Recent Advances in Pickering Double Emulsions and Potential Applications in Functional Foods: A Perspective Paper
Abstract
:1. Introduction
2. Stabilization Strategy
2.1. Combination of Hydrophobic and Hydrophilic Particles with/without Co-Surfactants
2.1.1. Silica Particles
2.1.2. Polymeric Particles
2.1.3. Metallic Particles
2.1.4. Naturally Derived Particles
2.2. Particles with Intermediate Wettability
2.3. Particles with Environmentally Responsive Property
2.4. In Situ Modified Particles
3. Applications of PDE
3.1. Encapsulation of Drugs and/or Nutraceuticals
3.1.1. Lipophilic Compounds
3.1.2. Hydrophilic Compound
3.1.3. Co-Encapsulation of Lipophilic and Hydrophilic Compounds
3.1.4. Microbes
3.2. PDE-Templated Hierarchical Structure
3.2.1. Microsphere
3.2.2. Microcapsule
4. Perspectives: Challenges and Outlooks of PDE
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aserin, A. Multiple Emulsion: Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 1. [Google Scholar]
- Muschiolik, G.; Dickinson, E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, E. Double Emulsions Stabilized by Food Biopolymers. Food Biophys. 2010, 6, 1–11. [Google Scholar] [CrossRef]
- Beldengrün, Y.; Dallaris, V.; Jaén, C.; Protat, R.; Miras, J.; Calvo, M.; García-Celma, M.; Esquena, J. Formation and stabilization of multiple water-in-water-in-water (W/W/W) emulsions. Food Hydrocoll. 2019, 102, 105588. [Google Scholar] [CrossRef]
- Song, Y.; Shum, H.C. Monodisperse w/w/w Double Emulsion Induced by Phase Separation. Langmuir 2012, 28, 12054–12059. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, L.A.; Dyab, A.K.F.; Taha, F. Non-aqueous castor oil-in-glycerin-in-castor oil double (o/o/o) Pickering emulsions: Physico-chemical characterization and in vitro release study. J. Dispers. Sci. Technol. 2019, 41, 102–116. [Google Scholar] [CrossRef]
- Florence, A.; Whitehill, D. Some features of breakdown in water-in-oil-in-water multiple emulsions. J. Colloid Interface Sci. 1981, 79, 243–256. [Google Scholar] [CrossRef]
- Aveyard, R.; Binks, B.P.; Clint, J.H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100-102, 503–546. [Google Scholar] [CrossRef]
- Mezzenga, R.; Folmer, B.M.; Hughes, E. Design of Double Emulsions by Osmotic Pressure Tailoring. Langmuir 2004, 20, 3574–3582. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P. Ostwald ripening in emulsions. Adv. Colloid Interface Sci. 1998, 75, 107–163. [Google Scholar] [CrossRef]
- Liu, M.; Chen, X.; Yang, Z.; Xu, Z.; Hong, L.; Ngai, T. Tunable Pickering Emulsions with Environmentally Responsive Hairy Silica Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 32250–32258. [Google Scholar] [CrossRef] [PubMed]
- Cserháti, T.; Forgács, E.; Oros, G. Biological activity and environmental impact of anionic surfactants. Environ. Int. 2002, 28, 337–348. [Google Scholar] [CrossRef]
- Pickering, S.U. CXCVI.—Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Li, Y.; Huang, Q. Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends Food Sci. Technol. 2016, 55, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Binks, P.; Dyab, A.; Fletcher, P. Multiple emulsions stabilised solely by nanoparticles. In Proceedings of the 3rd World Congress on Emulsions, Lyon, Paris, 1 September 2002. [Google Scholar]
