Current Perspectives on Viable but Non-Culturable Foodborne Pathogenic Bacteria: A Review
Abstract
:1. Introduction
2. Foodborne Pathogenic VBNC Bacteria and Induction Conditions
3. VBNC Entry Mechanisms of Foodborne Pathogens
3.1. Stringent Response
3.2. Toxin–Antitoxin (TA) System
3.3. Oxidative Stress
3.4. Gene Regulation
3.5. Regulation of Protein Aggregation
3.6. ATP Regulation
4. Detection of VBNC Foodborne Pathogenic Bacteria
4.1. Staining or Fluorescent Labeling
4.1.1. Redox Test Method
4.1.2. DVC
4.1.3. Cell Membrane Permeability Test Based on Fluorescent Dyes
4.2. Molecular Biological Test Methods
4.2.1. PMA-qPCR
4.2.2. PMA-LAMP
4.2.3. RT-qPCR
4.3. Novel Test Methods
4.3.1. Raman Spectroscopy
4.3.2. Biomarker Product Testing
5. Control of Foodborne Pathogenic Bacteria in the VBNC State
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, S.M.; Desta, B.N.; Mughini-Gras, L.; Mmbaga, B.T.; Fayemi, O.E.; Salvador, E.M.; Gobena, T.; Majowicz, S.E.; Hald, T.; Hoejskov, P.S.; et al. Burden of foodborne diseases: Think global, act local. Curr. Opin. Food Sci. 2021, 39, 152–159. [Google Scholar] [CrossRef]
- World Health Organization. WHO Steps up Action to Improve Food Safety and Protect People from Disease; World Health Organization: Geneva, Switzerland, 2021.
- Olugbenga, E.; Jaiswal, A.K.; Swarna, J. Salmonella, Food Safety and Food Handling Practices. Foods 2021, 10, 907. [Google Scholar]
- European Union. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar]
- Tropea, A. Microbial Contamination and Public Health: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7441. [Google Scholar] [CrossRef] [PubMed]
- Petrucci, S.; Costa, C.; Broyles, D.; Dikici, E.; Daunert, S.; Deo, S. On-site detection of food and waterborne bacteria—Current technologies, challenges, and future directions. Trends Food Sci. Technol. 2021, 115, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Roberts, N.; Singleton, F.L.; Attwell, R.W.; Grimes, D.J.; Colwell, R.R. Survival and Viability of Nonculturable Escherichia coli and Vibrio cholerae in the Estuarine and Marine Environment. Microb. Ecol. 1982, 8, 313–323. [Google Scholar] [CrossRef]
- Zhao, X.; Zhong, J.; Wei, C.; Lin, C.; Ding, T. Current Perspectives on Viable but Non-culturable State in Foodborne Pathogens. Front. Microbiol. 2017, 8, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Huang, T.; Mao, Y.; Chen, Y.; Shi, F.; Peng, R.; Chen, J.; Yuan, L.; Bai, C.; Chen, L.; et al. Study on the Viable but Non-culturable (VBNC) State Formation of Staphylococcus aureus and Its Control in Food System. Front. Microbiol. 2020, 11, 599739. [Google Scholar] [CrossRef]
- Schottroff, F.; Fröhling, A.; Zunabovic-Pichler, M.; Krottenthaler, A.; Schlüter, O.; Jäger, H. Sublethal Injury and Viable but Non-culturable (VBNC) State in Microorganisms During Preservation of Food and Biological Materials by Non-thermal Processes. Front. Microbiol. 2018, 9, 2773. [Google Scholar] [CrossRef]
- Kramer, S.; Muranyi, P. Effect of pulsed light on structural and physiological properties of Listeria innocua and Escherichia coli. J. Appl. Microbiol. 2014, 116, 596–611. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Zhao, G.; Cao, X.; Yang, Z.; Wang, C.; Hou, L. Formation and resuscitation of viable but nonculturable Salmonella typhi. Biomed Res. Int. 2013, 2013, 907170. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Jiang, L.; Zhang, R. Induction of a viable but non-culturable state in Salmonella Typhimurium by thermosonication and factors affecting resuscitation. Fems Microbiol. Lett. 2017, 365, fnx249. [Google Scholar] [CrossRef]
