foods

Article

Application of Three-Dimensional Digital Photogrammetry to
Quantify the Surface Roughness of Milk Powder

Haohan Ding 1209, David L. Wilson 3*, Wei Yu *0), Brent R. Young * and Xiaohui Cui ">

check for
updates

Citation: Ding, H.; Wilson, D.L; Yu,
W.; Young, B.R.; Cui, X. Application
of Three-Dimensional Digital
Photogrammetry to Quantify the
Surface Roughness of Milk Powder.
Foods 2023, 12, 967. https:/ /doi.org/
10.3390/foods12050967

Academic Editor: Arun K. Bhunia

Received: 13 December 2022
Revised: 15 February 2023
Accepted: 22 February 2023
Published: 24 February 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Science Center for Future Foods, Jiangnan University, Wuxi 214122, China

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
Electrical and Electronic Engineering Department, Auckland University of Technology,

Auckland 1010, New Zealand

Department of Chemical & Materials Engineering, University of Auckland, Auckland 1010, New Zealand
School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

*  Correspondence: diwilson@aut.ac.nz

Abstract: The surface appearance of milk powders is a crucial quality property since the roughness
of the milk powder determines its functional properties, and especially the purchaser perception
of the milk powder. Unfortunately, powder produced from similar spray dryers, or even the same
dryer but in different seasons, produces powder with a wide variety of surface roughness. To date,
professional panelists are used to quantify this subtle visual metric, which is time-consuming and
subjective. Consequently, developing a fast, robust, and repeatable surface appearance classification
method is essential. This study proposes a three-dimensional digital photogrammetry technique
for quantifying the surface roughness of milk powders. A contour slice analysis and frequency
analysis of the deviations were performed on the three-dimensional models to classify the surface
roughness of milk powder samples. The result shows that the contours for smooth-surface samples
are more circular than those for rough-surface samples, and the smooth-surface samples had a low
standard deviation; thus, milk powder samples with the smoother surface have lower Q (the energy
of the signal) values. Lastly, the performance of the nonlinear support vector machine (SVM) model
demonstrated that the technique proposed in this study is a practicable alternative technique for
classifying the surface roughness of milk powders.

Keywords: 3D image analysis; surface roughness; milk powder; contour slice analysis

1. Introduction

Quality control and product consistency are key properties for any food industry, and
especially for the dairy industry [1]. Experience shows that the surface appearance usually
influences consumers’ assumptions about the organoleptic and functional performance
of milk powders, particularly for those consumers who use the product regularly and
have become accustomed to the surface appearance of the product [2]. Additionally, it is
inevitable for consumers to assess the quality of milk powders through visual perceptions
of the product, so, consequently, variations in the surface appearance may lead to the
customers considering that these milk powder products are counterfeit or even unsafe [3].
Therefore, the surface appearance is particularly important for milk powders, and visual
consistency is necessary for milk powder plants. However, since different process condi-
tions may affect the properties and appearance of milk powders [4-6], it is problematic
for different plants to maintain the visual consistency of milk powders. In addition, the
traditional way to grade the roughness of milk powders is to use sensory panelists which
is empirical and laborious. Consequently, it is essential to find an efficient and reliable way
to assess the surface roughness of milk powders and to maintain the visual consistency of
milk powder products.
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Computer vision techniques that have the ability to quantify the surface environ-
ments [7] were used by many studies to acquire texture features from various images [8-10],
and were used to measure the surface roughness of components used in engineering [11-14].
Three-dimensional laser scanning methods that can generate geometrical triangulated data
using a non-contact active method [15] have been used previously in the texture analysis of
some photographs involving metal and concrete [16-18]. Alternatively, photogrammetry
that can reconstruct three-dimensional (3D) models by stitching together numerous images
from various positions [19] is a cheaper alternative to 3D laser scanning and has become
a practicable method in 3D reconstructions or surface texture analysis [20-24]. However,
many studies used photogrammetry to analyze the texture of soil and sediments [25-27].
Moret-Fernandez et al. [28] utilized photogrammetry to evaluate the bulk density of small
soil aggregates, while Merel and Farres [29] also used photogrammetry to measure the sur-
face evolution and microrelief caused by erosion, and found that this method is sufficiently
accurate. In addition, Moret-Fernandez et al. [28] stated that it is better for the novice to
use automated software to process photogrammetry, and the time required for processing
data will be higher if the system is manual [30-32]. Furthermore, the fast Fourier transform
(FFT) spectra were used in many studies to extract the textural feature from images [33-35].

