Production of a Fungal Punicalagin-Degrading Enzyme by Solid-State Fermentation: Studies of Purification and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture of Fungal Strain
2.2. Solid-State Fermentation (SSF) Conditions
2.3. Ellagitannin-Acyl Hydrolase Assay
2.4. Protein Assay
2.5. Enzyme Purification
2.6. Characterization of Enzyme
2.6.1. Molecular Weight
2.6.2. Effects of pH and Temperature on EAH Activity
2.6.3. Determination of Michaelis Constant (Km) and Maximum Reaction Velocity (Vmax)
2.7. In-Gel Trypsin Digestion
2.8. LC-MS/MS Analysis
2.9. Protein Identification
2.10. Bioinformatic Analysis
3. Results
3.1. Purification of EAH
3.2. Molecular Weight of EAH
3.3. Effect and Temperature on EAH Activity
3.4. Kinetic Parameters
3.5. Molecular Properties of the Enzyme and In Silico Analysis
3.6. Homology Modeling and Docking Analysis
4. Discussion
4.1. The α-l-Arabinofuranosidase with Ellagitannin-Acyl Hydrolase (EAH) Activity
4.2. Enzyme Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pouységu, L.; Deffieux, D.; Malik, G.; Natangelo, A.; Quideau, S. Synthesis of ellagitannin natural products. Nat. Prod. Rep. 2011, 28, 853–874. [Google Scholar] [CrossRef]
- Aguilar-Zarate, P.; Wong-Paz, J.E.; Buenrostro-Figueroa, J.J.; Ascacio, J.A.; Contreras-Esquivel, J.C.; Aguilar, C.N. Ellagitannins: Bioavailability, Purification and Biotechnological Degradation. Mini Rev. Med. Chem. 2018, 18, 1244–1252. [Google Scholar] [CrossRef]
- Lu, J.; Ding, K.; Yuan, Q. Determination of punicalagin isomers in pomegranate husk. Chromatographia 2008, 68, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Landete, J.M. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res. Int. 2011, 44, 1150–1160. [Google Scholar] [CrossRef]
- Bhat, T.; Singh, B.; Sharma, O. Microbial degradation of tannins—A current perspective. Biodegradation 1998, 9, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Carbo, A.; Augur, C.; Prado-Barragan, L.A.; Favela-Torres, E.; Aguilar, C.N. Microbial production of ellagic acid and biodegradation of ellagitannins. Appl. Microbiol. Biotechnol. 2008, 78, 189–199. [Google Scholar] [CrossRef]
- Mingshu, L.; Kai, Y.; Qiang, H.; Dongying, J. Biodegradation of gallotannins and ellagitannins. J. Basic Microbiol. 2006, 46, 68–84. [Google Scholar] [CrossRef]
- Aguilar-Zárate, P.; Wong-Paz, J.E.; Rodríguez-Duran, L.V.; Buenrostro-Figueroa, J.; Michel, M.; Saucedo-Castañeda, G.; Favela-Torres, E.; Ascacio-Valdés, J.A.; Contreras-Esquivel, J.C.; Aguilar, C.N. On-line monitoring of Aspergillus niger GH1 growth in a bioprocess for the production of ellagic acid and ellagitannase by solid-state fermentation. Bioresour. Technol. 2018, 247, 412–418. [Google Scholar] [CrossRef]
- Aguilera-Carbo, A.; Hernández, J.S.; Augur, C.; Prado-Barragan, L.A.; Favela-Torres, E.; Aguilar, C.N. Ellagic acid production from biodegradation of Creosote bush ellagitannins by Aspergillus niger in solid state culture. Food Bioprocess Technol. 2009, 2, 208–212. [Google Scholar] [CrossRef]