- Vanegas, S.A.F.; Vieira, P.C.; François, B.; Licursi, O.L.; Olavo, F.S.; Dantas, V.M.C. Comparison of stress conditions to induce viable but non-cultivable state in Salmonella. Braz. J. Microbiol. 2020, 51, 1269–1277. [Google Scholar]
- Liao, X.; Hu, W.; Liu, D.; Ding, T. Stress Resistance and Pathogenicity of Nonthermal-Plasma-Induced Viable-but-Nonculturable Staphylococcus aureus through Energy Suppression, Oxidative Stress Defense, and Immune-Escape Mechanisms. Appl. Environ. Microbiol. 2021, 87, e02380-20. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Lin, H.; Zhang, M.; Chen, S.; Yu, X. Characterization and potential mechanisms of highly antibiotic tolerant VBNC Escherichia coli induced by low level chlorination. Sci. Rep. 2020, 10, 1957. [Google Scholar] [CrossRef] [Green Version]
- Dolezalova, E.; Lukes, P. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Bioelectrochemistry 2015, 103, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kumblathan, T.; Uppal, G.K.; Zhou, A.; Moe, B.; Hrudey, S.E.; Li, X. A hidden risk: Survival and resuscitation of Escherichia coli O157:H7 in the viable but nonculturable state after boiling or microwaving. Water Res. 2020, 183, 116102. [Google Scholar] [CrossRef]
- Se, J.; Fu, Y.; Xie, Y.; Xu, F.; Shen, C.; Nannipieri, P. Proteomic changes of viable but nonculturable (VBNC) Escherichia coli O157:H7 induced by low moisture in an artificial soil. Biol. Fert. Soils 2020, 57, 219–234. [Google Scholar] [CrossRef]
- Dong, Y.; Yongtao, W.; Liang, Z.; Lei, R.; Xiaojun, L. Extracellular pH decline introduced by high pressure carbon dioxide is a main factor inducing bacteria to enter viable but non-culturable state. Food Res. Int. 2022, 151, 110895. [Google Scholar]
- Liu, Y.; Zhong, Q.; Wang, J.; Lei, S. Enumeration of Vibrio parahaemolyticus in VBNC state by PMA-combined real-time quantitative PCR coupled with confirmation of respiratory activity. Food Control 2018, 91, 85–91. [Google Scholar] [CrossRef]
- Beatriz, C.; Ruiz-Palacios, G.M.; Ramoscervantes, P.; Luis, L.; Monjeramírez, I.; de Velásquez María Teresa, O. Detection of VBNC Vibrio cholerae by RT-Real Time PCR based on differential gene expression analysis. Fems Microbiol. Lett. 2018, 365, fny156. [Google Scholar]
- Jae-Hyun, Y.; Young-Min, B.; Sun-Young, L. Effects of varying concentrations of sodium chloride and acidic conditions on the behavior of Vibrio parahaemolyticus and Vibrio vulnificus cold-starved in artificial sea water microcosms. Food Sci. Biotechnol. 2017, 26, 829–839. [Google Scholar]
- Noll, M.; Trunzer, K.; Vondran, A.; Vincze, S.; Dieckmann, R.; Dahouk, S.A.; Gold, C. Benzalkonium Chloride Induces a VBNC State in Listeria monocytogenes. Microorganisms 2020, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Sayo, Y.; Ayaka, O.; Yasuo, I. Role of temperature, nutrition, oxygen, osmolality, and bacterial strain in inducing a viable but non-culturable state in Campylobacter jejuni. J. Microbiol. Meth. 2022, 195, 106456. [Google Scholar]
- Rahman, I.; Shahamat, M.; Chowdhury, M.A.R.; Colwell, R.R. Potential virulence of viable but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microb. 1996, 62, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasfi, R.; Abdellatif, G.R.; Elshishtawy, H.M.; Ashour, H.M. First-time characterization of viable but non-culturable Proteus mirabilis: Induction and resuscitation. J. Cell. Mol. Med. 2020, 24, 2791–2801. [Google Scholar] [CrossRef] [Green Version]