To date, standard laboratory tests, such as flowability, water activity, bulk density,
and particle size distribution, have been used to measure the functional properties of
milk powders [36,37]. For example, a kinetic pulse nuclear magnetic resonance (NMR)
technique that can measure the rehydration of milk powders was proposed in [38], Nijdam
and Langrish [39] calculated the bulk density by computing the volume variation of
milk powders in a graduated cylinder after tapping, while Lee et al. [40] measured the
dispersibility, as well as the wettability of milk powders by calculating the variance between
the electrical resistance of water and the electrical resistance of air. However, since these
instrumental measures are different from human perception, these instrument measures
may misjudge the sensory quality of products [3,41]. Additionally, the sensory quality of
products has been analyzed by many texture analysis techniques. For instance, the sensory
and texture properties of cholesterol-removed and whole milk cream cheese had been
compared by Jeon et al. [42] throughout four weeks of storage, Gosselin et al. [43] analyzed
the texture of polymer powders by using the GLCM technique, while Lille et al. [44]
evaluated the flavor and appearance of snacks made from wholegrain rye flour and whole
milk powder by using the sensory analysis. In addition, particle texture analysis (PTA),
powder electron diffraction, and scanning electron micrographs are utilized to assess the
surface of various products [45-47]. Furthermore, Traill et al. [3] utilized a trained sensory
panel and a Rate-All-That-Applies technique to distinguish the roughness of milk powders,
and determined that the significant distinction between milk powder samples is the size of
milk powder lumps. Thus, Traill et al. [2] designed a photographic standard that can be
utilized by grading assessors to classify commercial dairy powders into different lumpiness
(roughness) groups, and demonstrated that this technique can grade the milk powders
according to the level of visual lumpiness.

However, using the sensory panel to categorize the appearance of milk powders
is subjective. Additionally, all the human evaluators need to be trained. In a previous
related study, Ding et al. [48] proposed a purely geometric algorithm based on the 3D mesh
which computes the area of the triangle formed by the three adjacent surface normals to
classify the local surface smoothness of the milk powder samples. This study is based on
the previous study [48], and the aim of the previous study is to explore the feasibility of
classifying the visual appearances of different milk powders by using photogrammetry,
while the aim of this continuing study is to improve on this single local method, to propose
3D image processing quantification algorithms, and to explore the reliability and feasibility
of using this method to grade the surface appearance of different milk powder samples. In
addition, the surface normal analysis which compares the area of triangle formed by the
three adjacent surface normals as well as the angle between the adjacent surface normals
was used in the previous study [48], and principal component analysis (PCA) was used
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to reduce the set of variables for the classifier, while a third-order polynomial nonlinear
support vector machine (SVM) classifier was developed to classify the surface smoothness
of milk powder samples in the previous study [48]. However, this work introduces a
strategy based on analyzing contours and additionally, performing a frequency analysis of
these curves to extract the high frequency components which are related to the lumpiness
of the sample, and a second-order polynomial nonlinear support vector machine (SVM)
model was chosen to grade the samples. Consequently, the methods used in this work
are entirely different from the methods used in the previous work. Furthermore, the
results in the previous work [48] showed that the surface normal analysis is effective for
quantifying the surface appearance of milk powders, while it is expected that the results
in this study will prove that the 3D digital photogrammetry techniques proposed in this
work can effectively distinguish the visual appearance of milk powders and is a practicable
alternative technique for classifying the surface roughness of milk powders.