- Gao, Q.; Wang, C.; Liu, H.; Chen, Y.; Tong, Z. Dual nanocomposite multihollow polymer microspheres prepared by suspension polymerization based on a multiple pickering emulsion. Polym. Chem. 2009, 1, 75–77. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, C.; Tong, Z. Facile, controlled, large scale fabrication of novel capsule clusters. RSC Adv. 2013, 3, 4514–4517. [Google Scholar] [CrossRef]
- Lee, D.; Weitz, D.A. Double Emulsion-Templated Nanoparticle Colloidosomes with Selective Permeability. Adv. Mater. 2008, 20, 3498–3503. [Google Scholar] [CrossRef]
- Oza, K.P.; Frank, S.G. Multiple emulsions stabilized by colloidal microgrystalline cellulose. J. Dispers. Sci. Technol. 1989, 10, 163–185. [Google Scholar] [CrossRef]
- Sekine, T.; Yoshida, K.; Matsuzaki, F.; Yanaki, T.; Yamaguchi, M. A novel method for preparing oil-in-water-in-oil type multiple emulsions using organophilic montmorillonite clay mineral. J. Surfactants Deterg. 1999, 2, 309–315. [Google Scholar] [CrossRef]
- Midmore, B.; Herrington, T. Silica-Stabilised Multiple Emulsions. In Trends in Colloid and Interface Science XIII; Springer: Berlin/Heidelberg, Germany, 1999; pp. 115–120. [Google Scholar]
- Miesch, C.; Kosif, I.; Lee, E.; Kim, J.-K.; Russell, T.P.; Hayward, R.C.; Emrick, T. Nanoparticle-Stabilized Double Emulsions and Compressed Droplets. Angew. Chem. Int. Ed. 2011, 51, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Vogel, R.; Werner, S.; Heinrich, G.; Clausse, D.; Dutschk, V. Influence of the particle type on the rheological behavior of Pickering emulsions. Colloids Surfaces A: Physicochem. Eng. Asp. 2011, 382, 238–245. [Google Scholar] [CrossRef]
- Zhu, Y.; Hua, Y.; Zhang, S.; Wang, Y.; Chen, J. Open-cell macroporous bead: A novel polymeric support for heterogeneous photocatalytic reactions. J. Polym. Res. 2015, 22, 57. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Shao, L.; Cui, Z.; Nie, T. Synthesis of magnetic Fe3O4/polyamine hybrid microsphere using O/W/O Pickering emulsion droplet as the polymerization micro-reactor. RSC Adv. 2015, 5, 22188–22198. [Google Scholar] [CrossRef]
- Thompson, K.L.; Mable, C.J.; Lane, J.A.; Derry, M.J.; Fielding, L.A.; Armes, S.P. Preparation of Pickering Double Emulsions Using Block Copolymer Worms. Langmuir 2015, 31, 4137–4144. [Google Scholar] [CrossRef] [PubMed]
- Kanai, T.; Lee, D.; Shum, H.C.; Shah, R.K.; Weitz, D.A. Gel-Immobilized Colloidal Crystal Shell with Enhanced Thermal Sensitivity at Photonic Wavelengths. Adv. Mater. 2010, 22, 4998–5002. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Sun, J.; Yi, C.; Wei, W.; Liu, X. One-step formation of multiple Pickering emulsions stabilized by self-assembled poly(dodecyl acrylate-co-acrylic acid) nanoparticles. Soft Matter 2016, 12, 7577–7584. [Google Scholar] [CrossRef]
- Ning, Y.; Wang, C.; Ngai, T.; Tong, Z. Fabrication of Tunable Janus Microspheres with Dual Anisotropy of Porosity and Magnetism. Langmuir 2013, 29, 5138–5144. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Ngai, T. pH-Sensitive W/O Pickering High Internal Phase Emulsions and W/O/W High Internal Water-Phase Double Emulsions with Tailored Microstructures Costabilized by Lecithin and Silica Inorganic Particles. Langmuir 2021, 37, 2843–2854. [Google Scholar] [CrossRef]
- Yin, D.; Li, B.; Liu, J.; Zhang, Q. Structural diversity of multi-hollow microspheres via multiple Pickering emulsion co-stabilized by surfactant. Colloid Polym. Sci. 2014, 293, 341–347. [Google Scholar] [CrossRef]
