Influence of Brewing Method on the Content of Selected Elements in Yerba Mate (Ilex paraguarensis) Infusions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Gases and Reagents
2.3. Sample Preparation
2.3.1. Water Extraction
2.3.2. Wet Mineralization
2.4. Instrumentation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Microwave-Assisted Acid Mineralization (Total Content)
3.2. Ultrasound-Assisted Water Extraction
3.3. Accuracy of Mineralization and Extraction Procedures
3.4. Ultrasound-Assisted Extraction in Comparison to a Conventional Brewing
3.5. Extraction Percentages in Comparison to the Latest Literature
3.6. Spearman’s Rank Correlation Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gawron-Gzella, A.; Chanaj-Kaczmarek, J.; Cielecka-Piontek, J. Yerba Mate—A Long but Current History. Nutrients 2021, 13, 3706. [Google Scholar] [CrossRef] [PubMed]
- Lutomski, P.; Goździewska, M.; Florek-Łuszczki, M. Health Properties of Yerba Mate. Ann. Agric. Environ. Med. 2020, 27, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Pardinho, R.B.; Dalla Vecchia, P.; Mendes, A.L.G.; Bizzi, C.A.; Mello, P.A.; Duarte, F.A.; Flores, E.M.M. Determination of Toxic Elements in Yerba Mate by ICP–MS after Diluted Acid Digestion under O2 Pressure. Food Chem. 2018, 263, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Cardozo Junior, E.L.; Morand, C. Interest of Mate (Ilex paraguariensis A. St.-Hil.) as a New Natural Functional Food to Preserve Human Cardiovascular Health—A Review. J. Funct. Foods 2016, 21, 440–454. [Google Scholar] [CrossRef]
- Proch, J.; Orłowska, A.; Niedzielski, P. Elemental and Speciation Analyses of Different Brands of Yerba Mate (Ilex paraguariensis). Foods 2021, 10, 2925. [Google Scholar] [CrossRef]
- Ribeiro, S.A.O.; da Silva, C.S.; de Araújo Nogueira, A.R.; Garcia, E.E. Solubility of Cd, Cr, Cu, Ni, and Pb and Its Correlation with Total Polyphenols and Soluble Melanoidins in Hot Infusions of Green and Roasted Mate. Biol. Trace Elem. Res. 2022. [Google Scholar] [CrossRef]
- Croge, C.P.; Cuquel, F.L.; Pintro, P.T.M. Yerba Mate: Cultivation Systems, Processing and Chemical Composition. A Review. Sci. Agric. 2020, 78, e20190259. [Google Scholar] [CrossRef]
- Rząsa-Duran, E.; Kryczyk-Poprawa, A.; Drabicki, D.; Podkowa, A.; Sułkowska-Ziaja, K.; Szewczyk, A.; Kała, K.; Opoka, W.; Zięba, P.; Fidurski, M.; et al. Yerba Mate as a Source of Elements and Bioactive Compounds with Antioxidant Activity. Antioxidants 2022, 11, 371. [Google Scholar] [CrossRef]
