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Abstract: Consumers’ general preference for white rice over whole grain rice stems from the hardness
and low palatability of cooked whole grain rice; however, strong links have been found between
consuming a large amount of white rice, leading a sedentary lifestyle, and acquiring type 2 diabetes.
This led us to formulate a new breeding goal to improve the softness and palatability of whole grain
rice while promoting its nutritional value. In this study, the association between dietary fibre profiles
(using an enzymatic method combined with high-performance liquid chromatography) and textural
properties of whole grain rice (using a texture analyser) was observed. The results showed that a
variation in the ratio of soluble dietary fibre (SDF) and insoluble dietary fibre (IDF) influenced the
textural characteristics of cooked whole grain rice; found a strong association between SDF to IDF
ratio and hardness (r = —0.74, p < 0.01) or gumminess (r = —0.69, p < 0.01) of cooked whole grain
rice, and demonstrated that the SDF to IDF ratio was also moderately correlated with cohesiveness
(r = —0.45, p < 0.05), chewiness (r = —0.55, p < 0.01), and adhesiveness (r = 0.45, p < 0.05) of cooked
whole grain rice. It is suggested that the SDF to IDF ratio can be used as a biomarker for breeding
soft and highly palatable whole grain rice of cultivated tropical indica rice to achieve consumer
well-being. Lastly, a simple modified method from the alkaline disintegration test was developed for
high-throughput screening of dietary fibre profiles in the whole grain indica rice samples.
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1. Introduction

Rice (Oryza sativa) is a major staple food in most Asian countries. Consumers increas-
ingly prefer white rice for its features such as texture, palatability, and appearance [1]. A few
reports have associated lower consumer acceptability with an increase in the hardness of
rice [2-4]. Additionally, statistical estimation reveals that white rice consumption accounts
for about 85% of the total global rice consumption [5]. However, a relationship might
exist between the consumption of white rice and the development of non-communicable
diseases (NCDs). Epidemiological studies in China [6] and Japan [7] have revealed that
high consumption of white rice increases the risk of developing type 2 diabetes (T2D) (78%
and 65%, respectively), which is consistent with the risk in the Caucasian population in the
United States [8]. Furthermore, a meta-analysis and systematic review concluded that the
relative risk for T2D was 1.55 for the Asian population compared to 1.12 for the Western
population [9]. The soft texture and the absence of bran layer in white rice may result in
faster digestion and higher glycaemic index (GI) [10-12].

Whole grain rice or brown rice consists of a bran layer (6-7% of its total weight), germ
(2-3%), and starchy endosperm (90-91%); if this whole grain rice is further milled to remove
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the bran layer and germ, it is termed ‘white rice’ or ‘milled rice’ [13]. These by-products,
lost during the milling process, have high amounts of macro- and micronutrients, such
as protein, lipids, dietary fibre, vitamins, minerals, and phytochemicals (e.g., phenolic
acids, flavonoids, anthocyanin, tocopherols, y-oryzanol, and phytic acid), which are all
health-promoting components [14-17]. Current cohort studies and systematic reviews
have revealed that a higher intake of whole grain rice is associated with a lower risk of
NCDs, such as T2D, cardiovascular diseases (CVDs), and cancers [15,18-23]. This effect is
partly due to the high amount of bioactive compounds in rice bran and germ, which have
remarkable biological activities, such as anti-oxidant, anti-diabetic, anti-obesity, cholesterol-
lowering, anti-cancer, and anti-inflammatory activities [15,22-29].

Dietary fibre, as defined by the American Association of Cereal Chemists (AACC,
2000) [30], refers to the edible parts of a plant or analogous carbohydrates that are resistant
to digestion and absorption by the small intestine with complete or partial fermentation in
the large intestine in humans. It is further classified into soluble and insoluble types. Soluble
dietary fibre (SDF) easily dissolves in water and gastrointestinal fluids, then transforms
into a gel-like substance, resulting in the blockage of digestion and absorption of fat and
carbohydrate. This causes a reduction in blood cholesterol and sugar levels. Conversely,
insoluble dietary fibre (IDF) does not dissolve in water, but absorbs fluid and increases the
faecal bulk. This reduces the transit time of food in the digestive tract, thereby preventing
gastrointestinal blockage and constipation, which are causes of colorectal cancer [31-33].
Some studies have demonstrated the influence of dietary fibre content in increasing the
glycaemic index (GI) value of milled rice [10,34-37], suggesting that the bran layer serves
as a physical barrier, which leads to a block in water absorption, inhibition of starch granule
swelling during thermal processing, and a decrease in enzyme accessibility [5]. Fibre
does not have a GI value, and the addition of fibre in a meal also lowers the GI value
of a carbohydrate-rich diet [38]. A growing body of evidence indicates that the regular
consumption of a fibre-rich diet with whole grain rice prevents the risk of T2D [19,21,39].
The consumption of dietary fibre plays a vital role in maintaining healthy gut microbiota,
while fermentable fibre is metabolised by the gut bacteria to produce short-chain fatty acids
that promote the proliferation of beneficial bacteria in the colon and also play a crucial
role in risk reduction of NCDs [40,41]. Additionally, recent studies have highlighted the
synergistic effect of phenolic compounds and rice bran dietary fibre on anti-hyperglycaemic
activities [27,42,43].