- El-Aziz, N.; Tartor, Y.H.; El-Aziz, G.A.; Ammar, A.M. Propidium Monoazide Quantitative Real-Time Polymerase Chain Reaction for Enumeration of Some Viable but Nonculturable Foodborne Bacteria in Meat and Meat Products. Foodborne Pathog. Dis. 2018, 15, 226–234. [Google Scholar] [CrossRef]
- Cattani, F.; Barth, V.J.; Nasario, J.; Ferreira, C.; Oliveira, S.D. Detection and quantification of viable Bacillus cereus group species in milk by propidium monoazide quantitative real-time PCR. J. Dairy Sci. 2016, 99, 2617–2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, R.; Rieger, A.; Banting, G.; Ashbolt, N.J. Role of amoebae for survival and recovery of ‘non-culturable’ Helicobacter pylori cells in aquatic environments. Fems Microbiol. Ecol. 2020, 96, fiaa182. [Google Scholar] [CrossRef]
- Moreno, Y.; Piqueres, P.; Alonso, J.L.; Jimenez, A.; Gonzalez, A.; Ferrus, M.A. Survival and viability of Helicobacter pylori after inoculation into chlorinated drinking water. Water Res. 2007, 41, 3490–3496. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.L.; Bates, T.C.; Oliver, J.D. Survival of Helicobacter pylori in a Natural Freshwater Environment. Appl. Environ. Microb. 2003, 12, 7462–7466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlowski, D.R.; Metzger, D.J.; Raslawsky, A.; Howlett, A.; Siebert, G.; Karalus, R.J.; Garrett, S.; Whitehouse, C.A. Entry of Yersinia pestis into the viable but nonculturable state in a low-temperature tap water microcosm. PLoS ONE 2011, 6, e17585. [Google Scholar] [CrossRef] [PubMed]
- Buzoleva, L.S. Periodic culturing of nonculturable Yersinia pseudotuberculosis forms. B. Exp. Biol. Med. 2000, 129, 374–376. [Google Scholar] [CrossRef]
- Han, D.; Hung, Y.; Wang, L. Evaluation of the antimicrobial efficacy of neutral electrolyzed water on pork products and the formation of viable but nonculturable (VBNC) pathogens. Food Microbiol. 2018, 73, 227–236. [Google Scholar] [CrossRef]
- Harshman, R.B.; Yamazaki, H. Formation of ppGpp in a relaxed and stringent strain of Escherichia coli during diauxie lag. Biochemistry 1971, 10, 3980–3982. [Google Scholar] [CrossRef]
- Petchiappan, A.; Naik, S.Y.; Chatterji, D. RelZ-Mediated Stress Response in Mycobacterium smegmatis: pGpp Synthesis and Its Regulation. J. Bacteriol. 2019, 202, e00444-19. [Google Scholar] [CrossRef]
- Irving, S.E.; Choudhury, N.R.; Corrigan, R.M. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat. Rev. Microbiol. 2020, 19, 256–271. [Google Scholar] [CrossRef]
- Nowakowska, J.; Oliver, J.D. Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. Fems Microbiol. Ecol. 2013, 84, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Fernández-García, L.; Blasco, L.; Lopez, M.; Bou, G.; García-Contreras, R.; Wood, T.; Tomas, M. Toxin-Antitoxin Systems in Clinical Pathogens. Toxins 2016, 8, 227. [Google Scholar] [CrossRef] [Green Version]
- Hino, M.; Zhang, J.; Takagi, H.; Miyoshi, T.; Uchiumi, T.; Nakashima, T.; Kakuta, Y.; Kimura, M. Characterization of putative toxin/antitoxin systems in Vibrio parahaemolyticus. J. Appl. Microbiol. 2014, 117, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Muthuramalingam, M.; White, J.C.; Bourne, C.R. Toxin-Antitoxin Modules Are Pliable Switches Activated by Multiple Protease Pathways. Toxins 2016, 8, 214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Shi, L.; Chen, X.; Chen, C.; Hong, Z.; Cao, Y.; Zhao, L. Survival strategy of Cronobacter sakazakii against ampicillin pressure: Induction of the viable but nonculturable state. Int. J. Food Microbiol. 2020, 334, 108819. [Google Scholar] [CrossRef] [PubMed]