- Zou, S.; Liu, H.; Yang, Y.; Wei, Z.; Wang, C. Multihollow nanocomposite microspheres with tunable pore structures by templating Pickering double emulsions. React. Funct. Polym. 2013, 73, 1231–1241. [Google Scholar] [CrossRef]
- Zou, S.; Wang, C.; Gao, Q.; Tong, Z. Surfactant-Free Multiple Pickering Emulsions Stabilized by Combining Hydrophobic and Hydrophilic Nanoparticles. J. Dispers. Sci. Technol. 2013, 34, 173–181. [Google Scholar] [CrossRef]
- Hu, Y.; Zou, S.; Yang, Y.; Tong, Z.; Wang, C. Facile Fabrication of Macroporous PLGA Microspheres via Double-Pickering Emulsion Templates. Macromol. Chem. Phys. 2015, 216, 714–720. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, T.; Zhou, X. Aqueous core polystyrene microspheres fabricated via suspension polymerization basing on a multiple pickering emulsion. J. Appl. Polym. Sci. 2013, 131. [Google Scholar] [CrossRef]
- Depardieu, M.; Nollet, M.; Destribats, M.; Schmitt, V.; Backov, R. Thermo-Stimulable Wax@ Water@ SiO2 Multicore-Shell Capsules. Part. Part. Syst. Charact. 2013, 30, 185–192. [Google Scholar] [CrossRef]
- Williams, M.; Warren, N.J.; Fielding, L.A.; Armes, S.P.; Verstraete, P.; Smets, J. Preparation of Double Emulsions using Hybrid Polymer/Silica Particles: New Pickering Emulsifiers with Adjustable Surface Wettability. ACS Appl. Mater. Interfaces 2014, 6, 20919–20927. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Y.; Huang, Y.; Huang, F.; Li, S.; Shen, Y.; Zhu, M.; Xie, A. A GO@PLA@HA Composite Microcapsule: Its Preparation and Multistage and Controlled Drug Release. Eur. J. Inorg. Chem. 2017, 2017, 3312–3321. [Google Scholar] [CrossRef]
- Zhu, W.; Ma, W.; Li, C.; Pan, J.; Dai, X. Well-designed multihollow magnetic imprinted microspheres based on cellulose nanocrystals (CNCs) stabilized Pickering double emulsion polymerization for selective adsorption of bifenthrin. Chem. Eng. J. 2015, 276, 249–260. [Google Scholar] [CrossRef]
- Hu, S.-H.; Liao, B.-J.; Chiang, C.-S.; Chen, P.-J.; Chen, I.-W.; Chen, S.-Y. Core-Shell Nanocapsules Stabilized by Single-Component Polymer and Nanoparticles for Magneto-Chemotherapy/Hyperthermia with Multiple Drugs. Adv. Mater. 2012, 24, 3627–3632. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zheng, Y.; Wang, F.; Wang, A. Fabrication of magnetic porous microspheres via (O1/W)/O2 double emulsion for fast removal of Cu2+ and Pb2+. J. Taiwan Inst. Chem. Eng. 2016, 67, 505–510. [Google Scholar] [CrossRef]
- Marefati, A.; Sjöö, M.; Timgren, A.; Dejmek, P.; Rayner, M. Fabrication of encapsulated oil powders from starch granule stabilized W/O/W Pickering emulsions by freeze-drying. Food Hydrocoll. 2015, 51, 261–271. [Google Scholar] [CrossRef]
- Al Nuumani, R.; Vladisavljević, G.T.; Kasprzak, M.; Wolf, B. In-vitro oral digestion of microfluidically produced monodispersed W/O/W food emulsions loaded with concentrated sucrose solution designed to enhance sweetness perception. J. Food Eng. 2020, 267, 109701. [Google Scholar] [CrossRef]
- Lin, X.; Li, S.; Yin, J.; Chang, F.; Wang, C.; He, X.; Huang, Q.; Zhang, B. Anthocyanin-loaded double Pickering emulsion stabilized by octenylsuccinate quinoa starch: Preparation, stability and in vitro gastrointestinal digestion. Int. J. Biol. Macromol. 2019, 152, 1233–1241. [Google Scholar] [CrossRef]