- Ramirez, M.R.; Mohamad, L.; Alarcon-Segovia, L.C.; Rintoul, I. Effect of Processing on the Nutritional Quality of Ilex paraguariensis. Appl. Sci. 2022, 12, 2487. [Google Scholar] [CrossRef]
- Heck, C.I.; de Mejia, E.G. Yerba Mate Tea (Ilex paraguariensis): A Comprehensive Review on Chemistry, Health Implications, and Technological Considerations. J. Food Sci. 2007, 72, R138–R151. [Google Scholar] [CrossRef]
- Bracesco, N.; Sanchez, A.G.; Contreras, V.; Menini, T.; Gugliucci, A. Recent Advances on Ilex paraguariensis Research: Minireview. J. Ethnopharmacol. 2011, 136, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Camotti Bastos, M.; Cherobim, V.F.; Reissmann, C.B.; Fernandes Kaseker, J.; Gaiad, S. Yerba Mate: Nutrient Levels and Quality of the Beverage Depending on the Harvest Season. J. Food Compos. Anal. 2018, 69, 1–6. [Google Scholar] [CrossRef]
- Baran, A.; Gruszecka-Kosowska, A.; Kołton, A.; Jasiewicz, C.; Piwowar, P. Content and Health Risk Assessment of Selected Elements in the Yerba Mate (Ilex paraguariensis, St. Hillaire). Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1092–1114. [Google Scholar] [CrossRef]
- Pozebon, D.; Dressler, V.L.; Marcelo, M.C.A.; de Oliveira, T.C.; Ferrão, M.F. Toxic and Nutrient Elements in Yerba Mate (Ilex paraguariensis). Food Addit. Contam. Part B 2015, 8, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Ulbrich, N.C.M.; do Prado, L.L.; Barbosa, J.Z.; Araujo, E.M.; Poggere, G.; Motta, A.C.V.; Prior, S.A.; Magri, E.; Young, S.D.; Broadley, M.R. Multi-Elemental Analysis and Health Risk Assessment of Commercial Yerba Mate from Brazil. Biol. Trace Elem. Res. 2022, 200, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Bragança, V.L.C.; Melnikov, P.; Zanoni, L.Z. Trace Elements in Different Brands of Yerba Mate Tea. Biol. Trace Elem. Res. 2011, 144, 1197–1204. [Google Scholar] [CrossRef]
- Olivari, I.; Paz, S.; Gutiérrez, Á.J.; González-Weller, D.; Hardisson, A.; Sagratini, G.; Rubio, C. Macroelement, Trace Element, and Toxic Metal Levels in Leaves and Infusions of Yerba Mate (Ilex paraguariensis). Environ. Sci. Pollut. Res. 2020, 27, 21341–21352. [Google Scholar] [CrossRef]
- Janda, K.; Jakubczyk, K.; Łukomska, A.; Baranowska-Bosiacka, I.; Rębacz-Maron, E.; Dec, K.; Kochman, J.; Gutowska, I. Effect of the Yerba Mate (Ilex paraguariensis) Brewing Method on the Content of Selected Elements and Antioxidant Potential of Infusions. Pol. J. Chem. Technol. 2020, 22, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, J.Z.; Zambon, L.M.; Motta, A.C.V.; Wendling, I. Composition, hot-water solubility of elements and nutritional value of fruits and leaves of yerba mate. Ciênc. Agrotec. 2015, 39, 593–603. [Google Scholar] [CrossRef] [Green Version]