- Caroline, C.; Laure, D.; Laetitia, F.; Manuel, B.; Sam, D. Investigation of the first events leading to loss of culturability during Escherichia coli starvation: Future nonculturable bacteria form a subpopulation. J. Bacteriol. 2005, 187, 2244–2248. [Google Scholar]
- Liao, H.; Zhang, R.; Zhong, K.; Ma, Y.; Nie, X.; Liu, Y. Induction of a viable but non-culturable state in Salmonella Typhimurium is correlated with free radicals generated by thermosonication. Int. J. Food Microbiol. 2018, 286, fnx249. [Google Scholar] [CrossRef]
- Euna, O.; Mcmullen, L.; Jeon, B. Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions. Front. Microbiol. 2015, 6, 295. [Google Scholar] [CrossRef]
- Staerck, C.; Gastebois, A.; Vandeputte, P.; Calenda, A.; Larcher, G.; Gillmann, L.; Papon, N.; Bouchara, J.P.; Fleury, M. Microbial antioxidant defense enzymes. Microb. Pathog. 2017, 110, 56–65. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, Y.; An, H.; Hao, Y.; Hu, X.; Liao, X. New Insights into the Formation of Viable but Nonculturable Escherichia coli O157:H7 Induced by High-Pressure CO2. Mbio 2016, 7, e00961-16. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Cao, H.; Zhu, W.; Wang, M.; Du, Y.; Yin, Z.; Chen, M.; Liu, Y.; Yang, B.; Liu, B. RNA-seq-based monitoring of gene expression changes of viable but non-culturable state of Vibrio cholerae induced by cold seawater. Environ. Microbiol. Rep. 2018, 10, 594–604. [Google Scholar] [CrossRef]
- Jun-Seob, K.; Nityananda, C.; Ryota, Y.; Wood, T.K. Viable but non-culturable and persistence describe the same bacterial stress state. Environ. Microbiol. 2018, 20, 2038–2048. [Google Scholar]
- Leszczynska, D.; Matuszewska, E.; Kuczynska-Wisnik, D.; Furmanek-Blaszk, B.; Laskowska, E. The formation of persister cells in stationary-phase cultures of Escherichia coli is associated with the aggregation of endogenous proteins. PLoS ONE 2013, 8, e54737. [Google Scholar] [CrossRef] [Green Version]
- Liselot, D.; Celien, B.; Dorien, W.; Elen, L.; Pauline, H.; Paul, M.; Ladan, K.; Laleh, K.; Frederic, R.; Joost, S.; et al. The Dynamic Transition of Persistence toward the Viable but Nonculturable State during Stationary Phase Is Driven by Protein Aggregation. Mbio 2021, 12, e00703-21. [Google Scholar]
- Pu, Y.; Li, Y.; Jin, X.; Tian, T.; Ma, Q.; Zhao, Z.; Lin, S.Y.; Chen, Z.; Li, B.; Yao, G.; et al. ATP-Dependent Dynamic Protein Aggregation Regulates Bacterial Dormancy Depth Critical for Antibiotic Tolerance. Mol. Cell 2019, 73, 143–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debnath, A.; Mizuno, T.; Miyoshi, S.I. Comparative proteomic analysis to characterize temperature-induced viable but non-culturable and resuscitation states in Vibrio cholerae. Microbiology 2019, 165, 737–746. [Google Scholar] [CrossRef]
- Avinash, P.; Liliana, M.; Shambaditya, S.; Jie, W.; Simon, A.; Yamuna, K.; Anthony, A.H. ATP as a biological hydrotrope. Science 2017, 356, 753–756. [Google Scholar]
- Besnard, V.; Federighi, M.; Cappelier, J.M. Development of a direct viable count procedure for the investigation of VBNC state in Listeria monocytogenes. Lett. Appl. Microbiol. 2000, 31, 77–81. [Google Scholar] [CrossRef]
- Créach, V.; Baudoux, A.; Bertru, G.; Rouzic, B.L. Direct estimate of active bacteria: CTC use and limitations. J. Microbiol. Meth. 2003, 52, 19–28. [Google Scholar] [CrossRef]