Despite these health benefits, few studies have demonstrated the effect of dietary
fibre on the texture and consumer acceptance of whole grain rice. The hardness of cooked
whole grain rice containing dietary fibre is higher than that of cooked milled rice, which
leads to a decrease in consumer acceptance of whole grain rice [4,12,17,44]. Additionally,
Parween et al. [45] demonstrated that increased resistance starch content using genetic
modification affects the textural property of rice, i.e., increased hardness and adhesive-
ness. In addition to dietary fibre, several factors also affect the rice texture among rice
varieties, e.g., chemical composition, the amylose and protein content [46—48]; starch fine
structure, such as the proportions of chain length and molecular size of amylose and amy-
lopectin [49-51]; physicochemical properties, such as gelatinization temperature (GT) and
viscosity [48,52-55], and physical properties, such as shape and size of the rice kernel [48,55].
Therefore, variation in the eating and cooking quality of rice is the most important aspect
to be considered for improving rice variety to ensure customer satisfaction and health
benefits. Surprisingly, a variation in the SDF to IDF ratio among varieties of whole grain
rice was observed in this study, which is likely relevant to the textural properties of cooked
whole grain rice. Our finding was consistent with the finding reported by Daou et al. [56],
who demonstrated that SDF derived from defatted rice bran forms a viscous solution and
increases viscosity, which positively correlates with the adhesiveness of cooked rice [54,57].
Furthermore, in a study by Mestres et al. [48], the amount of (3-glucan, which is classified
as SDF, was found to be negatively correlated with the hardness and chewiness of cooked
milled rice.
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Although a few reports explore the relationship between an increase in the dietary
fibre content and the eating quality of rice, no report has been published on the influence
of dietary fibre profiles on the textural properties of cooked whole grain rice. Therefore,
this study is aimed at identifying the association between dietary fibre profiles and textural
properties of cooked whole grain rice, which, in turn, can be utilised as a predictive indicator
of the texture of whole grain rice and as a potential biomarker for breeding soft, whole
grain rice to overcome consumer resistance.

Current methods for predicting both soluble and insoluble types of dietary fibre
in whole grain rice accepted by the Association of Official Analytical Chemists (AOAC)
International are expensive and time-consuming. The Prosky method, the enzymatic-
gravimetric AOAC methods 985.29 and 991.43, provide easy determination of IDF and
only high-molecular weight soluble dietary fibre (HMWSDEF); however, the amount of
SDF in whole grain rice is lower than the detection limit of this method [58]. Although
the method developed by McCleary et al. [59], an enzymatic-gravimetry combined with
high-performance liquid chromatography (HPLC) AOAC methods 2009.01 and 2011.25,
can accurately determine the quantity of dietary fibre, including HMWSDF, low-molecular-
weight soluble dietary fibre, and IDF; however, it is a complicated method. This enabled
us to develop a simple predictive method for determining the dietary fibre content in
whole grain rice by investigating the association of dietary fibre content in whole grain rice
determined by the standard method and the alternative alkaline method. These findings
provided vital information for improving the texture of high-nutrient rice.

2. Materials and Methods
2.1. Rice Varieties

Rice varieties (Oryza sativa L. ssp. indica) can be classified into six groups based on
amylose content (AC) and pigment contents. In this study, ACs were subdivided into four
groups: waxy (0-12%), low (12-20%), intermediate (20-25%), and high (25-33%), based
on the classification provided by Juliano [60], Pang et al. [61], and the Waxy (Wx) gene
provided by Liu et al. [62].

2.1.1. Non-Pigmented Rice

High-amylose rice: 66B09, Pinkaset4#20A09 (PK4#20A09), 16F35, MU2-00005,
Pinkaset4#117A08 (PK4#117A08), and Pinkaset4#78A03 (PK4#78A03)

Intermediate-amylose rice: Doongara (DGR), M9997, Basmati (BMT), and Khaotahang (KTH)

Low-amylose rice: RD 43, RD 15, Pitsanulok 80 (PNL80), Pinkaset1 (PK1), Khaodawk-
mali 105 (KDML105), Homsiam (HS), Hugdoi (HD), Pathumthani 1 (PTN1), Hommaliman
(M7881), Sinlek (SL), and Homcholasid (HCS)

Waxy rice: Niewhomnuan (NHN) and RD 6

2.1.2. Pigmented Rice

Low-amylose rice: MU2-42, 909-10-3, Jaohomnil (JHN), Hom Lanna (HLN), Riceberry
(RB), and Sungyodna (SYN)

Waxy rice: Klumhom (KH) and MU1-2313.

These rice varieties were provided by the Rice Science Center, Kasetsart University,
Kamphaeng Saen Campus, Nakhon Pathom, Thailand. The whole grain rice samples were
coarsely ground with a blender, followed by fine grinding and screening into particle sizes
of 200 um using a speed rotor mill, Pulverisette 14, Fritsch. The flour was stored in an
airtight container at —20 °C until it was required for further analysis.

2.2. Rice Bran Fraction Quantification

The rice bran samples were separated by two methods, i.e., the milling method and
the alkaline method. In the milling method, the bran was collected by milling whole grain
rice in a rice polisher followed by roller milling. The percentage of bran removed from
whole grain rice was expressed as the degree of milling (DOM), and the milled bran was
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calculated using the following equation provided by Gujral et al. [63] and Bautista and
Siebenmorgen [64]:

Weight of (whole grain — milled) rice x 100

Milled bran (g/100 g, dry basis) = Weight of whole grain rice

M

The alkaline method was adapted from the alkaline degradation test of rice endosperm,
in which the starchy endosperm in rice kernel was digested by 1-7% (w/v) alkaline solution,
depending on the alkaline-resistant properties [65,66]. To determine the weight of the bran
layer without germ, rice germ was removed from whole grain rice by hand using cutting
before incubation with an alkaline solution. In a brief process, 50 rice kernels with or
without germ were immersed in 20 mL of potassium hydroxide (KOH) aqueous solution
with different concentrations, depending on the alkaline-resistant properties as mentioned
below, for 24 h at room temperature. Rice varieties with an alkaline spreading value (ASV)
of more than 1 were treated with 3% (w/v) KOH solution, whereas rice varieties with ASV
equal to 1 were treated with 6% (w/v) KOH solution. After a 24-h incubation, the rice
endosperm starches were completely gelatinised and separated from the rice bran; then the
detached bran layer with germ or without germ (Figure 1) was collected and washed with
deionised water three times.

Whole Grain Rice Detached bran layer Detached bran layer
with germ without germ

Starch
«<%» Endosperm —_—
that was gelatinized and G sk g
separated from the bran elatinization
layer & germ Bran Layer
Bran Layer

~Germ Germ Bran Layer
that was removed before incubation

with an alkaline solution to determine
the weight of bran layer without germ

Figure 1. Separation of bran layer with germ or without germ from whole grain rice by the alkaline method.

