung, A.M. Genotypic diversity of bran weight of whole grain rice and its relationship with grain physical traits. Cereal Chem. 2018, 96, 252–262. [Google Scholar] [CrossRef]
- Juliano, B.O. A simplified assay for milled-rice amylose. Cereal Sci. Today 1971, 16, 335–340. [Google Scholar]
- Guillen, S.; Oria, R.; Salvador, M.L. Impact of Cooking Temperature on In Vitro Starch Digestibility of Rice Varieties with Different Amylose Contents. Pol. J. Food Nutr. Sci. 2018, 68, 319–325. [Google Scholar] [CrossRef]
- Bernstein, I.H. Likert Scale Analysis. In Encyclopedia of Social Measurement, 1st ed.; Leonard, K.K., Ed.; Elsevier Inc.: Amsterdom, The Netherlands, 2005; pp. 497–504. [Google Scholar]
- Statistic Solutions. Available online: https://www.statisticssolutions.com (accessed on 16 September 2022).
- The R Project for Statistical Computing. Available online: https://www.r-project.org (accessed on 16 September 2022).
- Lyon, B.G.; Champagne, E.T.; Vinyard, B.T.; Windham, W.R. Sensory and instrumental relationships of texture of cooked rice from selected cultivars and postharvest handling practices. Cereal Chem. 2000, 77, 64–69. [Google Scholar] [CrossRef]
- Kohyama, K. Food texture—Sensory evaluation and instrumental measurement. In Textural Characteristics of World Foods, 1st ed.; Nishinari, K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 1–13. [Google Scholar] [CrossRef]
- Cuevas, R.P.O.; Takhar, P.S.; Sreenivasulu, N. Characterization of mechanical texture attributes of cooked milled rice by texture profile analyses and unraveling viscoelasticity properties through rheometry. Methods Mol. Biol. 2019, 1892, 151–167. [Google Scholar] [CrossRef]
- Lim, J. Hedonic scaling: A review of methods and theory. Food Qual. Pref. 2011, 22, 733–747. [Google Scholar] [CrossRef]
- Abeysekera, W.K.S.M.; Arachchige, S.P.G.; Ratnasooriya, W.D.; Chandrasekharan, N.V.; Bentota, A.P. Physicochemical and nutritional properties of twenty three traditional rice (Oryza sativa L.) varieties of Sri Lanka. J. Coast. Life Med. 2017, 5, 343–349. [Google Scholar] [CrossRef]
- Hamid, A.A.; Luan, Y.S. Functional properties of dietary fiber from defatted rice bran. Food Chem. 2000, 68, 15–19. [Google Scholar] [CrossRef]
- Faria, S.A.S.C.; Bassinello, P.Z.M.; Penteado, V.C. Nutritional composition of rice bran submitted to different stabilization procedures. Braz. J. Pharm. Sci. 2012, 48, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhu, J.; Chen, S.; Fan, X.; Li, Q.; Lu, L.; Wang, M.; Yu, H.; Yi, C.; Tang, S.; et al. Wxlv, the Ancestral Allele of Rice Waxy Gene. Mol. Plant 2019, 12, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Champagne, E.T. Rice: Chemistry and Technology, 3rd ed.; AACC International Press: Washington, DC, USA, 2004; pp. 77–190. ISBN 978-1-891127-34-2. [Google Scholar]
- Juliano, B.O.; Tuaño, A.P.P. Gross structure and composition of the rice grain. In Rice, Chemistry and Technology, 4th ed.; Bao, J., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 31–53. [Google Scholar] [CrossRef]
- Din, S.U.; Bhattacharya, K.R. On the meaning of the degree of milling of rice. J. Food Technol. 1978, 13, 99–105. [Google Scholar] [CrossRef]
- Pokhrel, A.; Dhakal, A.; Sharma, S.; Poudel, A. Evaluation of physicochemical and cooking characteristics of rice (Oryza sativa L.) Landraces of Lamjung and Tanahun districts, Nepal. Int. J. Food Sci. 2020, 2020, 1589150. [Google Scholar] [CrossRef]
- Bett-Garber, K.L.; Lea, J.M.; McClung, A.M.; Chen, M.H. Correlation of sensory, cooking, physical, and chemical properties of whole grain rice with diverse bran color. Cereal Chem. 2013, 90, 521–528. [Google Scholar] [CrossRef]
- Mariotti, M.; Fongaro, L.; Catenacci, F. Alkali spreading value and image analysis. J. Cereal Sci. 2010, 52, 227–235. [Google Scholar] [CrossRef]
- Tuaño, A.P.P.; Ricafort, C.H.; del Rosario, E.J. Estimation of alkali spreading value and gelatinization temperature of some Philippine rice varieties using digital photometer. Philipp. Agric. Sci. 2018, 101, 354–362. [Google Scholar]
- Lim, S.T.; Lee, J.H.; Shin, D.H.; Lim, H.S. Comparison of protein extraction solutions for rice starch, isolation and effects of residual protein content on starch pasting properties. Starch 1999, 4, 120–125. [Google Scholar] [CrossRef]
- Phongthai, S.; Homthawornchoo, W.; Rawdkuen, S. Preparation, properties and application of rice bran protein: A review. Int. Food Res. J. 2017, 24, 25–34. [Google Scholar]
