Composition of Powdered Freeze-Dried Orange Juice Co-Product as Related to Glucose Absorption In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining the Powdered Orange Juice Co-Product
2.2. Proximate Composition Analysis
2.3. Total Phenolic Compounds and Flavonoid Profile
2.4. Antioxidant Activity
2.5. α-Amylase and α-Glucosidase Inhibition Assay
2.6. Glucose Adsorption Capacity
2.7. Glucose Dialysis Retardation Index
2.8. Estimated Glycaemic Index
3. Results and Discussion
3.1. Characterization Proximal and Phytochemical Analysis
3.2. Bioactivity Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galali, Y.; Omar, Z.A.; Sajadi, S.M. Biologically active components in by-products of food processing. Food Sci. Nutr. 2020, 8, 3004–3022. [Google Scholar] [CrossRef]
- Marcillo-Parra, V.; Tupuna-Yerovi, D.S.; González, Z.; Ruales, J. Encapsulation of Bioactive Compounds from Fruit and Vegetable By-Products for Food Application—A Review. Trends Food Sci. Technol. 2021, 116, 11. [Google Scholar] [CrossRef]
- USDA. Available online: https://www.fas.usda.gov/data/citrus-world-markets-and-trade (accessed on 3 November 2022).
- Figuerola, F.; Hurtado, M.; Estévez, A.; Chiffelle, I.; Asenjo, F. Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 2005, 91, 395–401. [Google Scholar] [CrossRef]
- FAO/WHO. Food and Agriculture Organization/World Health Organization, Report of a Joint WHO/FAO Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases (2003); Technical report series, 916; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Ioniță-Mîndrican, C.B.; Ziani, K.; Mititelu, M.; Oprea, E.; Neacșu, S.M.; Moroșan, E.; Dumitrescu, D.E.; Roșca, A.C.; Drăgănescu, D.; Negrei, C. Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art Review. Nutrients 2022, 14, 2641. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, M. The role of dietary fibers in regulating appetite, an overview of mechanisms and weight consequences. Crit. Rev. Food Sci. Nutr. 2002. [Google Scholar] [CrossRef] [PubMed]
- Flores-Fernández, J.; Barragán-Álvarez, C.; Díaz-Martínez, N.; Villanueva-Rodríguez, S.; Padilla-Camberos, E. In vitro and in vivo postprandial glycemic activity of citrus limetta peel flour. Pharmacogn. Mag. 2017, 13, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Basterra-Gortari, F.J.; Bes-Rastrollo, M.; Ruiz-Canela, M.; Gea, A.; Martinez-Gonzalez, M.A. Prevalence of obesity and diabetes in Spanish adults 1987-2012. Med. Clin. 2017, 148, 250–256. [Google Scholar] [CrossRef]
- IDF Diabetes Atlas. Available online: https://diabetesatlas.org/atlasdldata/es_am210yahoo-com/ (accessed on 3 November 2022).
- WHO European Regional Obesity Report 2022; WHO Regional Office for Europe: Copenhagen, Denmark, 2022.
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Goff, D.V. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Sivakamasundari, S.K.; Priyanga, S.; Moses, J.A.; Anandharamakrishnan, C. Impact of processing techniques on the glycemic index of rice. Crit. Rev. Food Sci. Nutr. 2022, 62, 3323–3344. [Google Scholar] [CrossRef]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Diss. 2015, 25, 795–815. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.M.O.; Abihm, M.D. Glycemic Index and Glycemic Load. In Integrative Medicine, 4th ed.; Rakel, D.P., Ed.; Elsevier: Philadelphia, PA, USA, 2018. [Google Scholar]
- Neuhouser, M.; Tinker, L.; Thomson, C.; Caan, B.; Van Horn, L.; Snetselaar, L.; Shikany, J. Development of a glycemic index database for food Frequency questionnaires used in epidemiologic etudies. J. Nutr. 2006, 136, 1604–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juul, F.; Vaidean, G.; Parekh, N. Ultra-processed Foods and Cardiovascular Diseases: Potential Mechanisms of Action. Adv. Nutr. 2021, 12, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, C.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–6337. [Google Scholar] [CrossRef] [PubMed]