To determine the dry weight of alkaline-treated rice bran samples, the samples were
dried in an air oven at 105 °C for 24 h, and then weighed; the percentage of alkaline-treated
bran layer with germ or without germ was calculated using the following equation:

Weight of bran layer with germ or without germ (g)

BWG (mg/g) = Weight of whole grain rice (g)

x 100 x 10 (2)

where BW is the percentage of bran layer weight with germ or without germ in whole grain
rice (g/100 g, dry basis) and BWG is the bran layer weight with germ or without germ per
gram of whole grain rice (mg/g, dry basis).

2.3. Dietary Fibre Analysis

Dietary fibre was determined by measuring carbohydrates that have a degree of
polymerization (DP) of more than 2 and are not hydrolysed by the endogenous enzyme
in the small intestine of humans. The enzymatic method based on AOAC methods 991.43
and 985.29 (K-TDFR, Megazyme) was used to estimate the dietary fibre content of whole
grain rice and rice bran samples in this study. Before the analysis, defatted rice bran
was produced using a modified version of the method given by Ren et al. [67]. Briefly,
rice bran was extracted with cold acetone (1:10, w/v), followed by centrifugation. The
supernatant was discarded, and the remaining pellets were re-extracted twice before air-
drying under the hood overnight, followed by powdering. The sample was subjected to
sequential enzymatic digestion by heat-stable x-amylase, protease, and amyloglucosidase.
In a brief process, 1 g of whole grain rice flour or defatted bran powder was boiled for
30 min with 50 mL of 0.05 M MES/TRIS buffer (pH 8.2) and 0.2 mL of thermostable x-
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amylase (3000 Units/mL). After cooling, the solution was incubated at 60 °C with 0.1 mL
of protease (50 mg/mL; ~350 tyrosine Units/mL). After 30 min of incubation, it was
adjusted to pH 4.5 with 0.561 N HCI and further incubated at 60 °C for 16 h with 0.2 mL
of amyloglucosidase (3300 Units/mL). Upon complete digestion, the solution was filtered
to separate the insoluble (residue) and soluble (filtrate) fractions. IDF: The residue was
washed with 78% ethanol, 95% ethanol, and acetone, then dried and weighed. The weight
of the residue corrected for crude protein and ash formed the total quantity of IDF, which
was calculated as the percentage of whole grain rice flour or rice bran powder. SDF: To
deionise, the filtrate was further passed through a column packed with mixed-bed ion-
exchange resin, following which the deionised solution was concentrated and filtered again
through a 0.45 um-membrane filter. The filtrate consisting of SDF was quantified by HPLC
with a refractive index detector (Shimadzu RID-10A HPLC system, Shimadzu Corporation,
Kyoto, Japan) based on Ohkuma’s method [68] with modification and AOAC methods
2009.01 and 2011.25 (K-INTDEF, Megazyme). The SDF was expressed as the percentage
of whole grain rice flour or rice bran powder, whereas the total dietary fibre (TDF) was
expressed as the sum of IDF and SDE.

2.4. Predictive Model for Dietary Fibre Content in Whole Grain Rice

A simple prediction model was developed in this study to ascertain the dietary fibre
content in whole grain rice using linear regression between the bran layer fraction weight
estimated by the alkaline method (Section 2.2) and the dietary fibre content determined
by the standard method (Section 2.3). The actual values of dietary fibre content (Y): SDF,
IDF, and TDF, were plotted against the bran layer weight without germ per whole grain
(BW, Xj) (Figure S1A). The BW was calculated using the Equation (2). Additionally, to
remove the difference in kernel size, the correlation of dietary fibre content with the bran
layer weight based on the surface area of the rice kernel, representing bran thickness,
was observed. The length (cm), width (cm), and thickness (cm) of whole grain rice were
manually measured using a vernier calliper with 0.1 mm least count. The actual value
of dietary fibre content (Y) was plotted against the bran layer weight without germ per
surface area (BWS, X,) (Figure S1B). The surface area and bran thickness of rice kernel
were calculated using the equation provided by Nadvornikova et al. [69] and Chen and
McClung [70], as shown below:

2 2 3
Srfacearea(s, cm ) = XL ><(W><T)1 3

kernel /(5 1) — (W x T)2

cm? s x 50 kernels
Sur face area (S, g) =— W 4
B
Bran thickness (BWS, m—%) _ BWG )
cm S

where s is the surface area of a single kernel (cm?/kernel); S is the total surface area per
gram of whole grain rice (cm?/ g); L, W, and T are the length, width, and thickness of kernel
(cm), respectively; FKW is the dry weight of 50 kernels of whole grain rice (g); BWG is the
bran layer weight per gram of whole grain rice (mg/g), and BWS is the bran layer weight
per unit of surface area (mg/cm?).

2.5. Chemical Composition Analysis

The AC was determined by the iodine-colourimetric method, based on the method
used by Juliano [71]. The total fat was determined using Soxhlet extraction with petroleum
ether based on AOAC method 945.16. The moisture content was measured by the gravi-
metric method based on the International Organization for Standardization (ISO) method
712:2009. Crude protein was determined by Kjeldahl analysis, according to the AOAC
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method 2001.11. Crude ash was determined by incineration at 525 °C for five hours
according to AOAC method 942.05.

2.6. Alkaline Degradation Test

The alkaline degradation test was conducted by the method employed by Little et al. [65],
with minor modifications to estimate GT and alkaline-resistant properties of whole grain
rice samples. Eight kernels of whole grain rice were placed in a closed 10-cm Petri dish
containing 20 mL of 1.7% (w/v) KOH aqueous solution for 24 h at room temperature. The
spreading value was rated visually on a 7-point numerical scale (1 = intact; 7 = greatly
dispersed), and the average scores of eight kernels were taken as the spreading value.