- Marcelo, M.C.A.; Martins, C.A.; Pozebon, D.; Dressler, V.L.; Ferrão, M.F. Classification of Yerba Mate (Ilex paraguariensis) According to the Country of Origin Based on Element Concentrations. Microchem. J. 2014, 117, 164–171. [Google Scholar] [CrossRef]
- Motta, A.C.V.; Barbosa, J.Z.; Magri, E.; Pedreira, G.Q.; Santin, D.; Prior, S.A.; Consalter, R.; Young, S.D.; Broadley, M.R.; Benedetti, E.L. Elemental Composition of Yerba Mate (Ilex paraguariensis A.St.-Hil.) under Low Input Systems of Southern Brazil. Sci. Total Environ. 2020, 736, 139637. [Google Scholar] [CrossRef] [PubMed]
- ANVISA. Regulamento Técnico Mercosul Sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos (REVOGAÇÃO DAS RES. GMC N° 102/94 e N°35/96); Mercosul, Ed.; ANVISA: Rio de Janeiro, Brazil, 2013; N° 12/11; pp. 1–18. [Google Scholar]
- Valduga, A.T.; Gonçalves, I.L.; Magri, E. Analysis of the Presence of Toxic Metals in Yerba Mate Samples: A Case Study from South Brazil. Water Air Soil. Pollut. 2019, 230, 153. [Google Scholar] [CrossRef]
- dos Santos, L.M.G.; Vicentini Neto, S.A.; Iozzi, G.; Jacob, S.d.C. Arsenic, Cadmium and Lead Concentrations in Yerba Mate Commercialized in Southern Brazil by Inductively Coupled Plasma Mass Spectrometry. Cienc. Rural 2017, 47, e20170202. [Google Scholar] [CrossRef] [Green Version]
- Magri, E.; Valduga, A.T.; Gonçalves, I.L.; Barbosa, J.Z.; Rabel, D.d.O.; Menezes, I.M.N.R.; Nascimento, P.d.A.; Oliveira, A.; Corrêa, R.S.; Motta, A.C.V. Cadmium and Lead Concentrations in Yerba Mate Leaves from Agroforestry and Plantation Systems: An International Survey in South America. J. Food Compos. Anal. 2021, 96, 103702. [Google Scholar] [CrossRef]
- Pereira, C.C.; Souza, A.O.; Oreste, E.Q.; Cidade, M.J.A.; Cadore, S.; Ribeiro, A.S.; Vieira, M.A. Acid Decomposition of Yerba Mate (Ilex paraguariensis) Using a Reflux System for the Evaluation of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb and Zn Contents by Atomic Spectrometric Techniques. J. Braz. Chem. Soc. 2015, 27, 685–693. [Google Scholar] [CrossRef]
- Neves, M.M.; dos Santos Espinelli Junior, J.B.; de Souza, M.M.; Carapelli, R. Application of Hot Water Extraction Techniques and the Principal Component Analysis to Study the Influence of Cultivation of Commercial Yerba Mate Samples on Their Mineral Profiles. Food Anal. Methods 2022, 15, 2940–2950. [Google Scholar] [CrossRef]