2. Materials and Methods
2.1. Milk Powder Samples

The method of preparing milk powder samples in this study is the same as the method
used in a previous study [48]. To duplicate the experience of a representative customer,
the Fonterra Co-operative milk powders used were purchased off the shelf from a local
Auckland, NZ, superstore. These milk powders comprise both instant whole and instant
trim milk powders which allows the investigation of the effects of moisture level on the
surface texture of various types of milk powders. The milk powders bought have similar
moisture levels, though the surface texture properties of the milk powder samples may be
different due to different moisture levels [48]. Therefore, to artificially create milk powders
purchased at different locations and seasons, with corresponding differing moisture levels
and surface appearances, varying amounts of water were sprayed on the samples. To assess
the actual moisture level of each milk powder sample, three replicates of samples were
dried in an oven (Cole-Parmer, Vernon Hills, IL, USA) [49,50] after photogrammetry tests,
where the mass difference before and after drying is the weight of moisture contained, and
the mean of three values was used. Four moisture levels were manually made in both
samples (instant whole and instant trim milk powders), and these surface roughness grades
are denoted as original, smooth, medium, and rough, where the first surface roughness
grade (original) are the original milk powders. Three replicates of analysis were made for
each moisture class for repeatability. Figure 1 shows the calibration chart with a somewhat
arbitrarily chosen background image [48] which is subsequently in the image processing
algorithm to robustly differentiate specific reference points. The squares of different colors
in Figure 1 are used to distinguish the location of the model when building 3D models of
milk powder samples.

Figure 1. A calibration chart used to differentiate specific reference points.
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2.2. Sample Preparation

As noted in Ding [48], it is important for the subsequent geometrically based analysis
strategy that the milk powder cone is constructed in a consistent manner. Figure 2a shows
the milk powder delivery device which contains a funnel with a stopper, a box, and a
sample holder [48]. To maintain consistency in the sample preparation, the size of the funnel
and the relative position of the funnel to the sample holder are the same. Various sizes of the
funnel can make milk powder cones with different shapes and sizes. For each sample, 80 g
of milk powders was released onto the sample holder below the funnel. The shape of all the
milk powder cones is similar in order to increase the comparability. Additionally, Figure 2b
shows the diagram of the photogrammetry equipment [48]. A Nikon D810 camera (Nikon,
Tokyo, Japan), was used for the image capture and was fixed on a tripod. The distance from
the camera to the samples was constant. In addition, to emphasize the boundary of the milk
powder cones, and to eliminate the effects of excess shadow on the milk powder cones,
four floodlights were turned on and placed on both sides of the samples. A black backing
cardboard was used to maintain a constant background and lighting. Furthermore, over
60% overlap between spatially continuous photos is needed [51,52] for photogrammetry to
develop 3D digital models of milk powder cones. Therefore, the milk powder cones on the
turntable were photographed about every 11°, so that each sample has 33 images. Detailed
figures of the milk powder delivery device and photogrammetry equipment are shown in
Ding et al. [48], and an example picture of a cone is presented in Figure 3.

lights  black cardboard  lights

N

/I;—funnel | i Lﬂl I

) / turntable Q sample

=1 «—box
sample 1 o ] = !_! ;
tripod > [ ]« camera
(@) (b)

Figure 2. (a) The diagram of the milk powder delivery device; (b) A plan view of the photogrammetry
equipment and sample stage.

Figure 3. An example picture of a cone.

2.3. 3D Digital Models Building

The computer used for building 3D digital models was a Lenovo computer (Lenovo,
Beijing, China), with an Intel (R) Core (TM) i9-10900 CPU @ 2.80 GHz with 32 GB installed
RAM, and the graphics card of the computer is NVIDIA GeForce RTX 3060 (12 GB).

After achieving all the photos of milk powder samples from photogrammetry equip-
ment, the 33 images of each milk powder sample were separately imported into the software
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RealityCapture 1.0 (EPIC GAMES, Carrytown, NC, United States), [53,54] which builds the
3D triangular mesh of milk powder cones. Subsequently, the whole three-dimensional
reconstructions with the texture of milk powder cones were created. The 3D triangular
meshes were processed in Matlab R2019b (MathWorks, Natick, MA, USA).

3. Three-Dimensional Image Analysis

In previous work, Ding et al. [48] built the surface normals of each triangle mesh for
milk powder samples, and used the differences (area and angle formed by the adjacent
surface normals) between the 3D milk powder models to measure the surface smoothness
of milk powder samples. However, this work aims to slice the 3D milk powder samples
into equally spaced contours, and use the frequency response of the deviations for each
contour to quantify the surface roughness of milk powder samples, which is completely
different from the method used in the previous study. To achieve this, we first extract
and unwarp the contours from the cone models, then compute the differences between
the unwrapped contours and the best-fit perfect circles. Finally, we can then analyze
the roughness of milk powder samples by comparing the dominant frequencies of the
wavelengths of expected lumpiness.