2.7. Texture Profile Analysis

Whole grain rice samples were soaked in water in a ratio of 1:2 in aluminium cups,
then cooked in a stainless-steel streamer for 30-40 min until no white starch core could
be observed before the analysis. A texture profile analysis (TPA) of cooked whole grain
rice samples was conducted with a texture analyser (TA-XT plus, Stable Micro System,
Godalming, UK), based on the method used by Parween et al. [45] and Guillen et al. [72],
which demonstrated the significant correlation with sensory evaluation by trained panel-
lists. A 50-mm cylinder probe was set at 30 mm above the base. The TPA force-deformation
curve was obtained using a two-cycle compression with a force-versus-distance program.
Three warm rice kernels were put onto the base platform under the centre of the probe and
compressed to 90% of the original cooked grain thickness. Pre-test speed, test speed, and
post-test speed were 1, 0.5, and 0.5 mm/sec, respectively. In total, nine measurements were
performed for each sample (3 measurements per cup x 3 cups).

2.8. Radar Chart Image Creation

Two types of radar charts were developed to display the complex correlation among
AC, SDF to IDF ratio, and textural characteristics of whole grain rice. The first one was
designed to plot a series of the SDF to IDF ratio: low, medium, high, and very high over
the average values of each TPA parameter (Figure 6A). The second one was developed
to plot the values of TPA parameters—hardness, springiness, cohesiveness, and SDF to
IDF ratio—across rice varieties with high-intermediated AC (Figure 6B) and with low AC
(Figure 6C). The SDF to IDF ratio and TPA parameters were classified into four groups or
4-point scales using the following numerical rating: 1 = lowest and 4 = highest, as described
in Table 1. Scaling was performed by dividing the difference between the maximum and
minimum values in all samples by 4, based on the method described by Bernstein [73] with
modification.

2.9. Statistical Analysis

The analysis was performed using Statgraphics Centurion XVII software (Statpoint
Technologies, Warrenton, VA, USA). The data were analysed in triplicate by one-way
analysis of variance, and Duncan’s multiple range test was used to determine statistically
significant differences among the samples. These differences were indicated by different
letters in the columns when the p value was lower than 0.05. Linear regression was also
analysed using Pearson correlation two-tailed test with a significance level of 0.05 and
0.01 [74]. A correlation matrix was developed to identify the correlations between two
variables using a linear relationship Pearson correlation coefficient with R-statistic version
5.5.1 (The R Foundation for Statistical Computing, Vienna, Austria) at a significance level
of 0.05 and 0.01 [75] and drawn with the DISPLAYR web free service.
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Table 1. 4-Point rating scale of texture parameters and the ratio of SDF and IDFE.
4-Point Scal
Parameters Measurement Definition ome Sea’e
<1 <2 <3 <4
Slightly =~ Moderately Very Extremely
Determined by the The force required Hard
Hardness peak height of the to compress the (N) 0-10 10-20 20-30 30-40
first curve food sample
Determined by
negative force on the The degree to
upstroke which the food Stick
Adhesiveness representing work to sample sticks to (N s)y 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4
pull the plunger the hand, mouth '
away from surface, or teeth
the sample
The degree to
which the
Determined by the deformed food
ratio of distance sample returns to Sprin
Springiness travelled by the its original size f(’s /s)gy 0-033  033-0.67 067-1.00  1.00-1.33
plunger on the and shape relating
two curves to sample recovery
after the first
compression
Determined by the
ratio of the area The degree to
. under the second which particles of ~ Cohesive
Cohesiveness compression to the food sample stick  (N.s/N.s) 0-0.25 0.25-0.50 0.50-0.75 0.75-1.00
area under the together
first compression
The energy
Calculated by di;fr(lltglr::t; (:he Gumm
Gumminess hardness x & . Y 0-5 5-10 10-15 15-20
. food sample until (N)
cohesiveness "
it is ready to be
swallowed
The energy
Calculated by required to chew Chew
Chewiness gumminess x the food sample (N) y 0-5 5-10 10-15 15-20
springiness until it is ready to
be swallowed
4-Point scale/group
<1 <2 <3 <4
SDF to . .
IDF ratio Low Med High Very high
0-0.16 0.16-0.28 0.28-0.40 0.40-0.54

Adapted from [73,76-79].

3. Results

3.1. Development of a Simple Prediction Method for Determining the Dietary Fibre Content in

Whole Grain Rice Based on Bran Fraction Weight

In this study, the fraction weight of rice bran was determined using both the classical
milling method in the preliminary part of this research and the alternative method modified
from the alkali degradation test (Table S1). When the association between bran weight and
dietary fibre was investigated, the results showed no correlation between the amount of
TDEF, IDE, or SDF in the whole grain rice and the rice bran weight determined by the milling
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method (Figure S2). Likely, the contamination of starchy endosperm in the milled rice
bran caused the overestimation of bran weight [70]. To reduce the measurement error, an
alternative method modified from the alkali degradation test was developed to determine
the fraction weight of rice bran. Figure S1A shows that the percentage of bran layer without
germ (BW), determined by the alkaline method, has a strong correlation with the percentage
of IDF (r = 0.81, p < 0.01) and the percentage of TDF (r = 0.75, p < 0.01). A weak relationship
(r=0.42, p < 0.05) between SDF content in the whole grain and the bran layer was observed
as expected. IDF was mostly localised in the bran layer, whereas SDF was distributed
throughout the endosperm, which is described later.

Interestingly, Chen and McClung [70] uncovered the correlation between the phys-
ical traits and bran traits of whole grain rice. The authors of the study at hand further
hypothesised that kernel size and surface area can influence the amount of dietary fibre in
whole grain rice. Thus, the relationship between the percentage of dietary fibre and bran
thickness (BWS, mg/cm?) was also observed in this study. Bran thickness, expressed as
bran weight independent of grain size (Tables S1 and 52), showed a strong correlation with
the percentage of IDF and TDF (r = 0.78 and 0.69, p < 0.01, respectively), but no significant
relationship was found with the percentage of SDF (r = 0.32), as presented in Figure S1B.

While both bran weight and kernel shape are related to the amount of dietary fibre
in whole grain rice, dietary fibre content exhibiting a comparatively stronger relationship
with BW than with BWS suggests that the former correlation is more accurate and practical
for screening the dietary fibre content in a huge amount of whole grain rice samples. Thus,
the percentage of bran layer can potentially be used to estimate the percentage of IDF and
TDF in whole grain rice using the following linear regression model: % IDF = 0.73X + 1.09
and % TDF = 0.92X + 1.41, where X represents the BW determined by the alkaline method,
whereas the percentage of SDF in whole grain rice was calculated by subtracting the
percentage of TDF from IDEF. Lastly, while the predicted values of IDF and TDF highly
correlated with the value of IDF and TDF quantitated by the AOAC standard method,
the predicted SDF value significantly correlated with the SDF value quantitated by the
standard method (Figure 2).

g .
E ® TDF

E 6 o IDF l'=0.7431:k_’;"-
T - | e SDF o o %
-3 .