- Bender, D.; Nemeth, R.; Wimmer, M.; Gotschhofer, S.; Biolchi, M.; Torok, K.; Tomoskozi, S.; D’Amico, S.; Schoenlechner, R. Optimization of arabinoxylan isolation from rye bran by adapting extraction solvent and use of enzymes. J. Food Sci. 2017, 82, 2562–2568. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wu, F.; Xu, D.; Xu, X. Endogenous alpha-amylase explains the different pasting and rheological properties of wet and dry milled glutinous rice flour. Food Hydrocoll. 2021, 113, 106425. [Google Scholar] [CrossRef]
- Yasui, T.; Sasaki, T.; Matsuki, J. Variation in the Chain-length Distribution Profiles of Endosperm Starch from Triticum and Aegilops Species. Starch 2005, 57, 521–530. [Google Scholar] [CrossRef]
- Englyst, H.N.; Quigley, M.E.; Hudson, G.J. Dietary fiber analysis as non-starch polysaccharides. In CRC Handbook of Dietary Fiber in Human Nutrition; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Butardo, V.M.; Sreenivasulu, N. Tailoring grain storage reserves for a healthier rice diet and its comparative status with other cereals. Int. Rev. Cell Mol. Biol. 2016, 323, 31–70. [Google Scholar] [CrossRef]
- Lovergrove, A.; Kosik, O.; Bandonill, E.; Abilgos-Ramos, R.; Romero, M.; Sreenivasulu, N.; Shewry, P. Improving rice dietary fiber content and composition for human health. J. Nutr. Sci. Vitaminol. 2019, 65, S48–S50. [Google Scholar] [CrossRef] [Green Version]
- Kosik, O.; Romero, M.V.; Bandonill, E.H.; Abilgos-Romos, R.G.; Sreenivasulu, N.; Shewry, P.; Lovegrove, A. Diversity of content and composition of cell wall-derived dietary fibre in polished rice. J. Cereal Sci. 2020, 96, 10312. [Google Scholar] [CrossRef]
- Lai, V.M.F.; Lu, S.; He, W.H.; Chen, H.H. Non-starch polysaccharide compositions of rice grains with respect to rice variety and degree of milling. Food Chem. 2006, 101, 1205–1210. [Google Scholar] [CrossRef]
- Dodevska, M.S.; Djordjevic, B.I.; Sobajic, S.S.; Miletic, I.D.; Djordjevic, P.B.; Dimitrijevic-Sreckovic, V.S. Characterisation of dietary fibre components in cereals and legumes used in Serbian diet cereals and legumes used in Serbian diet. Food Chem. 2013, 141, 1624–1629. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sinha, A.; Makkar, H.P.S.; de Boeck, G.; Becker, K. Dietary roles of non-starch polysaccharides in human nutrition: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 899–935. [Google Scholar] [CrossRef] [PubMed]
- BeMiller, J. Pectins. In Carbohydrate Chemistry for Food Scientists, 3rd ed.; BeMiller, J., Ed.; Workhead Publishing and AACC International Press: Cambridge, UK, 2018; pp. 303–312. [Google Scholar] [CrossRef]
- Bhattacharya, K.R. Cooking quality of rice. In Rice Quality: A Guide to Rice Properties and Analysis, 1st ed.; Bhattacharya, K.R., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 164–192. [Google Scholar] [CrossRef]
- Ahmed, F.; Abro, T.F.; Kabir, M.S.; Latif, M.A. Rice quality: Biochemical composition, eating quality, and cooking quality. In The Future of Rice Demand: Quality Beyond Productivity, 1st ed.; De Oliveira, A.C., Pegoraro, C., Viana, V.E., Eds.; Springer: Cham, Switzerland, 2020; pp. 3–24. [Google Scholar] [CrossRef]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
- El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012, 2012, 851362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phuwadoipaisarn, P. The influence of conditions on beta-glucan extraction from Thai rice bran cultivars and their biological properties. In Proceedings of the 95th The IIER International Conference, Osaka, Japan, 8–9 February 2017; ISBN 978-93-86083-34-0. [Google Scholar]
- Neethi, R.P.; Anie, Y. Extraction of water-soluble beta-glucan from rice bran. Sch. Acad. J. Biosci. 2017, 5, 766–770. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wattanavanitchakorn, S.; Wansuksri, R.; Chaichoompu, E.; Kamolsukyeunyong, W.; Vanavichit, A. Dietary Fibre Impacts the Texture of Cooked Whole Grain Rice. Foods 2023, 12, 899. https://doi.org/10.3390/foods12040899
Wattanavanitchakorn S, Wansuksri R, Chaichoompu E, Kamolsukyeunyong W, Vanavichit A. Dietary Fibre Impacts the Texture of Cooked Whole Grain Rice. Foods. 2023; 12(4):899. https://doi.org/10.3390/foods12040899
Chicago/Turabian StyleWattanavanitchakorn, Siriluck, Rungtiva Wansuksri, Ekawat Chaichoompu, Wintai Kamolsukyeunyong, and Apichart Vanavichit. 2023. "Dietary Fibre Impacts the Texture of Cooked Whole Grain Rice" Foods 12, no. 4: 899. https://doi.org/10.3390/foods12040899
APA StyleWattanavanitchakorn, S., Wansuksri, R., Chaichoompu, E., Kamolsukyeunyong, W., & Vanavichit, A. (2023). Dietary Fibre Impacts the Texture of Cooked Whole Grain Rice. Foods, 12(4), 899. https://doi.org/10.3390/foods12040899