- Xiao, J.; Lu, X.; Huang, Q. Double emulsion derived from kafirin nanoparticles stabilized Pickering emulsion: Fabrication, microstructure, stability and in vitro digestion profile. Food Hydrocoll. 2017, 62, 230–238. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, T.; Smits, J.; Huang, X.; Maas, M.; Yin, S.; Ngai, T. Edible high internal phase Pickering emulsion with double-emulsion morphology. Food Hydrocoll. 2020, 111, 106405. [Google Scholar] [CrossRef]
- Chen, M.; Li, W.; Wang, W.; Cao, Y.; Lan, Y.; Huang, Q.; Xiao, J. Effects of gelation on the stability, tribological properties and time-delayed release profile of double emulsions. Food Hydrocoll. 2022, 131, 107753. [Google Scholar] [CrossRef]
- Chen, M.; Abdullah; Wang, W.; Xiao, J. Regulation Effects of Beeswax in the Intermediate Oil Phase on the Stability, Oral Sensation and Flavor Release Properties of Pickering Double Emulsions. Foods 2022, 11, 1039. [Google Scholar] [CrossRef] [PubMed]
- Eslami, P.; Davarpanah, L.; Vahabzadeh, F. Encapsulating role of β-cyclodextrin in formation of pickering water-in-oil-in-water (W1/O/W2) double emulsions containing Lactobacillus dellbrueckii. Food Hydrocoll. 2017, 64, 133–148. [Google Scholar] [CrossRef]
- Tang, X.-Y.; Wang, Z.-M.; Meng, H.-C.; Lin, J.-W.; Guo, X.-M.; Zhang, T.; Chen, H.-L.; Lei, C.-Y.; Yu, S.-J. Robust W/O/W Emulsion Stabilized by Genipin-Cross-Linked Sugar Beet Pectin-Bovine Serum Albumin Nanoparticles: Co-encapsulation of Betanin and Curcumin. J. Agric. Food Chem. 2021, 69, 1318–1328. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Fernández, A.; Román-Guerrero, A.; Jiménez-Alvarado, R.; Lobato-Calleros, C.; Alvarez-Ramirez, J.; Vernon-Carter, E. Stabilization of oil-in-water-in-oil (O1/W/O2) Pickering double emulsions by soluble and insoluble whey protein concentrate-gum Arabic complexes used as inner and outer interfaces. J. Food Eng. 2018, 221, 35–44. [Google Scholar] [CrossRef]
- Cunha, A.G.; Mougel, J.-B.; Cathala, B.; Berglund, L.A.; Capron, I. Preparation of Double Pickering Emulsions Stabilized by Chemically Tailored Nanocelluloses. Langmuir 2014, 30, 9327–9335. [Google Scholar] [CrossRef]
- Pan, J.; Yin, Y.; Gan, M.; Meng, M.; Dai, X.; Wu, R.; Shi, W.; Yan, Y. Fabrication and evaluation of molecularly imprinted multi-hollow microspheres adsorbents with tunable inner pore structures derived from templating Pickering double emulsions. Chem. Eng. J. 2015, 266, 299–308. [Google Scholar] [CrossRef]
- Frasch-Melnik, S.; Spyropoulos, F.; Norton, I.T. W1/O/W2 double emulsions stabilised by fat crystals--formulation, stability and salt release. J. Colloid Interface Sci. 2010, 350, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R. Surfactant-free oil-in-water-in-oil emulsions stabilized solely by natural components-biopolymers and vegetable fat crystals. MRS Adv. 2017, 2, 1095–1102. [Google Scholar] [CrossRef]
- Szumała, P.; Luty, N. Effect of different crystalline structures on W/O and O/W/O wax emulsion stability. Colloids Surfaces A: Physicochem. Eng. Asp. 2016, 499, 131–140. [Google Scholar] [CrossRef]
- Yu, S.-C.; Bochot, A.; Le Bas, G.; Chéron, M.; Mahuteau, J.; Grossiord, J.-L.; Seiller, M.; Duchêne, D. Effect of camphor/cyclodextrin complexation on the stability of O/W/O multiple emulsions. Int. J. Pharm. 2003, 261, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nonomura, Y.; Kobayashi, N.; Nakagawa, N. Multiple Pickering Emulsions Stabilized by Microbowls. Langmuir 2011, 27, 4557–4562. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Zhang, Q.; Shi, S.; Zhu, S. High internal phase emulsion with double emulsion morphology and their templated porous polymer systems. J. Colloid Interface Sci. 2016, 483, 232–240. [Google Scholar] [CrossRef]