3.1. Contour Slice Analysis

In order to make the thickness between each layer as small as possible and to ensure
that the data between each layer are enough for the subsequent analysis, around 40 equally
spaced contours from the bottom of the cone to the top of the cone were used. The first step
is to extract the contours of the cone, as shown in Figure 4. The contours will be circles
if the milk powder sample is perfectly smooth and fall in a cone-shaped heap, while the
roughness (lumpiness) of the sample is indicated by the deviations from the circles.

Class 3 Instant Whole Milk Powder

Height (cm)

Layer 37

Layer 33 3.5
Layer 29

Layer 25 3
Layer 21

Layer 17 25
Layer 13

Layer 9 2
Layer 5

Layer 1 15

X [em] i Y [cm]

Figure 4. An oblique view of the triangulated model of a milk powder cone sliced at 40 equally
spaced contours (only 10 slices are diagrammatically shown in this figure for clarity).

3.2. Frequency Analysis of the Deviations

For each contour, this technique was used to measure the features (dominant frequen-
cies and shape) of the differences from circularity, and it is assumed that the lumpiness
will deform the circularity of the contour. For each contour, the first step is to extract
the boundary (x, y) at the given height. For an ideal cone, the extracted boundary will
be a circle, but for the milk powder cone, the extracted boundary will diverge to some
extent from a circle. Subsequently, the data of the contour was used to fit the least-squares
circle, and the radius (R) of this circle was calculated. Given the true circle radius, the
difference between the contour radius (r) and R as a function of angle around the circle can
be calculated by Equation (1):

e(f) =R —r(0) (1)
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In order to take advantage of the efficient FFT, this trend will need to be interpo-
lated on an equal grid spacing. The dominant frequencies (or alternatively the dominant
wavelengths) and the variance of the difference between the unwrapped contour and the
least-squares fit mean can be calculated if the deviations (at each altitude) are given. To bet-
ter focus on the wavelength regions, the A-axis can be abridged because the estimated sizes
of the lumpiness are known. In addition, the frequency component is a spatial frequency
(typically denoted 3) since the basic measurement is a distance. Generally, longer data
sets are needed to acquire a better resolution at the higher wavelengths, and it is necessary
to sample at a finer resolution to better measure the higher frequencies. However, in this
study, the finer resolution is not essential to better quantify the lumpiness, and furthermore,
since the cone is circular, it is inappropriate to simply sample more data since one will
then traverse again around the cone a second time. Lastly, the energy of the signal can be
calculated by Equation (2):

Q= [IFFT(e)ldA @

3.3. Support Vector Machine (SVM)

The SVM is a kernel-based method that is widely used to address pattern recognition
problems [55] and binary classification problems [56]. To prevent overfitting, cross valida-
tion was used in this study. The data were separated into four subsets (each subset has 25%
of the data). After trying different classifiers, a second-order polynomial nonlinear SVM
classifier outperformed the others. Therefore, this SVM model was chosen to categorize
the surface roughness of the samples. In addition, the confusion matrix [57], which is a
classification assessment method [58], was utilized to assess the performance of the SVM
classifier. The performance indicators, including specificity, overall accuracy, and sensitivity,
are computed, and the detailed definition of these indicators is described in [59,60].

4. Results and Discussion
4.1. Milk Powder Cones

Table 1 shows the mean moisture values of all the moisture levels with standard
deviation [48], while Figure 5 presents the front views of each sample [48]. Traill et al. [2]
used photo standards to grade the surface roughness of milk powders by a trained sensory
panel. Compared with the photo standards of lumpiness grades classified in [2], the original
(first class) milk powder samples have a similar surface appearance to the level 0 dairy
powders, and the rough (fourth class) milk powder samples have a similar appearance to
the extreme appearance (level 14) of milk powders. Consequently, the original and rough
milk powder samples are, respectively, referred to as Class 0 and Class 3. In addition, the
smooth (second class) samples and the medium (third class) samples have a similar surface
appearance to the moderate clumping samples (level 4-9) and the high clumping samples
(level 9-13), separately. Thus, the smooth milk powder samples and the medium milk
powder samples are separately denoted as Class 1 and Class 2.

Table 1. The actual moisture level.