- Ascacio-Valdés, J.A.; Buenrostro, J.J.; De la Cruz, R.; Sepúlveda, L.; Aguilera, A.F.; Prado, A.; Contreras, J.C.; Rodríguez, R.; Aguilar, C.N. Fungal biodegradation of pomegranate ellagitannins. J. Basic Microbiol. 2014, 54, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Buenrostro-Figueroa, J.; Gutiérrez-Sánchez, G.; Prado-Barragán, L.A.; Rodríguez-Herrera, R.; Aguilar-Zárate, P.; Seúlveda, L.; Ascacio-Valdés, J.A.; Tafolla-Arellano, J.C.; Aguilar, C.N. Influence of culture conditions on ellagitannase expresión and fungal ellagitannin degradation. Bioresour. Technol. 2021, 337, 125462. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz, R.; Ascacio, J.A.; Buenrostro, J.; Sepúlveda, L.; Rodríguez, R.; Prado-Barragán, A.; Contreras, J.C.; Aguilera, A.; Aguilar, C.N. Optimization of Ellagitannase Production by Aspergillus niger GH1 by Solid-State Fermentation. Prep. Biochem. Biotechnol. 2015, 45, 617–631. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Niu, H.; Li, Z.; Lin, W.; Gong, G.; Wang, W. Effect of ellagitannin acyl hydrolase, xylanase and cellulase on ellagic acid production from cups extract of valonia acorns. Process Biochem. 2007, 42, 1291–1295. [Google Scholar] [CrossRef]
- Robledo, A.; Aguilera-Carbo, A.; Rodriguez, R.; Martinez, J.L.; Garza, Y.; Aguilar, C.N. Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J. Ind. Microbiol. Biotechnol. 2008, 35, 507–513. [Google Scholar] [CrossRef]
- Huang, W.; Ni, J.; Borthwick, A.G.L. Biosynthesis of valonia tannin hydrolase and hydrolysis of valonia tannin to ellagic acid by Aspergillus SHL 6. Process Biochem. 2005, 40, 1245–1249. [Google Scholar] [CrossRef]
- Huang, W.; Li, Z.; Niu, H.; Li, L.; Lin, W.; Yang, J. Utilization of acorn fringe for ellagic acid production by Aspergillus oryzae and Endomyces fibuliger. Bioresour. Technol 2008, 99, 3552–3558. [Google Scholar] [CrossRef]
- Huang, W.; Niu, H.; Li, Z.; Li, L.; Wang, W. Ellagic acid from acorn fringe by enzymatic hydrolysis and combined effects of operational variables and enzymes on yield of the production. Bioresour. Technol. 2008, 99, 1518–1525. [Google Scholar] [CrossRef]
- Wongratpanya, K.; Imjongjairak, S.; Waeonukul, R.; Sornyotha, S.; Phitsuwan, P.; Pason, P.; Nimchua, T.; Tachaapaikoon, C.; Ratanakhanokchai, K. Multifunctional Properties of Glycoside Hydrolase Family 43 from Paenibacillus curdlanolyticus Strain B-6 Including Exo-β-xylosidase, Endo-xylanase, and α-l-Arabinofuranosidase Activities. BioResources 2015, 10, 2492–2505. [Google Scholar] [CrossRef] [Green Version]
- Ascacio-Valdés, J.A.; Aguilera-Carbó, A.F.; Buenrostro, J.J.; Prado-Barragán, A.; Rodríguez-Herrera, R.; Aguilar, C.N. The complete biodegradation pathway of ellagitannins by Aspergillus niger in solid-state fermentation. J. Basic Microbiol. 2016, 56, 329–336. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Aguilar, C.N.; Rodrigues, L.R.; Teixeira, J.A. Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydr. Res. 2009, 344, 795–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buenrostro-Figueroa, J.; Ascacio-Valdés, A.; Sepúlveda, L.; De la Cruz, R.; Prado-Barragán, A.; Aguilar-González, M.A.; Rodríguez, R.; Aguilar, C.N. Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food Bioprod. Process. 2014, 92, 376–382. [Google Scholar] [CrossRef]
- Aguilar-Zárate, P.; Wong-Paz, J.E.; Michel, M.; Buenrostro-Figueroa, J.; Díaz, H.R.; Ascacio, J.A.; Contreras-Esquivel, J.C.; Gutiérrez-Sánchez, G.; Aguilar, C.N. Characterisation of Pomegranate-Husk Polyphenols and Semi-Preparative Fractionation of Punicalagin. Phytochem. Anal. 2017, 28, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Jung, E.; Brunak, S. Prediction of N-glycosylation Sites in Human Proteins. NetNGlyc 1.0, 2016.