- Bai, Y.; Pei, X.; Zhao, B.; Xu, K.; Zhai, K.; Wang, C.; Zhang, F.; Tan, Y.; Zhang, B.; Wang, Y.; et al. Multiple pickering high internal phase emulsions stabilized by modified diatomite particles via one-step emulsification process. Chem. Eng. Sci. 2020, 212, 115341. [Google Scholar] [CrossRef]
- Nikfarjam, N.; Qazvini, N.T.; Deng, Y. Cross-linked starch nanoparticles stabilized Pickering emulsion polymerization of styrene in w/o/w system. Colloid Polym. Sci. 2013, 292, 599–612. [Google Scholar] [CrossRef]
- Williams, M.; Armes, S.P.; Verstraete, P.; Smets, J. Double Emulsions and Colloidosomes-in-Colloidosomes Using Silica-Based Pickering Emulsifiers. Langmuir 2014, 30, 2703–2711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ge, X.; Wang, M.; Yang, J.; Wu, Q.; Wu, M.; Liu, N.; Jin, Z. Hybrid hollow microspheres templated from double Pickering emulsions. Chem. Commun. 2010, 46, 4318–4320. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Zeng, L.; Ren, J.; Yang, X. One-step formation of a double Pickering emulsion via modulation of the oil phase composition. Food Funct. 2018, 9, 4508–4517. [Google Scholar] [CrossRef]
- Dyab, A.K.F. Macroporous Polymer Beads and Monoliths From Pickering Simple, Double, and Triple Emulsions. Macromol. Chem. Phys. 2012, 213, 1815–1832. [Google Scholar] [CrossRef]
- Hosseinzadeh, B.; Nikfarjam, N.; Kazemi, S.H. Hollow molecularly imprinted microspheres made by w/o/w double Pickering emulsion polymerization stabilized by graphene oxide quantum dots targeted for determination of l-cysteine concentration. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 612, 125978. [Google Scholar] [CrossRef]
- Guo, C.; Ge, M.; Liu, L.; Gao, G.; Feng, Y.; Wang, Y. Directed Synthesis of Mesoporous TiO2 Microspheres: Catalysts and Their Photocatalysis for Bisphenol A Degradation. Environ. Sci. Technol. 2009, 44, 419–425. [Google Scholar] [CrossRef]
- Albert, C.; Beladjine, M.; Tsapis, N.; Fattal, E.; Agnely, F.; Huang, N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. J. Control. Release 2019, 309, 302–332. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.; Timgren, A.; Sjöö, M.; Dejmek, P.; Rayner, M. Preparation and encapsulation properties of double Pickering emulsions stabilized by quinoa starch granules. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 423, 147–153. [Google Scholar] [CrossRef]
- Chen, X.; McClements, D.J.; Wang, J.; Zou, L.; Deng, S.; Liu, W.; Yan, C.; Zhu, Y.; Cheng, C.; Liu, C. Coencapsulation of (−)-Epigallocatechin-3-gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility. J. Agric. Food Chem. 2018, 66, 3691–3699. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, W.; Yong, C.; Lan, Y.; Huang, Q.; Xiao, J. Effects of the Distribution Site of Crystallizable Emulsifiers on the Gastrointestinal Digestion Behavior of Double Emulsions. J. Agric. Food Chem. 2022, 70, 5115–5125. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Song, M.; Zhao, Z.; Chen, X.; Cai, J.; Cao, Y.; Xiao, J. Lactobacillus acidophilus loaded pickering double emulsion with enhanced viability and colon-adhesion efficiency. LWT 2019, 121, 108928. [Google Scholar] [CrossRef]