Milk Powder Type Class 0 Class 1 Class 2 Class 3
Instant Trim Milk Powder 5.91 £+ 0.27% 8.19 & 0.45% 9.79 £ 0.66% 11.98 £ 0.96%
Instant Whole Milk Powder 5.18 £ 0.23% 7.74 £+ 0.51% 9.44 £ 0.64% 11.02 + 0.87%

From the figures, since the oblique vertical views of samples are clearly visually
very different from each other, it is reasonable to assume that there is a strong correlation
between the surface texture properties and the moisture level of powder samples. However,
it is vital to discover a mathematical and robust method to quantify these relations. For
each moisture level, three milk powder cones were fabricated to ensure the repeatability of
the method.
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Z(cm)

Figure 6 shows an example 3D reconstruction triangular mesh model which has
around 500,000 triangles of a sample. From Figure 6, it is notable that if the milk powder
sample has no lumpiness (perfectly smooth), the milk powder cone will be a near-perfect
circular-based cone, which means that the top view of the contour extracted from the
three-dimensional milk powder model will be a perfectly concentric circle. On the other
hand, the contours will show fluctuations around the perfect circles if the sample’s surface
is rough (with some lumpiness).

Instant Trim Milk Powder

0.5

Figure 5. The front views of Class 0 (a), Class 1 (b), Class 2 (c), Class3 (d) instant trim milk powder
samples and Class 0 (e), Class 1 (f), Class 2 (g), Class 3 (h) instant whole milk powder samples.

Height(cm)
4
35
3
2.5
2
15
1
0.5
0
-1 1
= 4 Y(cm) B 2 4 ? i X(-Csm) i

Figure 6. An 3D reconstruction triangular mesh model of a milk powder sample.

Figure 7a shows the unwrapped contour of a Class 0 milk powder sample at the
middle layer (layer 20), while Figure 7b presents an unwrapped contour of the Class 3 milk
powder sample at the middle layer (layer 20). The red circles in the figures are the least-
squares circles fitted by the data of the 3D digital models in this layer. From these trends,
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it is clear that the contour of the smooth milk powder sample shows a near-perfect circle,
and the unwrapped contour of the smooth sample shows a correspondingly near-straight
horizontal line. Conversely, the contour of the Class 3 sample appears irregular, and the
unwrapped contour of the rough milk powder sample exhibits considerable fluctuations.

Layer 20

Y [cm]
o

Radius [cm]

-180

Class 0 Instant Trim Milk Powder

-2 OX feml 2 4

Class 0 Instant Whole Milk Powder

X [cm]
T T T T T T T
-135 -90 -45 0 45 90 135 180
Angle 0 [deg]
(a)

Y [cm]

Radius [cm]

Layer 20

-180

-135 -90 -45 0 45 90

135 180

Angle 0 [deg]

(b)

Figure 7. (a) An unwrapped contour of Class 0 milk powder sample at layer 20; (b) an unwrapped
contour of Class 3 milk powder sample at layer 20.

4.2. Contour Slice Analysis

The 3D digital model top views of Class 0-3 instant whole and trim milk powder
samples are shown in Figure 8. It is obvious that the contours of the Class 0 milk powder
samples are relatively circular showing that the Class 0 samples exhibit little lumpiness,
while the contours of the Class 3 samples presented in Figure 8 are relatively irregular
showing that there are many lumps in the Class 3 milk powder samples. Furthermore,
although the Class 0 instant whole milk powder sample does not show any obvious
lumpiness, on the whole, the surface of this sample is rougher than the surface of the Class
0 instant trim milk powder sample.

Class 1 Instant Trim Milk Powder

1 ) -4 2 0 2 4
X [em]

Class 1 Instant Whole Milk Powder

Lo 4N ow

Y [em]

A D

0
X[em]

Class 2 Instant Trim Milk Powder

Class 3 Instant Trim Milk Powder

6 4 -2

xem 2 4 ®

Class 2 Instant Whole Milk Powder

-
X fem]

5 35
a5 4
3
42
35 25
5
3 20
~ 2
25
2
2 15
15 4
- 1
-6 2 0 4 6
X[em]
Class 3 Instant Whole Milk Powder
4f ! 4
5
45, 35
4
— 3
35 EO
JCA
3 > 25
25
2
2 4
15 15

2 0
X [em]

Figure 8. The 3D digital model top views of Class 0-3 milk powder samples.