- Barros, S.G.S.d.; Ghisolfi, E.S.; Luz, L.P.; Barlem, G.G.; Vidal, R.M.; Wolff, F.H.; Magno, V.A.; Dietz, J.; Kruel, C.D.P.; Prolla, J.C. High temperature “matè” infusion drinking in a population at risk for squamous cell carcinoma of the esophagus in southern Brazil. Arq. Gastroenterol. 2000, 37, 25–30. [Google Scholar] [CrossRef] [Green Version]
Sample No. | Type (Kind) | Country of Origin | Packing Type (Weight) |
---|---|---|---|
1 | Con palo (roasted) | Paraguay * | plastic pack (500 g) |
2 a | Despalada (green) | Brazil * | plastic pack (500 g) |
3 b | Despalada (roasted) | Paraguay | paper pack (500 g) |
4 b | Con palo (roasted) | Paraguay | paper pack (500 g) |
5 | Con palo (roasted) | Argentina | paper pack (500 g) |
6 | Con palo (roasted) | Argentina | paper pack (500 g) |
7 a | Despalada (roasted) | Brazil * | plastic pack (500 g) |
Samples | |||||||
---|---|---|---|---|---|---|---|
Elements | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Al | 398 ± 34 | 304 ± 16 | 325 ± 6 | 375 ± 26 | 354 ± 37 | 268 ± 32 | 372 ± 6 |
As | 0.71 ± 0.07 | 0.64 ± 0.10 | 0.56 ± 0.10 | 0.72 ± 0.09 | 0.38 ± 0.03 | 0.71 ± 0.11 | 0.71 ± 0.02 |
Ca | 9840 ± 1190 | 7280 ± 252 | 8910 ± 463 | 10,200 ± 883 | 9570 ± 663 | 8100 ± 281 | 10,400 ± 360 |
Cd | 0.123 ± 0.002 | 0.294 ± 0.005 | 0.381 ± 0.020 | 0.440 ± 0.023 | 0.318 ± 0.017 | 0.270 ± 0.014 | 0.315 ± 0.003 |
Co | 0.26 ± 0.01 | BQL | 0.25 ± 0.03 | 0.24 ± 0.02 | 0.32 ± 0.03 | 0.26 ± 0.01 | 0.20 ± 0.02 |
Cr | 0.84 ± 0.01 | BQL | 0.24 ± 0.05 | 0.17 ± 0.01 | 0.51 ± 0.05 | 0.22 ± 0.02 | BQL |
Cu | 9.72 ± 0.34 | 6.57 ± 0.34 | 8.19 ± 0.57 | 8.24 ± 1.00 | 8.38 ± 1.02 | 7.79 ± 0.13 | 10.4 ± 0.1 |
Fe | 197 ± 37 | 108 ± 1 | 177 ± 6 | 309 ± 11 | 208 ± 14 | 140 ± 5 | 177 ± 3 |
Hg | BQL | BQL | BQL | BQL | BQL | BQL | BQL |
K | 11,400 ± 395 | 15,500 ± 805 | 13,300 ± 230 | 12,700 ± 880 | 10,500 ± 546 | 12,300 ± 213 | 11,500 ± 100 |
Mg | 6120 ± 212 | 2920 ± 51 | 4140 ± 143 | 4300 ± 298 | 4580 ± 317 | 3860 ± 201 | 5450 ± 94 |
Mn | 1160 ± 40 | 1250 ± 22 | 1170 ± 41 | 964 ± 67 | 1630 ± 141 | 1510 ± 183 | 1690 ± 29 |
Mo | BQL | BQL | BQL | BQL | BQL | BQL | BQL |
Na | 70.8 ± 6.1 | 104 ± 4 | 76.1 ± 1.3 | 73.3 ± 2.5 | 75.2 ± 3.9 | 62.5 ± 0.5 | 72.3 ± 0.6 |
Ni | 2.98 ± 0.03 | 0.70 ± 0.02 | 3.47 ± 0.18 | 2.94 ± 0.25 | 3.60 ± 0.37 | 3.67 ± 0.13 | 4.70 ± 0.08 |
P | 691 ± 48 | 882 ± 61 | 925 ± 48 | 955 ± 83 | 904 ± 63 | 921 ± 80 | 965 ± 33 |
Pb | BQL | BQL | BQL | BQL | BQL | 0.39 ± 0.02 | 0.41 ± 0.08 |
Rb | 33.6 ± 2.9 | 52.9 ± 3.7 | 24.7 ± 0.9 | 21.6 ± 2.2 | 25.1 ± 1.3 | 34.7 ± 2.4 | 32.9 ± 0.3 |
S | 711 ± 25 | 710 ± 37 | 563 ± 98 | 529 ± 82 | 520 ± 72 | 452 ± 16 | 642 ± 22 |
Se | 1.02 ± 0.01 | 0.79 ± 0.07 | 0.88 ± 0.14 | 0.90 ± 0.17 | 1.08 ± 0.15 | 0.82 ± 0.16 | 1.14 ± 0.13 |