- Steentoft, C.; Vakhrushev, S.Y.; Joshi, H.J.; Kong, Y.; Vester-Christensen, M.B.; Schjoldager, K.T.-B.G.; Lavrsen, K.; Dabelsteen, S.; Pedersen, N.B.; Marcos-Silva, L.; et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013, 32, 1478–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duhovny, D.; Nussinov, R.; Wolfson, H.J. Efficient unbound docking of rigid molecules. In International Workshop on Algorithms in Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2002; pp. 185–200. [Google Scholar]
- Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res. 2005, 33, W363–W367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mata-Gómez, M.; Rodríguez, L.V.; Ramos, E.L.; Renovato, J.; Cruz-Hernández, M.A.; Rodríguez, R.; Contreras, J.; Aguilar, C.N. A novel tannase from the xerophilic fungus Aspergillus niger GH1. J. Microbiol. Biotechnol. 2009, 19, 987–996. [Google Scholar]
- Ramos, E.L.; Mata-Gómez, M.A.; Rodríguez-Durán, L.V.; Belmares, R.E.; Rodríguez-Herrera, R.; Aguilar, C.N. Catalytic and thermodynamic properties of a tannase produced by Aspergillus niger GH1 grown on polyurethane foam. Appl. Biochem. Biotechnol. 2011, 165, 1141–1151. [Google Scholar] [CrossRef]
- Renovato, J.; Gutiérrez-Sánchez, G.; Rodríguez-Durán, L.V.; Bergman, C.; Rodríguez, R.; Aguilar, C.N. Differential properties of Aspergillus niger tannase produced under solid-state and submerged fermentations. Appl. Biochem. Biotechnol. 2011, 165, 382–395. [Google Scholar] [CrossRef]
- Miyanaga, A.; Koseki, T.; Matsuzawa, H.; Wakagi, T.; Shoun, H.; Fushinobu, S. Crystal structure of a family 54 α-l-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose. J. Biol. Chem. 2004, 279, 44907–44914. [Google Scholar] [CrossRef] [Green Version]
- Gielkens, M.; González-Candelas, L.; Sánchez-Torres, P.; van de Vondervoort, P.; de Graaff, L.; Visser, J.; Ramón, D. The abfB gene encoding the major α-l-arabinofuranosidase of Aspergillus nidulans: Nucleotide sequence, regulation and construction of a disrupted strain. Microbiology 1999, 145, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef] [PubMed]
- Beylot, M.-H.; Emami, K.; McKie, V.A.; Gilbert, H.J.; Pell, G. Pseudomonas cellulosa expresses a single membrane-bound glycoside hydrolase family 51 arabinofuranosidase. Biochem. J. 2001, 358, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.J.; Smith, N.L.; Turkenburg, J.P.; D’Souza, S.; Gilbert, H.J.; Davies, G.J. Structural insight into the ligand specificity of a thermostable family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum. Biochem. J. 2006, 395, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Zhang, L.; Guo, M.; Sun, J.; Matsukawa, S.; Xie, J.; Wei, D. Novel α-l-Arabinofuranosidase from Cellulomonas fimi ATCC 484 and Its Substrate-Specificity Analysis with the Aid of Computer. J. Agric. Food Chem. 2015, 63, 3725–3733. [Google Scholar] [CrossRef]
- Gunata, Z.; Brillouet, J.M.; Voirin, S.; Baumes, R.; Cordonnier, R. Purification and some properties of an α-l-arabinofuranosidase from Aspergillus niger Action on grape monoterpenyl arabinofuranosylglucosides. J. Agric. Food Chem. 1990, 38, 772–776. [Google Scholar] [CrossRef]
- Saha, B.C. α-l-Arabinofuranosidases: Biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv. 2000, 18, 403–423. [Google Scholar] [CrossRef]