- Sahil, K.; Akanksha, M.; Premjeet, S.; Bilandi, A.; Kapoor, B. Microsphere: A review. Int. J. Res. Pharm. Chem. 2011, 1, 1184–1198. [Google Scholar]
- Floyd, J.A.; Galperin, A.; Ratner, B.D. Drug encapsulated polymeric microspheres for intracranial tumor therapy: A review of the literature. Adv. Drug Deliv. Rev. 2015, 91, 23–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, C.-S.; Islam, M.A.; Firdous, J.; Choi, Y.-J.; Yun, C.-H. Design and application of chitosan microspheres as oral and nasal vaccine carriers: An updated review. Int. J. Nanomed. 2012, 7, 6077–6093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freiberg, S.; Zhu, X.X. Polymer microspheres for controlled drug release. Int. J. Pharm. 2004, 282, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.-S.; Long, S.-Y.; Huang, J.; Xiao, H.-Y.; Zhou, J.-Y. Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem. Eng. J. 2005, 25, 15–23. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Z.; Liu, Z.; Liu, G.; Li, Z.; Wang, J.; Dong, X. Silver microspheres for application as hydrogen peroxide sensor. Electrochem. Commun. 2009, 11, 1707–1710. [Google Scholar] [CrossRef]
- O’Donnell, P.B.; McGinity, J.W. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Deliv. Rev. 1997, 28, 25–42. [Google Scholar] [CrossRef]
- Arshady, R. Microspheres and microcapsules, a survey of manufacturing techniques Part II: Coacervation. Polym. Eng. Sci. 1990, 30, 905–914. [Google Scholar] [CrossRef]
- He, P.; Davis, S.S.; Illum, L. Chitosan microspheres prepared by spray drying. Int. J. Pharm. 1999, 187, 53–65. [Google Scholar] [CrossRef]
- Ganesan, P.; John, A.J.D.; Sabapathy, L.; Duraikannu, A. Review on microsphere. Am. J. Drug Discov. Dev. 2014, 4, 153–179. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.K. Functional Coatings and Microencapsulation: A General Perspective; Wiley: Hoboken, NJ, USA, 2006; pp. 1–28. [Google Scholar]
- Jyothi, N.V.N.; Prasanna, P.M.; Sakarkar, S.N.; Prabha, K.S.; Ramaiah, P.S.; Srawan, G. Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsul. 2010, 27, 187–197. [Google Scholar] [CrossRef]
- Paulo, F.; Santos, L. Design of experiments for microencapsulation applications: A review. Mater. Sci. Eng. C 2017, 77, 1327–1340. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Vanrell, R.; Bravo-Osuna, I.; Andrés-Guerrero, V.; Vicario-De-La-Torre, M.; Martínez, I.T.M. The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies. Prog. Retin. Eye Res. 2014, 42, 27–43. [Google Scholar] [CrossRef]
- Jyothi, S.S.; Seethadevi, A.; Prabha, K.S.; Muthuprasanna, P.; Pavitra, P. Microencapsulation: A review. Int. J. Pharm. Biol. Sci. 2012, 3, 509–531. [Google Scholar]
- Bansode, S.S.; Banarjee, S.K.; Gaikwad, D.D.; Jadhav, S.L.; Thorat, R.M. Microencapsulation: A review. Int. J. Pharm. Sci. Rev. Res. 2010, 1, 38–43. [Google Scholar]
- Gouin, S. Microencapsulation: Industrial appraisal of existing technologies and trends. Trends Food Sci. Technol. 2004, 15, 330–347. [Google Scholar] [CrossRef]
- Baranauskienė, R.; Venskutonis, P.R.; Dewettinck, K.; Verhé, R. Properties of oregano (Origanum vulgare L.), citronella (Cymbopogon nardus G.) and marjoram (Majorana hortensis L.) flavors encapsulated into milk protein-based matrices. Food Res. Int. 2006, 39, 413–425. [Google Scholar] [CrossRef]
- Yow, H.N.; Routh, A.F. Formation of liquid core–polymer shell microcapsules. Soft Matter 2006, 2, 940–949. [Google Scholar] [CrossRef] [PubMed]