Sr | 32.5 ± 3.9 | 20.6 ± 0.4 | 30.7 ± 2.7 | 37.6 ± 2.6 | 29.8 ± 2.1 | 24.3 ± 1.3 | 25.0 ± 1.3 |
V | 0.76 ± 0.08 | 0.31 ± 0.01 | 0.68 ± 0.05 | 1.32 ± 0.20 | 0.89 ± 0.06 | 0.71 ± 0.14 | 0.66 ± 0.06 |
Zn | 39.7 ± 0.7 | 24.5 ± 3.0 | 77.7 ± 2.7 | 86.1 ± 3.0 | 61.4 ± 3.2 | 55.8 ± 1.0 | 47.1 ± 0.4 |
Method | A (Tap Water, RT) | B (DI Water, RT) | C (Tap Water, 80 °C) | D (DI Water, 80 °C) | All Methods (A–D) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Elements | Median (Min–Max) | AQL | Median (Min–Max) | AQL | Median (Min–Max) | AQL | Median (Min–Max) | AQL | Median (Min–Max) | AQL |
Al | 10 (5.7–15) | 7 | 11 (7.4–18) | 7 | 11 (6.4–16) | 7 | 14 (8.6–18) | 7 | 11 (5.7–18) | 28 |
As | 24 (20–53) | 7 | 26 (12–60) | 7 | 25 (16–38) | 7 | 21 (15–35) | 7 | 24 (12–60) | 28 |
Ca | BEC | 0 | 10 (7.7–13) | 7 | BEC | 0 | 11 (7.5–15) | 7 | 11 (7.5–15) | 14 |
Cd | BQL | 0 | 3.2 (2.9–4.4) | 3 | 5.1 (2.7–6.4) | 4 | 4.0 (3.5–5.2) | 3 | 4.2 (2.7–6.4) | 10 |
Co | 47 (22–62) | 6 | 58 (40–64) | 6 | 57 (35–66) | 6 | 60 (49–74) | 6 | 57 (22–74) | 24 |
Cr | 57 (45–80) | 5 | 68 (38–99) | 5 | 67 (50–99) | 5 | 67 (59–99) | 5 | 67 (38–99) | 20 |
Cu | 39 (2.0–43) | 7 | 39 (3.2–43) | 7 | 35 (1.6–46) | 7 | 41 (4.0–48) | 7 | 39 (1.6–48) | 28 |
Fe | BQL | 0 | 1.4 (0.9–2.6) | 7 | 0.5 (0.1–1.1) | 7 | 0.7 (0.2–1.5) | 7 | 0.9 (0.1–2.6) | 21 |
K | 54 (39–62) | 7 | 58 (38–60) | 7 | 55 (45–64) | 7 | 60 (50–72) | 7 | 57 (38–72) | 28 |
Mg | 39 (28–49) | 7 | 41 (25–48) | 7 | 43 (30–50) | 7 | 47 (36–55) | 7 | 42 (25–55) | 28 |
Mn | 30 (21–40) | 7 | 29 (18–36) | 7 | 30 (22–35) | 7 | 33 (25–34) | 7 | 30 (18–40) | 28 |
Na | BEC | 0 | 64 (57–85) | 7 | BEC | 0 | 62 (40–83) | 7 | 63 (40–85) | 14 |
Ni | 53 (20–65) | 7 | 56 (37–61) | 7 | 56 (41–68) | 7 | 57 (41–65) | 7 | 55 (20–68) | 28 |
P | 49 (33–58) | 7 | 50 (28–51) | 7 | 47 (36–57) | 7 | 50 (41–64) | 7 | 50 (28–64) | 28 |
Rb | 78 (57–99) | 7 | 73 (43–84) | 7 | 77 (55–89) | 7 | 83 (63–99) | 7 | 77 (43–99) | 28 |
S | BEC | 0 | 34 (17–43) | 7 | BEC | 0 | 37 (21–42) | 7 | 36 (17–43) | 14 |
Se | BQL | 0 | 47* | 1 | BQL | 0 | 45 (43–56) | 3 | 46 (43–56) | 4 |
Sr | 4.8 (3.9–5.6) | 2 | 9.4 (7.5–18) | 7 | 7.0 * | 1 | 12 (7.8–25) | 7 | 11 (3.9–25) | 17 |
Zn | 32 (10–38) | 7 | 30 (11–36) | 7 | 32 (11–40) | 7 | 34 (13–41) | 7 | 32 (10–41) | 28 |
Total Content (Microwave-Assisted Mineralization) | Method A (Tap Water, RT) | Method B (DI Water, RT) | Method C (Tap Water, 80 °C) | Method D (DI Water, 80 °C) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Element | Certified ± U (mg kg−1) | Detected (mg kg−1) | Recovery (%) | Detected (mg kg−1) | Extracted A (%) | Detected (mg kg−1) | Extracted A (%) | Detected (mg kg−1) | Extracted A (%) | Detected (mg kg−1) | Extracted A (%) |