=

=

s 4

5

-}

= 3

S

g2

E ®

S 17 W= o04228

ol

0 1 2 3 4 S 6 @
Predicted DF content (%)

Figure 2. Linear regression between soluble dietary fibre (SDF), insoluble dietary fibre (IDF), and
total dietary fibre (TDF); predicted value from the alkaline method and determined value from the
standard method. Rice varieties with ASV equal to exactly 1 are shown as circles with a red border.
* Correlation is significant at the 0.05 level. ** Correlation is significant at the 0.01 level.
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3.2. Variation in the Distribution of Dietary Fibre in Whole Grain Rice

A slight variation in the dietary fibre composition was observed among a series of
whole grain rice samples. Figure 3A indicates that the average value of SDF was 0.82%,
varying from 0.27% to 1.44%; the average value of IDF was 2.97%, ranging from 2.18% to
3.82%, which is in line with that in the previous reports [13,17,36,80]. For non-waxy rice,
the three highest values of both SDF and IDF were found in all low-AC and pigmented
rice samples, SDF: HLN (1.24% SDF), RB (1.37% SDF), and MU2-42 (1.44% SDF); IDF:
HLN (3.75% IDF), MU2-42 (3.81% IDF), and SYN (3.82% IDF) (Table S3). Additionally, the
amount of both SDF and IDF in whole grain pigmented rice was observed to be significantly
higher than that in non-pigmented rice (Figure 3C,D). The amount of dietary fibre in rice
bran samples, separated from whole grain rice by milling, was also quantitated (Table S4).
Figure 3B indicates that the average value of SDF was 2.62%, varying from 0.92% to 4.56%,
whereas the average value of IDF was 30.81%, ranging from 25.25% to 39.71%, which is in
line with that in published reports [13,56,81,82]. Although the TDF content in milled bran
was considerably higher than that in whole grain, the major portion of dietary fibre in rice
bran was insoluble, constituting about 90% of TDF. This suggests that only the insoluble
type of dietary fibre is primarily concentrated in the outer layer of whole grain rice, while
the soluble type is distributed throughout the endosperm of rice grain.
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Figure 3. Overview of variation in SDF and IDF distribution (A) in whole grain rice samples varying
from high amylose content (AC) to low AC, expressed as the percentage of total grain weight and
(B) in milled bran samples expressed as the percentage of rice bran powder; the difference in (C) SDF
or (D) IDF of whole grain non-pigmented (NP) and pigmented (P) rice, expressed as the percentage
of total grain weight. Values with different letters are significantly different with p < 0.05.

When the SDF to IDF ratio of whole grain rice was compared among the rice varieties,
a wide variation was found, ranging from 0.1 (PK+4#20A09, 26.86% AC; PK+4#117A08,
26.69% AC; KTH, 21.73% AC, and RD43, 19.98% AC) to 0.5 (SL, 14.86% AC and RB, 13.96%
ACQ) (Figure 4A, Table S3). Conversely, a slight difference was found in the SDF to IDF
ratio of milled bran samples, ranging from 0.03 to 0.18 (Figure 4B, Table S4). This suggests
a variation in SDF distribution throughout the endosperm among rice varieties and that
rice with lower AC exhibits a higher SDF to IDF ratio. Thus, the distribution of SDF in rice
endosperm likely also influences the hardness of cooked whole grain rice.
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Figure 4. Variation in dietary fibre profiles, SDF and IDF of (A) whole grain rice samples with
different ACs and (B) milled bran samples, expressed as a percentage of TDFE.

3.3. Correlations of Dietary Fibre Profiles, Textural Characteristics, and Amylose Content of Whole
Grain Rice

Several lines of evidence revealed the influence of factors such as chemical compo-
sition [46,47], starch fine structure [49,50], and physicochemical properties [52-55] on the
textural properties of whole grain rice. Moreover, an association between the SDF to IDF
ratio and the textural characteristics of whole grain rice with differing AC was discovered
in this study. This led us to analysing the associations among different properties of whole
grain rice, such as dietary fibre profiles, AC, GT, and textural characteristics using multiple
regression analysis. The AC showed a strong positive correlation with most of the TPA
parameters but a negative correlation with adhesiveness (Figure 5, Table S5). For the dietary
fibre profile, variation in dietary fibre had a strong influence on TPA and the eating quality
of whole grain rice. In particular, SDF and SDF to IDF ratio of whole grain rice contributed
strongly to the softness of cooked whole grain and to most of the TPA parameters (Figure 5).
Therefore, IDF in whole grain rice gave no significant contribution to cooked whole grain
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rice in the selected rice germplasm. Moreover, the hardness and gumminess of cooked
whole grain rice were strongly negatively correlated with the SDF content (r = —0.70 and
—0.72, respectively) and the SDF to IDF ratio (r = —0.74 and —0.69, respectively) in cooked
whole grain rice at a 99% confident level; cohesiveness and chewiness were moderately
negatively correlated with the SDF content (r = —0.58 and —0.62, p < 0.01, respectively) and
the SDF to IDF ratio (r = —0.45, p < 0.05 and r = —0.55, p < 0.01, respectively). Conversely,
the SDF content in whole grain rice was moderately positively correlated with the adhe-
siveness of cooked whole grain rice (r = 0.45, p < 0.05). All these findings indicated that the
distribution of SDF throughout the rice endosperm highly reduced the hardness of cooked
rice, whereas AC increased its hardness.
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Figure 5. Pearson’s correlation matrix: correlation between amylose content, gelatinization temper-
ature, textural parameters, and dietary fibre profiles. AC = amylose content; GT = gelatinisation
temperature; HRD = hardness; ADH = adhesiveness; SPR = springiness; COH = cohesiveness;
GUM = gumminess; CHEW = chewiness; SDFWGR = SDF in whole grain rice; IDFWGR = IDF in
whole grain rice; SDF:IDF = SDF to IDF ratio of whole grain rice.