- Camacho, M.M.; Zago, M.; García-Martínez, E.; Martínez-Navarrete, N. Free and Bound Phenolic Compounds Present in Orange Juice By-Product Powder and Their Contribution to Antioxidant Activity. Antioxidants 2022, 11, 1748. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemist. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1990. [Google Scholar]
- Johansson, C.; Hallmer, H.; Siljeströn, M. Rapid enzymatic assay of insoluble and soluble dietary fiber. J. Agric. Food Chem. 1983, 31, 476–482. [Google Scholar] [CrossRef]
- Alu’datt, M.; Rababah, T.; Alhamad, M.; Al-Mahasneh, M.; Ereifej, K.; Al-Karaki, G.; Ghozlan, K. Profiles of free and bound phenolics extracted from Citrus fruits and their roles in biological systems: Content, and antioxidant, anti-diabetic and anti-hypertensive properties. Food Func. 2017, 8, 3187–3197. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Häkkinen, S.T.; Aarni, M.; Suortti, T.; Lampi, A.-M.; Eurola, M.; Piironen, V.; Nuutila, A.M.; Oksman-Caldentey, K.-M. Blanching and long-term freezing affect various bioactive compounds of vegetables in different ways. J. Sci. Food Agric. 2006, 83, 1389–1402. [Google Scholar] [CrossRef]
- Ikarashi, N.; Sato, W.; Toda, T.; Ishii, M.; Ochiai, W.; Sugiyama, K. Inhibitory effect of polyphenol-rich fraction from the bark of Acacia mearnsii on itching associated with allergic dermatitis. J. Evid. Based Complement. Altern. Med. 2012, 2012, 120389. [Google Scholar] [CrossRef]
- Chawla, R.; Thakur, P.; Chowdhry, A.; Jaiswal, S.; Sharma, A.; Goel, R.; Sharma, J.; Priyadarshi, S.S.; Kumar, V.; Sharma, R.K.; et al. Evidence based herbal drug standardization approach in coping with challenges of holistic management of diabetes: A dreadful lifestyle disorder of 21st century. J. Diabetes Metab. Disord. 2013, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Gammoh, S.; Ereifej, H.; Al-Karaki, G.; Tranchant, C.C.; Al-Duais, M.; Ghozlan, K.A. Contents, profiles and bioactive properties of free and bound phenolics extracted from selected fruits of the Oleaceae and Solanaceae families. LWT 2019, 109, 367–377. [Google Scholar] [CrossRef]
- Mccue, P.; Kwon, Y.; Shetty, K. Anti-amylase, anti-glucosidase and anti-angiotensin I-converting enzyme potential of selected foods. Food Biochem. 2005, 29, 278–294. [Google Scholar] [CrossRef]
- Fuentes-Alventosa, J.; Rodríguez-Gutiérrez, G.; Jaramillo-Carmona, S.; Espejo-Calvo, J.; Rodríguez-Arcos, R.; Fernández-Bolaños, J.; Jiménez-Araujo, A. Effect of extraction method on chemical composition and functional characteristics of hich dietary fiber-powders obtained from asparagus by-products. Food Chem. 2009, 113, 665–671. [Google Scholar] [CrossRef]
- Brennan, C.S.; Tudorica, C.M. Evaluation of potential mechanisms by which dietary fibre additions reduce the predicted glycaemic index of fresh pastas. Int. J. Food Sci. Technol. 2008, 43, 2151–2162. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V.; Ortega-Rivas, E.; Juliano, P.; Yan, H. Food Powders: Physical Properties, Processing, and Functionality; Kluwer/Academic/Plenum Publishers: New York, NY, USA, 2005; Volume 86, pp. 71–75. [Google Scholar]
- M’hiri, N.; Ioannou, I.; Ghoul, M.; Mihoubi Boudhrioua, N. Proximate chemical composition of orange peel and variation of phenols and antioxidant activity during convective air drying. J. New Sci. Agric. Biotech. 2015, JS-INAT, 881–890. [Google Scholar]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Heredia-Olea, E.; Serna-Saldívar, S.O.; Welti-Chanes, J. Differences in the dietary fiber content of fruits and their by-products quantified by conventional and integrated AOAC official methodologies. J. Food Comp. Anal. 2018, 67, 77–85. [Google Scholar] [CrossRef]
- Teixeira, F.; Santos, B.A.d.; Nunes, G.; Soares, J.M.; Amaral, L.A.d.; Souza, G.H.O.d.; Resende, J.T.V.d.; Menegassi, B.; Rafacho, B.P.M.; Schwarz, K.; et al. Addition of Orange Peel in Orange Jam: Evaluation of Sensory, Physicochemical, and Nutritional Characteristics. Molecules 2020, 25, 1670. [Google Scholar] [CrossRef] [Green Version]