Emulsification Step | Stabilization Strategy | Colloidal Particle (and Co-Surfactant) | Application | Ref |
---|---|---|---|---|
Two-Step | Hydrophobic and hydrophilic particles (co-surfactant) | O1/W: Hydrophilic N20 silica W/O2: Hydrophobic H30 silica | Synthesis of tunable capsule clusters | [17] |
Two-Step | O1/W: Hydrophilic silica Ludox HS-40 W/O2: Hydrophobic silica particle HDK H2000 | [21] | ||
Two-Step | O1/W: Hydrophilic silica particle SLM 1466 W/O2: Hydrophobic silica particle SLM1472 | Proposed application as an entrapping reservoir for active ingredients | [15] | |
Two-Step | O1/W: Hydrophilic G37-H60-B30 block copolymer worms O1/W/O2: Hydrophobic L16-B37 Block copolymer worms | [26] | ||
Two-Step | W1/O: Hydrophobic H30 silica nanoparticle O/W2: Hydrophilic mesoporous silica nanoparticles (MSN) | Fabrication of tunable Janus microspheres with magnetism and dual anisotropy of porosity | [29] | |
Two-Step | W1/O: Lecithin and hydrophobic AEROSIL R974 silica O/W2: Hydrophilic HKD N20 silica nanoparticle | Preparation of high internal phase Pickering double emulsions | [30] | |
Two-Step | W1/O: Span 80 and hydrophobic SiO2 O/W2: Hydrophilic SiO2 | Fabrication of multi-hollow microspheres | [31] | |
Two-Step | O1/W: Laponite RD clay W/O2: Hydrophobic modified H30 silica particle | Suspension polymerization template for synthesis of multi-hollow polymer microspheres | [16] | |
Two-Step | O1/W: Fe2O3 nanoparticle and Laponite RD clay W/O2: H30 silica particle and oleic acid coated Fe2O3 nanoparticle | Proposed application as polymerization vessel to fabricate nanocomposite polymer microspheres | [32] | |
Two-Step | W1/O: Hydrophilic H30 silica nanoparticle O/W2: P(NIPAm-co-MAA) microgels | Stimulus-responsive (pH/temp) emulsion for controlled release. | [33] | |
One-Step | W1/O/W2: Hydrophilic SiO2 nanoparticle and PLGA | Fabrication of microporous microsphere | [34] | |
Two-Step | W1/O: Modified hydrophobic SiO2 particle O/W2: PVA | Fabrication of microsphere with aqueous core | [35] | |
Two-Step | O1/W: Modified A380 silica and CTAB-functionalized silica W/O2: Down Corning surfactant DC3225C | Fabrication of wax–water–SiO2 microcapsule with thermo-stimulable release property | [36] | |
Two-Step | W1/O: Hydrophobic silica/PEI hybrid nanoparticles O/W2: hydrophilic silica/PEI hybrid nanoparticles | [37] | ||
Two-Step | W1/O: Graphene oxide (GO) nanoparticle O/W2: Hydroxyapatite (HA) nanoparticle | Fabrication of multi-drug containing composite microcapsule for controlled release | [38] | |
Two-Step | O1/W: PEI and Fe3O4 nanoparticle W/O2: SM-CaCO3 nanoparticle | Template for polymerization-induced synthesis of magnetic Fe3O4/polyamine hybrid microsphere | [25] | |
Two-Step | W1/O: Fe3O4 nanoparticle O/W2: Cellulose nanocrystals | Fabrication of multihollow magnetic imprinted microspheres | [39] | |
One-Step | W1/O/W2: PVA and iron oxide nanoparticles | Synthesis of multi-drug encapsulated nanocapsules with magnetism | [40] | |
Two-Step | O1/W: APTMS coated Fe3O4 nanoparticle and pluronic F68 W/O2: PGPR | Synthesis of magnetic porous microspheres for absorption | [41] | |
Two-Step | O1/W: Au-TEG nanoparticle W/O2: CdSe QDs | [22] | ||
Two-Step | W1/O: PGPR O/W2: Modified quinoa starch | [42] | ||
Two-Step | W1/O: PGPR O/W2: Waxy starch | Encapsulation of sucrose to enhance sweetness perception | [43] | |
Two-Step | W1/O: PGPR O/W2: Octenylsuccinate quinoa starch | Encapsulation of anthocyanin | [44] | |