3.4. Influence of Dietary Fibre Profiles on the Softness of Whole Grain Rice

To further observe the association between the textural properties and the dietary
fibre profiles of whole grain rice, cooked whole grain rice samples were subjected to TPA
conducted using a texture analyser with a two-cycle compression, which mimics the first
and second bites on a rice sample, for predicting the texture of whole grain rice. The texture
characteristics of all cooked whole grain rice samples have been described in Table Sé6.
The RB rice with the highest SDF to IDF ratio showed the lowest value of hardness and
gumminess (13.04 N and 4.47 N, respectively), whereas PK+4#20A09 rice with the lowest
SDF to IDF ratio demonstrated the highest value of the above textural parameters (36.67 N
and 16.00 N, respectively). Conversely, RB or PK+4#20A09 rice did not show the highest
or lowest value for other textural parameters, i.e., chewiness (2.09-11.52 N), adhesiveness
(10.62-77.14 mN.s), springiness (0.46-0.89 s/s), and cohesiveness (0.31-0.53 N.s/N.s). Only
hardness and gumminess showed a strong correlation with the SDF to IDF ratio of whole
grain rice.

Furthermore, whole grain rice samples were grouped by the SDF to IDF ratio into
a low ratio (<0.16), medium ratio (0.16-0.28), high ratio (0.28-0.40), and very high ratio
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(0.40-0.54), to associate with expected textural characteristics (Figure 6A). Based on the
textural parameters (Table 1), the association between dietary fibre and the texture of
cooked whole grain rice was established. Rice with a lower SDF to IDF ratio was harder,
gummier, and chewier than rice with a higher SDF to IDF ratio. However, no statistical
differences were detected in adhesiveness (p = 0.31) and springiness (p = 0.45) among the
groups of cooked whole grain rice with different SDF to IDF ratios (Figure 6A). Thus, the
SDF to IDF ratio of whole grain rice negatively correlates with the hardness, gumminess,
chewiness, and cohesiveness of cooked whole grain rice.

HRD

CHEW ADH o Low SDF:IDF ratio (< 0.16)
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Figure 6. Radar charts showing (A) textural characteristics of whole grain rice containing different
SDF:IDF ratios and (B,C) relationships between textural properties and dietary fibre profiles of (B)
whole grain Wx® rice with AC higher than 20% and (C) whole grain Wx? rice with AC lower than
20%. Rice varieties are sorted in a clockwise direction from high to low AC. The texture parameters
including hardness (HRD), adhesiveness (ADH), springiness (SPR), cohesiveness (COH), gumminess
(GUM) and chewiness (CHEW), and SDF to IDF ratio were expressed as a 4-point scale. Values with
different letters are significantly different with p < 0.05.

Nevertheless, the Wx gene plays important roles in regulating grain AC and cooked
rice quality [83]. Two key polymorphisms GT and TT, identified at the 5’ splice site of
the first intron in the 5" untranslated region, define two predominant Wx alleles, namely
Wx® and Wx?. The Wx” rice contains the GT haplotype, exhibiting intermediate to high
AC, whereas the Wa! rice contains the TT haplotype, exhibiting low AC [62]. In this study,
all rice samples were genotyped using the GT/TT single-nucleotide polymorphisms to
determine Wx gene haplotypes in addition to amylose analysis (Table S7). To understand
the relationship among AC, SDF to IDF ratio, and textural properties of whole grain rice,
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we created a radar chart analysis to illustrate such complex relationships across diverged
rice varieties with high, intermediate, and low AC (Figure 6B,C).

Among the high-intermediate AC group (Wx? group), rice with lower SDF to IDF
ratios had a highly significant correlation with hardness (r = —0.95, p < 0.01). Interestingly,
rice varieties in the intermediate AC group (20-25% AC) had a higher average SDF to IDF
ratio than those in the high AC rice group. As expected, cooked whole grain rice from
the high AC rice group was harder than that from the intermediate AC rice group due
to both AC and SDF to IDF ratio. Within the intermediate AC group, SDF to IDF ratio
played a major role in the softness of cooked whole grain rice. Whole grain rice from DGR
(25.01% AC), M9997 (23.91% AC), and BMT (22.48% AC) with high SDF to IDF ratio cooked
softer than that from KTH (21.73% AC) (Figure 6B). Particularly, among the low AC rice
group, SDF to IDF ratio played a sensitive role in determining the softness of cooked whole
grain rice (Figure 6C). There were a wide range of ACs and SDF to IDF ratios among the
selected varieties (Table S3). However, SDF to IDF ratio had a strongly negative correlation
with hardness (r = —0.91, p < 0.01). The most contrasting varieties on dietary fibre profile,
hardness, and AC are RB and RD43 (Tables S3 and S6). Recorded as the richest SDF, RB had
also the highest SDF to IDF ratio and the softest cooked whole grain rice. Conversely, RD43
had the highest AC and hardness containing the lowest SDF content and SDF to IDF ratio
among the low AC rice group. These results suggest that reductions in the SDF to IDF ratio
of whole grain rice increase the hardness of cooked rice. Thus, in addition to impacting AC,
the SDF to IDF ratio also influences the textural characteristics of cooked whole grain rice.

4. Discussion
4.1. More Accuracy in the Alternative Alkaline Method for Estimation of Dietary Fibre

Current methods for measuring both soluble and insoluble types of dietary fibre in
whole grain rice—the enzymatic-gravimetric method combined with the HPLC method
based on AOAC methods 2009.01 and 2011.25—are expensive and complicated. Here, we
found that the amount of dietary fibre in milled rice is approximately half of that in whole
grain rice (Table S8), consistent with a previous study that demonstrated that the TDF
values of milled rice with low and high AC were 59% and 49% of the values found in whole
grain rice, respectively [11]. This suggests that the other half of dietary fibre is located
in the bran fraction. Dietary fibre is the second largest component of rice bran [29,84,85].
Consequently, we had to investigate the association between the fraction weight of rice
bran and the amount of dietary fibre in whole grain rice for developing the potential
model to predict the dietary fibre content in whole grain rice. To date, bran weight has
been estimated from the weight lost during the milling process of whole grain rice [63,64].
However, we have observed that rice bran fractions prepared by the milling method are
contaminated, with variable amounts of starch ranging from 6.8% to 35.1% due to kernel
size and thickness [63], DOM [64], and type of milling processes used [86,87]. To reduce
overestimation, the total starch concentration in the bran was determined and subtracted
from the milled bran weight [70,88]. Due to a measurement error in the milling method,
we developed the modified alkali disintegration method to provide a more accurate value
of rice bran that was further used for predicting the dietary fibre.