- Chau, C.F.; Huang, Y.L. Comparison of the chemical composition and physicochemical proper-ties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. J. Agric. Food Chem. 2000, 51, 2615–2618. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, J.; Qi, J. Functional and structural properties of dietary fiber from citrus peel affected by the alkali combined with high-speed homogenization treatment. LWT 2020, 128, 109397. [Google Scholar] [CrossRef]
- Khanpit, V.V.; Tajane, S.P.; Mandavgane, S.A. Production of soluble dietary fiber concentrate from waste orange peels: Study of nutritional and physicochemical properties and life cycle assessment. Biomass Conv. Bioref. 2022. [Google Scholar] [CrossRef]
- Koç, F.; Mils, S.; Strain, C.; Ross, R.; Stanton, C. The public health rationale and increasing dietary fiber: Health benefits with a focus on gut microbiota. Nutr. Bull. 2020, 45, 294–308. [Google Scholar] [CrossRef]
- Prasad, K.; Bondy, S. Dietary fibers and their fermented short-chain fatty acids in prevention of human diseases. Bioact. Carbohydr. Diet Fibre 2019, 17, 1–11. [Google Scholar] [CrossRef]
- Bader, H.; Saeed, F.; Ahmed, A.; Asif Khan, M.; Niaz, B.; Tufail, T. Improving the physicochemical proper-ties of partially enhanced soluble dietary fiber through innovative techniques: A coherent review. J. Food Process. Preserv. 2019, 43, e13917. [Google Scholar] [CrossRef]
- Escobedo-Avellaneda, Z.; Gutiérrez-Uribe, J.; Valdez-Fragoso, A.; Torres, J.A.; Weltti-Chanes, J. Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. J. Func. Foods 2014, 6, 470–481. [Google Scholar] [CrossRef]
- Manthey, J.A.; Grohmann, K. Concentrations of Hesperidin and Other Orange Peel Flavonoids in Citrus Processing Byproducts. J. Agric. Food Chem. 1996, 44, 811–814. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, C.; Bucheli, P.; Wei, D. Citrus flavonoids in fruit and traditional Chinese medicinal food ingredients in China. Plant Foods Hum. Nutr. 2006, 61, 57–65. [Google Scholar] [CrossRef]
- Tripoli, E.; La Guadia, M.; Giammanco, S.; Di Majo, D.; Diammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture, Agricultural Research Service. USDA Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2. Retrieved 1 November 2012. 2010. 2010. Available online: https://naldc.nal.usda.gov/download/43336/PDF (accessed on 5 March 2023).
- Zou, Z.; Xi, W.; Hu, Y.; Nie, C.; Zhou, Z. Antioxidant activity of Citrus fruits. Food Chem. 2016, 196, 885–896. [Google Scholar] [CrossRef]
- Xu, G.; Ye, X.; Chen, J.; Liu, D. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. J. Agric. Food Chem. 2007, 55, 330–335. [Google Scholar] [CrossRef]
- Traore, K.F.; Kone, K.Y.; Ahi, A.P.; Soro, D.; Assidjo, N.E.; Fauconnier, M.-L.; Sindic, M. Phenolic compounds characterisation and antioxidant activity of black plum (Vitex doniana) fruit pulp and peel from Côte d’Ivoire. Food Meas. 2021, 15, 1281–1293. [Google Scholar] [CrossRef]
- Xi, W.; Zhang, Y.; Sun, Y.; Shen, Y.; Ye, W.; Zhou, Z. Phenolic composition of Chinese wild mandarin (Citrus reticulata Balnco. ) pulps and their antioxidant properties, Ind. Crops. Prod. 2014, 52, 466–474. [Google Scholar] [CrossRef]
- Paul, S.; Majumdar, M. In-Vitro Antidiabetic Propensities, Phytochemical Analysis, and Mechanism of Action of Commercial Antidiabetic Polyherbal Formulation “Mehon”. Proceedings 2021, 79, 7. [Google Scholar] [CrossRef]
- Xiong, Y.; Ng, K.; Zhang, P.; Warner, R.D.; Shen, S.; Tang, H.-Y.; Liang, Z.; Fang, Z. In Vitro α-Glucosidase and α-Amylase Inhibitory Activities of Free and Bound Phenolic Extracts from the Bran and Kernel Fractions of Five Sorghum Grain Genotypes. Foods 2020, 9, 1301. [Google Scholar] [CrossRef]
- Kim, J.S.; Kwon, C.S.; Son, K.H. Inhibition of Alpha-glucosidase and Amylase by Luteolin, a Flavonoid. Biosci. Biotechnol. Biochem. 2000, 64, 2458–2461. [Google Scholar] [CrossRef]