Al | 2290 ± 280 | 2120 ± 38 | 92 ± 2 | 267 ± 21 | 13 ± 1 | 497 ± 39 | 24 ± 2 | 552 ± 44 | 26 ± 2 | 746 ± 59 | 35 ± 3 |
As | 0.106 ± 0.02 | 0.18 ± 0.01 | 110 ± 9 | 0.071 ± 0.006 | 61 ± 5 | 0.078 ± 0.006 | 67 ± 5 | 0.085 ± 0.007 | 73 ± 6 | BQL | – |
Ca | 5820 ± 280 | 6390 ± 134 | 110 ± 2 | BEC | – | 445 ± 56 | 7.0 ± 0.9 | BEC | – | 631 ± 79 | 10 ± 1 |
Cd | 0.030 ± 0.004 | 0.028 ± 0.002 | 93 ± 7 | BQL | – | BQL | – | BQL | – | BQL | – |
Co | 0.387 ± 0.042 | 0.36 ± 0.02 | 93 ± 6 | 0.042 ± 0.003 | 12 ± 1 | 0.047 ± 0.003 | 13 ± 1 | 0.063 ± 0.004 | 18 ± 1 | 0.065 ± 0.004 | 18 ± 1 |
Cr | 1.91 ± 0.22 | 1.71 ± 0.05 | 90 ± 2 | 0.236 ± 0.015 | 14 ± 1 | 0.350 ± 0.023 | 21 ± 1 | 0.425 ± 0.028 | 25 ± 2 | 0.572 ± 0.038 | 34 ± 2 |
Cu | 20.4 ± 1.5 | 19.8 ± 0.5 | 97 ± 2 | 0.785 ± 0.092 | 4.0 ± 0.5 | 1.93 ± 0.23 | 10 ± 1 | 2.27 ± 0.27 | 12 ± 1 | 2.61 ± 0.31 | 13 ± 2 |
Fe | 432 i | 367 ± 8 | 85 ± 2 | 1.07 ± 0.08 | 0.3 | 2.04 ± 0.16 | 0.6 ± 0.1 | 1.65 ± 0.13 | 0.4 | 2.30 ± 0.18 | 0.6 ± 0.1 |
Hg | 0.005 ± 0.001 * | BQL | – | BQL | – | BQL | – | BQL | – | BQL | – |
K | 17,000 ± 1200 | 15,700 ± 345 | 92 ± 2 | 3050 ± 194 | 19 ± 1 | 6190 ± 395 | 39 ± 3 | 6950 ± 444 | 44 ± 3 | 8110 ± 518 | 52 ± 3 |
Mg | 2240 ± 170 | 1860 ± 11 | 83 ± 0 | 124 ± 9 | 6.7 ± 0.5 | 281 ± 20 | 15 ± 1 | 387 ± 27 | 21 ± 1 | 453 ± 32 | 24 ± 2 |
Mn | 1570 ± 110 | 1530 ± 15 | 98 ± 1 | 136 ± 6 | 8.8 ± 0.4 | 157 ± 7 | 10 | 242 ± 11 | 16 ± 1 | 247 ± 11 | 16 ± 1 |
Mo | x | BQL | – | BQL | – | BQL | – | BQL | – | BQL | – |
Na | 24.7 ± 3.2 | 23.4 ± 0.8 | 95 ± 3 | BEC | – | 11.4 ± 0.5 | 49 ± 2 | BEC | – | 22.8 ± 1.0 | 98 ± 4 |
Ni | 6.12 ± 0.52 | 4.91 ± 0.03 | 80 ± 1 | 0.516 ± 0.028 | 11 ± 1 | 0.692 ± 0.04 | 14 ± 1 | 1.05 ± 0.06 | 21 ± 1 | 1.23 ± 0.07 | 25 ± 1 |
P | 1800 i | 1560 ± 19 | 87 ± 1 | 255 ± 19 | 16 ± 1 | 402 ± 31 | 26 ± 2 | 481 ± 37 | 31 ± 2 | 628 ± 48 | 40 ± 3 |
Pb | 1.78 ± 0.24 | 1.72 ± 0.15 | 97 ± 8 | 0.112 ± 0.005 | 6.5 ± 0.3 | 0.092 ± 0.004 | 5.3 ± 0.3 | 0.115 ± 0.005 | 6.7 ± 0.3 | 0.247 ± 0.012 | 14 ± 1 |
Rb | 81.5 ± 6.5 | 75.3 ± 1.9 | 92 ± 2 | 20.9 ± 1.1 | 28 ± 1 | 35.6 ± 1.9 | 47 ± 3 | 46.1 ± 2.4 | 61 ± 3 | 57.0 ± 3.0 | 76 ± 4 |
S | 2470 ± 250 | 2870 ± 169 | 116 ± 7 | BEC | – | 407 ± 43 | 14 ± 2 | BEC | – | 657 ± 70 | 23 ± 2 |
Se | 0.076 i* | BQL | – | BQL | – | BQL | – | BQL | – | BQL | – |
Sr | 20.8 ± 1.7 | 18.4 ± 0.4 | 88 ± 2 | BQL | – | 1.47 ± 0.16 | 8.0 ± 0.9 | BQL | – | 2.24 ± 0.24 | 12 ± 1 |
V | 1.97 ± 0.37 | 1.89 ± 0.07 | 96 ± 4 | BQL | – | BQL | – | BQL | – | BQL | – |