The alkali degradation test, also referred to as the alkaline spreading method, was
employed as an indirect quality assessment of GT [65,89,90]. During alkali spreading,
KOH gelatinises starch (particularly, its amorphous region), causing degradation of the
long, linear, and branched chains of amylose and amylopectin, and resulting in rice grain
gelatinisation [90]. Rice bran, which is mainly composed of fibre, lipids, and protein, can
be separated from the starchy endosperm fraction. However, some lipids, proteins, and
arabinoxylan (AX) are partly dissolved in the alkaline solution during separation [91,92].
The alkaline solvent also derives solubilised AX from the cell wall matrix by the disruption
of hydrogen and covalent bonds, thereby resulting in the loss of alkali-solubilised AX
during the washing of rice bran [93,94]. This explains the reason for the lower percentage
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of bran layer determined by the alkaline method compared to the percentage previously
published [16,85].

We demonstrated that the predicted values of IDF and TDF in whole grain indica
rice, calculated from bran layer fraction weight determined by the alkaline method, were
highly correlated with those found by the AOAC standard method, whereas the predicted
SDF value in whole grain indica rice was weakly correlated with the analysed value by
the standard method due to distribution of SDF throughout the whole grain. However,
the alkaline method can provide a more accurate value of SDF than the milling method;
moreover, it is cheaper and more simplified compared to the enzymatic-HPLC standard
AOAC method. The gravimetric AOAC method does not provide an accurate SDF value
due to a small amount of SDF in whole grain rice. Furthermore, chain length distribution
of amylopectin is known to affect GT [95]. In this study, rice varieties with high GT were
included and we found that the relationship between the predicted value from the alkaline
method and the determined value from the standard method of rice varieties with an ASV
equal to 1 showed the same result as that of rice varieties having an ASV of more than 1
(Figure 2, Table S2). This suggests that treating rice samples with different concentrations
of KOH (3-6%) does not disturb the estimation of dietary fibre content in whole grain rice.

Additionally, the correlation between rice bran composed of bran layer with germ and
dietary fibre of whole grain rice was considered. The result showed that the relationship be-
tween rice bran weight (BW, g/100 g) or bran thickness (BWS, mg/cm?) (Tables S1 and S2)
and the percentage of SDF (r = 0.36, r = 0.24, respectively) or IDF (r = 0.73, r = 0.67, p < 0.01,
respectively) or TDF (r = 0.62, r = 0.56, p < 0.01, respectively) was a bit weaker than that
of the bran layer without germ. A possible explanation for this result is the difference in
chemical compositions between the bran layer and germ; the germ is composed of a lower
dietary fibre than the bran layer [24]. As all samples were selected mainly from elite indica
rice varieties, the linear relationships between BW or BWS and SDF are more predictive
for long-slender-grain indica rice varieties than short-rounded-grain japonica varieties.
Interestingly, the BW and BWS of whole grain pigmented rice were higher than those of
the non-pigmented rice [70]. This is consistent with our findings, showing that the amount
of IDF, which has a strong correlation with either BW or BWS, was significantly higher in
whole grain pigmented rice than in non-pigmented rice.

4.2. Distribution of Soluble Dietary Fibre throughout Rice Endosperm

The comparison of the SDF to IDF ratio in whole grain and rice bran in this study
indicates that the majority of SDF and about half of IDF are distributed throughout the
endosperm of the rice grain, while the remaining small amount of SDF and the other half
of IDF are concentrated in the bran layer of whole grain rice. This finding is consistent with
that in a published report, which showed that the values of SDF, IDF, and TDF in milled
rice are 67%, 49%, and 53%, respectively, of those values in whole grain rice [17]. Further, a
variation was found between SDF distribution among rice varieties, and the low AC rice
had a higher SDF to IDF ratio. Most dietary fibre in cereal grains is derived from the cell
wall material [96,97], and recent studies, using monosaccharide analysis, have proposed
that the composition of cell wall-derived dietary fibre in milled rice comprises glucan,
pectin, arabinogalactan, and glucurono (arabino)xylan [98,99]. Meanwhile, other studies
have reported that the profile of non-starch polysaccharides in whole grain rice and milled
rice is composed of cellulose, AX, pectin, fructan, 3-glucan, and resistant starch [100,101].

Only limited information is available on the composition of SDF in whole grain rice
with different ACs. Therefore, we also investigated the composition of SDF including
soluble AX, p-glucan, and pectin in whole grain rice with different ACs and rice bran
samples (Table S9). The AX is among the major hemicellulosic components in cereal grain
cell walls, and its structure comprises a linear backbone of 3-(1-4)-linked xylose residues
with arabinose substitution at the O-2 and O-3 positions. 3-glucan is a water-soluble dietary
fibre composed of glucose monomers linked together via 3-(1-4) and -(1-3) glycosidic
bonds. Pectin is the most complex polysaccharide in plant cell walls, composed of nearly
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70% galacturonic acid covalently linked at the O-1 and O-4 positions [31,102,103]. The
results showed that the average percentages of soluble AX, (3-glucan, and pectin were 7%,
11%, and 28%, respectively, of the SDF in whole grain rice, accounting for about 46% of
the SDF content in whole grain rice. According to other published reports [98-101], the
other half of SDF in whole grain rice might be resistant starch, arabinogalactan, and fructan.
Interestingly, a greater variation was observed in 3-glucan and pectin content in whole
grain rice compared to that in rice bran; the highest amount of 3-glucan and pectin was
found in low AC rice, while the lowest amount was observed in high AC rice. This suggests
that the distribution of 3-glucan and pectin throughout the endosperm in low AC rice is
higher than that in high AC rice, which is consistent with a previous report [48].