- Rasouli, H.; Hosseini-Ghazvini, S.M.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Func. 2017, 24, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- Galindo, R.G.; Chiș, M.S.; Martínez-Navarrete, N.; Camacho, M.M. Dried orange juice waste as a source of bioactive compounds. Br. Food J. 2022, 124, 4653–4665. [Google Scholar] [CrossRef]
- Chau, C.F.; Huang, Y.L.; Lee, M.H. In vitro hypoglycemic effects of different insoluble fiber-rich fractions prepared from the peel of Citrus sinensis L. cv. Liucheng. J. Agric. Food Chem. 2003, 51, 6623–6626. [Google Scholar] [CrossRef] [PubMed]
- Salmerón, J.; Ascherio, A.; Rimm, E.B. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997, 20, 545–550. [Google Scholar] [CrossRef]
- Atkinson, F.A.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International tables of glycemic index and glycemic load values 2021: A systematic review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef]
- Oyetayo, F.L.; Akomolafe, S.F.; Oladapo, I.F. A comparative study on the estimated glycemic index (eGI), phenolic constituents, antioxidative and potential antihyperglycemic effects of different parts of ripe Citrus paradise fruit. Orient. Pharm. Exp. Med. 2019, 19, 81–89. [Google Scholar] [CrossRef]
- Adrian, J.; Potus, J.; Poiffait, A.; Dauvillier, P. Análisis Nutricional de los Alimentos, 1st ed.; Editorial Acribia: Zaragoza, Spain, 2000; pp. 123–125. [Google Scholar]
- Larrauri, J.A.; Goni, I.; Martin, N.; Ruperez, P.; Saura, C. Measurement of health-promoting properties in fruit dietary fibres: Antioxidant capacity, fermentability and glucose retardation. J. Sci. Food Agric. 1996, 71, 515–519. [Google Scholar] [CrossRef]
- Wu, Y.J.; Lu, Y.C.; Wu, Y.H.; Lin, Y.H.; Hsu, C.L.; Wang, C.Y. Effects of high-pressure pro-cessing on the physicochemical properties and glycemic index of fruit puree in a hyperglycemia mouse model. J. Sci. Food Agric. 2022, 102, 6138–6145. [Google Scholar] [CrossRef] [PubMed]
- Kumari, T.; Das, A.B.; Deka, S.C. Effect of extrusion and enzyme modification on functional and structural properties of pea peel (Pisum sativum L.) insoluble dietary fibre and its effect on yogurt rheology. Int. J. Food Sci. Technol. 2022, 57, 6668–6677. [Google Scholar] [CrossRef]
Water | 3.57 ± 0.06 | |
Total sugars | 46.0 ± 1.17 | |
Protein | 4.38 ± 0.08 | |
Ash | 2.75 ± 0.02 | |
Fat | 0.79 ± 0.05 | |
Fibre | Soluble | 2.88 ± 0.05 |
Insoluble | 33.79 ± 0.11 | |
TP | Free | 346 ± 15 |
Bound | 163 ± 12 | |
Sum of the identified flavonoids | Free | 4690 ± 193 |
Bound | 158 ± 23 |
Inhibition α-amylase (%) | 46.9 ± 0.6 |
Inhibition α-glucosidase (%) | 93.3 ± 1.8 |
GAC (mM) | 22.5 ± 1.3 |
GIe (%) | 24.4 ± 0.7 |
GRDI (%) | 13.6 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho, M.d.M.; Martínez-Lahuerta, J.J.; Ustero, I.; García-Martínez, E.; Martínez-Navarrete, N. Composition of Powdered Freeze-Dried Orange Juice Co-Product as Related to Glucose Absorption In Vitro. Foods 2023, 12, 1127. https://doi.org/10.3390/foods12061127
Camacho MdM, Martínez-Lahuerta JJ, Ustero I, García-Martínez E, Martínez-Navarrete N. Composition of Powdered Freeze-Dried Orange Juice Co-Product as Related to Glucose Absorption In Vitro. Foods. 2023; 12(6):1127. https://doi.org/10.3390/foods12061127
Chicago/Turabian StyleCamacho, María del Mar, Juan José Martínez-Lahuerta, Isabel Ustero, Eva García-Martínez, and Nuria Martínez-Navarrete. 2023. "Composition of Powdered Freeze-Dried Orange Juice Co-Product as Related to Glucose Absorption In Vitro" Foods 12, no. 6: 1127. https://doi.org/10.3390/foods12061127
APA StyleCamacho, M. d. M., Martínez-Lahuerta, J. J., Ustero, I., García-Martínez, E., & Martínez-Navarrete, N. (2023). Composition of Powdered Freeze-Dried Orange Juice Co-Product as Related to Glucose Absorption In Vitro. Foods, 12(6), 1127. https://doi.org/10.3390/foods12061127