- Tefsen, B.; Lagendijk, E.L.; Park, J.; Akeroyd, M.; Schachtschabel, D.; Winkler, R.; van Die, I.; Ram, A.F.J. Fungal α-arabinofuranosidases of glycosyl hydrolase families 51 and 54 show a dual arabinofuranosyl- and galactofuranosyl-hydrolyzing activity. Biol. Chem. 2012, 393, 767–775. [Google Scholar] [CrossRef] [Green Version]
Purification Step | Volume (mL) | Protein (mg) | Total Activity (U) | Specific Activity (U/mg) | Purification Fold | Yield (%) |
---|---|---|---|---|---|---|
Lyophilized extract | 20 | 68.84 | 2.96 | 0.04 | 1.00 | 100.00 |
Sephadex G-25 column | 5 | 0.63 | 0.41 | 0.65 | 16.25 | 13.85 |
Anionic Exchange | 2 | 0.09 | 0.10 | 1.11 | 27.75 | 3.37 |
Gel filtration Fraction 18 | 2 | 0.07 | 0.04 | 0.57 | 14.25 | 1.35 |
Gel filtration Fraction 23 | 2 | 0.01 | 0.03 | 3.00 | 75.00 | 1.01 |
Substrate | Km (mM) | Vmax (µM/min) | R2 |
---|---|---|---|
Punicalagin | 0.053 | 21.46 | 0.93 |
Methyl gallate | 6.66 | 128.20 | 0.95 |
Sugar beet Arabinans | 11.77 * | 662.25 ** | 0.97 |
Parameter | EAH 1 | EAH 2 |
---|---|---|
Protein length (amino acids) | 499 | 499 |
Protein weight (kDa) | 52.47 | 52.63 |
Isoelectric point | 4.10 | 4.24 |
Domains | ArabFuran-catal (20–334) | ArabFuran-catal (20–333) |
AbfB (352–493) | AbfB (352–493) | |
Homologous ID | gi|1246885|emb|CAA01903.1| | gi|1244586|gb|AAA93264.1| |
Query cover (%) | 100 | 100 |
Identity (%) | 99 | 100 |
Sequence name | α-l-arabinofuranosidase B [Aspergillus niger] | α-l-arabinofuranosidase [Aspergillus niger] |
EAH 1 | EAH 2 | ||||
---|---|---|---|---|---|
Amino Acid Position | Score | Comment | Amino Acid Position | Score | Comment |
38 | 0.568 | Positive | 62 | 0.744 | Positive |
44 | 0.513 | Positive | 152 | 0.539 | Positive |
62 | 0.776 | Positive | 272 | 0.617 | Positive |
67 | 0.531 | Positive | 355 | 0.594 | Positive |
187 | 0.516 | Positive | |||
272 | 0.616 | Positive | |||
351 | 0.632 | Positive | |||
355 | 0.828 | Positive | |||
360 | 0.791 | Positive | |||
361 | 0.549 | Positive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Zárate, P.; Gutiérrez-Sánchez, G.; Michel, M.R.; Bergmann, C.W.; Buenrostro-Figueroa, J.J.; Ascacio-Valdés, J.A.; Contreras-Esquivel, J.C.; Aguilar, C.N. Production of a Fungal Punicalagin-Degrading Enzyme by Solid-State Fermentation: Studies of Purification and Characterization. Foods 2023, 12, 903. https://doi.org/10.3390/foods12040903
Aguilar-Zárate P, Gutiérrez-Sánchez G, Michel MR, Bergmann CW, Buenrostro-Figueroa JJ, Ascacio-Valdés JA, Contreras-Esquivel JC, Aguilar CN. Production of a Fungal Punicalagin-Degrading Enzyme by Solid-State Fermentation: Studies of Purification and Characterization. Foods. 2023; 12(4):903. https://doi.org/10.3390/foods12040903
Chicago/Turabian StyleAguilar-Zárate, Pedro, Gerardo Gutiérrez-Sánchez, Mariela R. Michel, Carl W. Bergmann, José J. Buenrostro-Figueroa, Juan A. Ascacio-Valdés, Juan C. Contreras-Esquivel, and Cristóbal N. Aguilar. 2023. "Production of a Fungal Punicalagin-Degrading Enzyme by Solid-State Fermentation: Studies of Purification and Characterization" Foods 12, no. 4: 903. https://doi.org/10.3390/foods12040903
APA StyleAguilar-Zárate, P., Gutiérrez-Sánchez, G., Michel, M. R., Bergmann, C. W., Buenrostro-Figueroa, J. J., Ascacio-Valdés, J. A., Contreras-Esquivel, J. C., & Aguilar, C. N. (2023). Production of a Fungal Punicalagin-Degrading Enzyme by Solid-State Fermentation: Studies of Purification and Characterization. Foods, 12(4), 903. https://doi.org/10.3390/foods12040903