Two-Step | W1/O: PGPR O/W2: Kafirin | Encapsulation of anthocyanin | [45] | |
Two-Step | W1/O: Lecithin O/W2: Zein nanoparticles | [46] | ||
Two-Step | W1/O: PGPR O/W2: Bacterial cellulose | Co-encapsulation and controlled release | [47,48] | |
Two-Step | W1/O: Span-80 /O/W2: β-cyclodextrin | Encapsulation of Lactobacillus dellbrueckii | [49] | |
Two-Step | W1/O: PGPR O/W2: Sugar beet pectin–bovine serum albumin nanoparticles | Co-encapsulation of betanin and curcumin | [50] | |
Two-Step | O1/W: Soluble WPC-GA complex W/O2: Hydrophobic particles obtained from insoluble WPC-GA complexes | [51] | ||
Two-Step | O1/W: Nano-fibrillated cellulose (NFC)/Sulfated cellulose nanocrystals (CNC) W/O2: Modified NFC/modified CNC | Proposed applications in the fields of food, pharmaceuticals, and cosmetics | [52] | |
Two-Step | W1/O: lipophilic lignin O/W2: hydrophilic lignin | Fabrication of molecularly imprinted multi-hollow microspheres | [53] | |
Two-Step | W1/O: fat crystals O/W2: Sodium caseinate | [54] | ||
Two-Step | O1/W: Gelatin and xanthan gum W/O2: Vegetable fat crystal | Proposed for low-fat formulation for margarines and spreads | [55] | |
One-Step | O1/W/O2: Carnauba wax | [56] | ||
Two-step | O1/W: Cyclodextrin W/O2: Candelilla wax | [57] | ||
One-Step | O1/W/O2: Microbowls | Template to obtain supracolloidal systems | [58] | |
One-Step | O1/W/O2: Modified Boehmite alumina particles | Controlled release for pharmaceutical field | [23] | |
One-Step | W1/O/W2: PDEA microgel particle | [59] | ||
One-Step | O1/W/O2: Palmitoyl chloride-modified diatomite particles | Synthesis of porous polyacrylamide particles | [60] | |
One-Step | Environmentally responsive particles | O1/W/O2: Terpolymer-grafted silica nanoparticles | pH-dependent controlled release | [11] |
One-Step | O1/W/O2: PDAA nanoparticle | [28] | ||
Two-Step | In situ modified particles | W1/O: In situ modified cross-linked starch nanoparticles O/W2: Hydroxyethyl cellulose | [61] | |
Two-Step | W1/O: in situ modified PEI/silica particles O/W2: PEI/silica particles | Fabrication of colloidosomes-in-colloidosomes structure | [62] | |
Two-Step | W1/O: In situ modified amphiphilic silica O/W2: In situ modified amphiphilic silica | Fabrication of hollowed microspheres | [63] | |
One-Step | W1/O/W2: In situ modified corn-peptide-functionalized calcium phosphate | Free fatty acid scavenging and lipid oxidation retardation | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhu, J.; Cheng, Y.; Huang, Q. Recent Advances in Pickering Double Emulsions and Potential Applications in Functional Foods: A Perspective Paper. Foods 2023, 12, 992. https://doi.org/10.3390/foods12050992
Zhang J, Zhu J, Cheng Y, Huang Q. Recent Advances in Pickering Double Emulsions and Potential Applications in Functional Foods: A Perspective Paper. Foods. 2023; 12(5):992. https://doi.org/10.3390/foods12050992
Chicago/Turabian StyleZhang, Junjia, Jieyu Zhu, Yujia Cheng, and Qingrong Huang. 2023. "Recent Advances in Pickering Double Emulsions and Potential Applications in Functional Foods: A Perspective Paper" Foods 12, no. 5: 992. https://doi.org/10.3390/foods12050992
APA StyleZhang, J., Zhu, J., Cheng, Y., & Huang, Q. (2023). Recent Advances in Pickering Double Emulsions and Potential Applications in Functional Foods: A Perspective Paper. Foods, 12(5), 992. https://doi.org/10.3390/foods12050992