All contours (40 layers) for a Class 0 sample and a Class 3 sample are separately shown
in Figure 9a,b. Note that the radius of the circle becomes increasingly smaller from the
bottom to the top, which means that the bottom contour slices have more data than the top
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Radius [cm]

Radius [cm]

contour slices. Additionally, from Figure 9b, it is clear that there are more lumps on the
bottom contour slices, which proves that the lumpiness tends to fall down the milk powder
cone. It is also notable that all the contours of the Class 0 sample are more circular than the
contours of the Class 3 sample, illustrating that the smoother the sample, the more circular
the contours.
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Figure 9. (a) All contours for a Class 0 milk powder sample; (b) all contours for a Class 3 milk
powder sample.

4.3. Variance of the Contours

The unwrapped contours of the Class 0-3 instant whole and trim milk powder samples
are shown in Figure 10. It is worth mentioning that the higher the cone (the smaller of the
radius), the fewer the data points of the contours. Additionally, the contours extracted from
the smooth samples have fewer oscillations than the contours extracted from the rough
samples, and the large oscillations represent the lumpiness. From Figure 10, it is clear that
the Class 3 milk powder cones have the most lumps, while the Class 0 milk powder cones
have almost no lumps. In addition, the Class 1 milk powder cones have a small number
of lumps and the Class 2 milk powder cones slightly more lumps than the Class 1 milk
powder cones. Furthermore, all the oscillations are concentrated in the contour slices with
a small radius (bottom).
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Class 1 Instant Trim Milk Powder Class 2 Instant Trim Milk Powder
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Figure 10. The unwrapped contours of Class 0-3 milk powder samples.
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Deviation

The deviations between the contours and the least-squares circles for each layer of
Class 0-3 instant whole and trim samples are presented as a linear plot in Figure 11, and
Figure 11 also plots the standard deviation for each altitude. A rough surface will have a
higher standard deviation while the low standard deviation will be shown in the smooth
surface, which is obvious in both the rough and smooth samples. For example, the standard
deviations of the Class 0 cones are the lowest, while the standard deviations of the Class 3
cones are the highest. In addition, the Class 1 milk powder cones have a larger standard
deviation than the Class 0 cones but a smaller standard deviation than the Class 2 milk
powder cones. Additionally, the trends of the standard deviations in each Class milk
powder cones are similar. Furthermore, since the lumpiness tends to fall down the milk
powder cone, a higher variance is shown in the longer contours nearer the bottom.
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Figure 11. The deviations and the standard deviation of Class 0-3 instant whole and trim milk
powder samples.

4.4. Comparing the Frequency Responses

Figure 12a,b separately show the results of the contours, deviation, and frequency
response of a Class 0 and Class 3 samples. For each sample, the absolute value of the
frequency response was calculated, and the log of the wavelength against the log of the
frequency response (which is easier to interpret) was presented in the figures. The linear
perimeter distances for each layer (in the deviation plot) are simply computed by using the
nominal radius (the following numbers) and the angle around the cone, and it is clear that
the computed values are the approximation of the true distances. The independent scale in
frequency response plots is shown in wavelength, and measured in distance units which
are referred to as ‘meters’ for convenience. In addition, the DC component of the signal
should be near zero because the mean value was subtracted. Consequently, the magnitude
of the FFT is not adjusted at the Nyquist or DC frequency. Additionally, it is obvious that
the unwrapped contours are comparatively flat for the smooth milk powder cone (Class 0
milk powder sample), but there is slight fluctuation for the shorter contours (higher layers).
The top of the frequency response in Figure 12a also strengthens the assumption. However,
the unwrapped contour trends are far more variable for the rough (Class 3) milk powder
cone in Figure 12b. It is expected that the lumpiness might drop to the bottom of the milk
powder sample. However, the deviation plot in Figure 12b tends not to demonstrate this.