Zn | 34.7 ± 2.7 | 28.0 ± 0.4 | 81 ± 1 | 2.46 ± 0.19 | 8.8 ± 0.7 | 3.56 ± 0.28 | 13 ± 1 | 4.23 ± 0.33 | 15 ± 1 | 5.65 ± 0.44 | 20 ± 2 |
Ref. | Pozebon et al. 2015 [14] | Barbosa et al. 2015 [19] | Baran et al. 2017 [13] | Olivari et al. 2020 [17] | Ulbrich et al. 2022 [15] | This Study | ||
---|---|---|---|---|---|---|---|---|
Temp (°C) | 100 | 100 | 85 | RT | 70–75 | 100 | RT | 80 |
Infusion (ml ÷ g) | 20 ÷ 0.5 | 80 ÷ 10 | 200 ÷ 25 | 100 ÷ 10 | 100 ÷ 10 | 20 ÷ 0.5 | 10 ÷ 1 | 10 ÷ 1 |
Al | 1 | 18 | ND | 4.3 | 5.0 | 15 | 12 | 13 |
As | 48 | 49 | ND | ND | ND | 18 | 27 | 22 |
Ca | 22 | 12 | 0.34 | 1.8 | 1.9 | 17 | 10 | 12 |
Cd | 53 | 55 | 2 | 1.8 | 2.8 | 13 | 3.5 | 4.2 |
Co | 65 | 86 | ND | BQL | BQL | 62 | 54 | 62 |
Cr | 26 | 60 | 9 | 5.5 | 7.0 | ND | 72 | 73 |
Cu | 42 | 64 | 15 | 9.6 | 11.1 | 65 | 32 | 37 |
Fe | 15 | 6 | 0.13 | 1.1 | 1.3 | 2 | 1.6 | 0.8 |
Hg | ND | ND | ND | ND | ND | ND | BQL | BQL |
K | 75 | 80 | 73 | 9.3 | 9.4 | 92 | 52 | 59 |
Mg | 55 | 74 | 7 | 6.4 | 7.1 | 67 | 38 | 46 |
Mn | 53 | 28 | 69 | 5.5 | 7.3 | 53 | 27 | 31 |
Mo | 50 | 57 | ND | BQL | 5.4 | 30 | BQL | BQL |
Na | ND | 84 | 3 | 6.9 | 8.0 | ND | 67 | 57 |
Ni | 60 | 88 | 15 | 12.2 | 13.5 | 90 | 52 | 56 |
P | 51 | 72 | ND | ND | ND | 57 | 43 | 52 |
Pb | 75 | 44 | 6 | 3.3 | 3.5 | 17 | BQL | BQL |
Rb | 66 | ND | ND | ND | ND | 91 | 68 | 81 |
S | ND | ND | ND | ND | ND | 59 | 33 | 36 |
Se | ND | ND | ND | ND | ND | 24 | 47 * | 48 |
Sr | 2 | ND | ND | 1.6 | 1.8 | 17 | 11 | 13 |
V | 37 | 80 | ND | 9.8 | 7.9 | 1 | BQL | BQL |
Zn | 32 | 34 | 8 | 6.1 | 6.9 | 45 | 27 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Proch, J.; Różewska, A.; Orłowska, A.; Niedzielski, P. Influence of Brewing Method on the Content of Selected Elements in Yerba Mate (Ilex paraguarensis) Infusions. Foods 2023, 12, 1072. https://doi.org/10.3390/foods12051072
Proch J, Różewska A, Orłowska A, Niedzielski P. Influence of Brewing Method on the Content of Selected Elements in Yerba Mate (Ilex paraguarensis) Infusions. Foods. 2023; 12(5):1072. https://doi.org/10.3390/foods12051072
Chicago/Turabian StyleProch, Jędrzej, Anna Różewska, Aleksandra Orłowska, and Przemysław Niedzielski. 2023. "Influence of Brewing Method on the Content of Selected Elements in Yerba Mate (Ilex paraguarensis) Infusions" Foods 12, no. 5: 1072. https://doi.org/10.3390/foods12051072
APA StyleProch, J., Różewska, A., Orłowska, A., & Niedzielski, P. (2023). Influence of Brewing Method on the Content of Selected Elements in Yerba Mate (Ilex paraguarensis) Infusions. Foods, 12(5), 1072. https://doi.org/10.3390/foods12051072