4.3. SDF to IDF Ratio as a Potential Biomarker for Selecting Eating Quality of Whole Grain Rice

Higher intake of whole grain rice is associated with a lower risk of NCDs [13,18,21-25],
the reason being the high concentration of bioactive compounds in bran and germ fraction,
e.g., phytochemicals and dietary fibre. They play various roles in biological activities,
such as anti-oxidant, anti-diabetic, anti-obesity and cholesterol-lowering, anti-cancer, and
anti-inflammatory activities [15,22-29]. Consumer preference regarding eating and cooking
qualities is a strategic goal to achieve consumer acceptance in rice breeding. Eating and
cooking quality, including water uptake, cooking temperature, grain size and shape, aroma,
and texture, is mainly controlled by physicochemical properties, such as gelatinisation, ret-
rogradation and pasting properties, the molecular structure of starch, and other nutritional
compositions in rice kernel [104,105]. Mir et al. [1] revealed that consumers globally tend
to prefer soft-textured white rice, which highly correlates with a high GI [10-12,34,35] and
a high risk of developing T2D [6-9]. Recently published reports have demonstrated that an
increase in the hardness of rice is associated with lower consumer acceptability [2—4]. The
hardness parameter constitutes the force required to bite through the rice with molars, and
chewiness implies the amount of work required to chew the rice until it is ready to swallow,
which also predicts the hardness of the rice. Meanwhile, adhesiveness is interpreted as the
mouthfeel of stickiness, i.e., the degree to which the food sample sticks to the hand, mouth
surface, or teeth; cohesiveness indicates the degree to which the rice deforms rather than
cracks when bitten by molars [76]. Here, the textural properties of cooked rice samples
were determined by an instrumental texture analyser; however, previous reports [45,72]
have demonstrated a significant relationship of rice texture attributes such as hardness,
cohesiveness, and adhesiveness, between sensory evaluation by trained panellists and
instrumental texture analyser under the same conditions used in this study. This suggests
that the instrumental texture analyser has the potential to assist rice breeders to select the
preferred cooked rice texture, in this case, the whole grain rice quality.

Carbohydrate structure, especially ACs, has a strong influence on the textural proper-
ties of whole grain rice [46,47]. Particularly, the proportions of chain length, DP, GT, and
molecular size of amylose and amylopectin contribute to the hardness and stickiness of
cooked milled rice [49-51,55]. An in-depth study on cooked rice quality of whole grain
rice has been overlooked due to low marketing demand. We consider whole grain rice
as a practical solution for rice biofortification. Despite the many nutritional benefits of
whole grain rice, its low palatability induces resistance in consumers. Here, we dissect
the key roles of dietary fibre profile in eating quality of whole grain rice. There have been
reports on the impact of TDF on the hardness of cooked whole grain rice [4,12,17,44]. In
this study, we demonstrated that an increase in the amount of SDF in whole grain rice
decreases the hardness, cohesiveness, gumminess, and chewiness but increases the adhe-
siveness of cooked whole grain rice. Rice varieties in the intermediate AC group have a
higher average SDF to IDF ratio than the high AC rice group. Interestingly, among the
intermediate AC groups or low AC groups, cooked rice with a higher SDF to IDF ratio
had a softer texture than cooked rice with a lower SDF to IDF ratio. This shows that the
SDF to IDF ratio can determine the hardness among the intermediate AC rice group and
low AC rice group. A possible reason for increased SDF content to reduce the hardness of
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cooked whole grain rice is the viscous properties of SDF. It is well known that viscosity or
gel formation is one of the significant properties associated with SDF [33,106]. Previous
studies have demonstrated that SDF can form a viscous solution and increase the solution
viscosity [56], and Chen et al. [54] demonstrated a significant positive correlation between
the adhesiveness and the viscosity of cooked rice. However, the impact of 3-glucan on
the hardness and chewiness of cooked milled rice was moderate [48]. 3-glucan plays a
crucial role in fighting against CVD, dyslipidaemia, insulin resistance, and obesity due
to its fermentability and viscous properties [107]. Moreover, 3-glucan can enhance the
immune system via interactions with immune cells [108]. Some studies have also shown
the antioxidant and prebiotic properties of 3-glucan extracts of rice bran [109,110]. Despite
the lack of information regarding the health benefits of pectin in rice, several reports have
revealed that pectin has multiple positive effects on human health by the reduction of
post-prandial glycaemic responses and the maintenance of normal blood cholesterol con-
centration, owing to its viscosity [96]. In this study, B-glucan and pectin constituted only
a small fraction of SDF in selected varieties of whole grain rice. However, the benefits of
whole grain rice are well documented in lowering the risk of NCDs and enhancing the im-
mune system via phytoceutical compounds such as polyphenol, antioxidants, anthocyanin,
and proanthocyanin [15,18-23]. We determined further that not only the SDF content but
also the IDF content played crucial roles in the TPA of cooked whole grain rice. We have
shown that the SDF to IDF ratio has a stronger link than SDF alone for precision breeding
for the palatability of whole grain rice among varieties of cultivated tropical indica rice.

5. Conclusions

This study investigated the effects of dietary fibre profiles on the textural properties of
cooked whole grain rice. Despite a slight variation in the dietary fibre composition of whole
grain rice, the variation of SDF to IDF ratio in whole grain rice impacted the texture of
cooked rice. Furthermore, this study demonstrated that the SDF to IDF ratio of whole grain
rice was negatively correlated with hardness, cohesiveness, gumminess, and chewiness
(p < 0.01) but positively correlated with the adhesiveness (p < 0.05) of cooked whole grain
rice. This finding is helpful for future trends to improve softness and consumer acceptance
of whole grain rice in indica rice (Figure 7). Furthermore, this study successfully developed
a simplified approach to precisely predict dietary fibre profiles into fractions of whole grain
rice using an alternative alkaline method that is practical for high-throughput screening of
dietary fibre in precision rice breeding.
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