Figure 13a,b separately compare the contours, deviations, and frequency response
of Class 0-3 instant whole and trim milk powder samples at layer 20 (approximately the
middle of the cone). To clearly show the shape of each contour, the radii of Class 1-3 are
enlarged appropriately (the radii of these four samples are very similar) in the contour plots
of Figure 13. Additionally, the axis is truncated in the frequency response plots of Figure 13
since the high frequency (low wavelength) has little useable information. From Figure 13a,b,
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the Class 3 milk powder sample shows more energy at wavelengths (A) around 10 distance
units, and the milk powder samples with the rougher surface show more energy at the
higher wavelengths, which is expected. Furthermore, Figure 14a,b, respectively, compare
the frequency response of Class 0-3 samples with a linear scale because the differences in
frequency response are reduced due to the logarithmic scale in Figure 13a,b. The Q values
(the energy of the signal) of each sample in Figure 14a,b are computed by Equation (2), and
as expected, the milk powder samples with smoother surfaces have lower Q values. This
result proves that it is appropriate to use Q values as the tool to categorize the roughness of
the milk powder samples.
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Figure 12. (a) The contours, deviations, and frequency response of a Class 0 sample; (b) the contours,

deviations, and frequency response of a Class 3 sample.
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Figure 13. (a) Comparing the contours, deviations, and frequency response at layer 20 across the
Class 0-3 instant trim samples; (b) comparing the contours, deviations, and frequency response at
layer 20 across the Class 0-3 instant whole samples.
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Figure 14. (a) Comparing the frequency response of the Class 0-3 instant trim samples; (b) comparing
the frequency response of the Class 0-3 instant whole samples.

4.5. Classification of the Surface Roughness

Since the Q value of each layer can be calculated, the Q values of 40 layers for each
milk powder sample were used to build the classifier to categorize the surface roughness
of milk powders. Additionally, since each moisture level has 6 milk power cones (three
instant trim cones and three instant whole cones), this study has 24 milk powder cones
in total. Figure 15 presents the results of the nonlinear SVM classifier. The blue parts
in the confusion chart represent the true positive and true negative predictions, and the
false negatives and false positives from the predictions are shown as reddish cells. Table 2
lists the specificities and sensitivities of the developed SVM model. For the performance
of the model developed in [53], only one milk powder sample was wrongly predicted,
while from these results, all the smooth milk powder samples (Class 0) and the extremely
rough-surface milk powder samples (Class 3) were predicted correctly. However, one
Class 1 sample was incorrectly classified as a Class 0 sample, and two Class 2 milk powder
samples were incorrectly classified as a Class 0 and a Class 1 sample, respectively. This may
be because the lumps (roughness) in these three samples were not too distinct. Additionally,
the overall accuracy of this classifier is 87.5% which is close to the overall accuracy of
the classifier developed in [48] (the overall accuracy is about 88%). Furthermore, since
the sample size (only eight samples) of the classifier developed in [48] is smaller than the
sample size (24) of the classifier developed in this study, the reliability of this classifier is
better than the reliability of the classifier developed in [48]. In addition, the loss (mean
squared error) obtained by the cross-validated regression model is about 0.17, so that the
accuracy (1—loss) of the cross validation is approximately 0.83, which means that this
classifier performs well in the four-fold cross validation. Consequently, it is feasible to use
this technique as a preliminary means to classify the milk powders into various surface
roughness grades.

Table 2. The specificities and sensitivities of the developed SVM model.

Class Sensitivity Specificity
Class 0 100% 75%
Class 1 83.3% 83.3%
Class 2 66.7% 100%

Class 3 100% 100%
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Figure 15. The confusion chart for the developed SVM classifier.

5. Conclusions

This study investigated the application of three-dimensional digital photogrammetry
to classify the surface roughness of milk powder. The technique proposed in this study is
objective and is an alternative to the traditional manual surface roughness classification
methods. Different from the 3D image analysis methods used in [48], which classify the
surface smoothness of milk powder samples by comparing the area of triangles formed
by the three adjacent surface normals as well as the angles between the adjacent surface
normals, the 3D digital photogrammetry techniques proposed in this study were used
to classify the surface roughness of milk powder samples by comparing the variances
and frequency responses of each contour slices between different milk powder samples.
However, this research only considered four surface roughness classes. To improve the
robustness of the classifier, more milk powder samples and surface roughness classes are
recommended. From the results of the method proposed in this study, a higher standard
deviation was observed on the rough surface, while the smooth surface had a low standard
deviation. Furthermore, the milk powder samples with rougher surfaces had higher Q
values (the energy of the signal), while the milk powder samples with smoother surfaces
had lower Q values. Finally, the performance of the nonlinear SVM classifier demonstrated
that the 3D image processing technique developed is a practicable alternative technique for
classifying the surface roughness of milk powders.
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