- Garcia-Martin, E.E.; Seguro, I.; Robinson, C. INT reduction is a valid proxy for eukaryotic plankton respiration despite the inherent toxicity of INT and differences in cell wall structure. PLoS ONE 2019, 14, e225954. [Google Scholar] [CrossRef]
- Zhu, L.; Shuai, X.; Xu, L.; Sun, Y.; Lin, Z.; Zhou, Z.; Meng, L.; Chen, H. Mechanisms underlying the effect of chlorination and UV disinfection on VBNC state Escherichia coli isolated from hospital wastewater. J. Hazard. Mater. 2022, 423, 127228. [Google Scholar] [CrossRef]
- Kogure, K.; Simidu, U.; Taga, N. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 1979, 25, 415–420. [Google Scholar] [CrossRef]
- Mishra, A.; Taneja, N.; Sharma, M. Demonstration of viable but nonculturable Vibrio cholerae O1 in fresh water environment of India using ciprofloxacin DFA-DVC method. Lett. Appl. Microbiol. 2011, 53, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, L.; Chen, Y.; Long, Y. Optimization of staining with SYTO 9/propidium iodide: Interplay, kinetics and impact on Brevibacillus brevis. Biotechniques 2020, 69, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, P.; Schmidt-Emrich, S.; Maniura-Weber, K.; Ren, Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. Bmc Microbiol. 2015, 15, 36. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Ruijin, Y.; Howard, Q.Z.; Wenbin, Z.; Xiao, H.; Yali, T. Quantitative and real time detection of pulsed electric field induced damage on Escherichia coli cells and sublethally injured microbial cells using flow cytometry in combination with fluorescent techniques. Food Control 2010, 22, 566–573. [Google Scholar]
- Techathuvanan, C.; D’Souza, D.H. Propidium monoazide for viable Salmonella enterica detection by PCR and LAMP assays in comparison to RNA-based RT-PCR, RT-LAMP, and culture-based assays. J. Food Sci. 2020, 85, 3509–3516. [Google Scholar] [CrossRef]
- Liang, N.; Dong, J.; Luo, L.; Li, Y. Detection of viable Salmonella in lettuce by propidium monoazide real-time PCR. J. Food Sci. 2011, 76, M234–M237. [Google Scholar] [CrossRef]
- Lu, H.; Kaidi, W.; Lina, M.; Pascal, D.; Susan, B.; Jinsong, F.; Xiaonan, L. Viable but Nonculturable Escherichia coli O157:H7 and Salmonella enterica in Fresh Produce: Rapid Determination by Loop-Mediated Isothermal Amplification Coupled with a Propidium Monoazide Treatment. Appl. Environ. Microb. 2020, 86, e02566-19. [Google Scholar]
- Youn, S.Y.; Jeong, O.M.; Choi, B.K.; Jung, S.C.; Kang, M.S. Application of loop-mediated isothermal amplification with propidium monoazide treatment to detect live Salmonella in chicken carcasses. Poultry Sci. 2017, 96, 458–464. [Google Scholar] [CrossRef]
- Petersen, M.; Ma, L.; Lu, X. Rapid determination of viable but non-culturable Campylobacter jejuni in food products by loop-mediated isothermal amplification coupling propidium monoazide treatment. Int. J. Food Microbiol. 2021, 351, 109263. [Google Scholar] [CrossRef]
- Bai, Y.; Cui, Y.; Suo, Y.; Shi, C.; Wang, D.; Shi, X. A Rapid Method for Detection of Salmonella in Milk Based on Extraction of mRNA Using Magnetic Capture Probes and RT-qPCR. Front. Microbiol. 2019, 10, 770. [Google Scholar] [CrossRef] [Green Version]
- Cui, D.; Kong, L.; Wang, Y.; Zhu, Y.; Zhang, C. In situ identification of environmental microorganisms with Raman spectroscopy. Environ. Sci. Ecotechnol. 2022, 11, 100187. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Cui, L.; López, J.Á.S.; Xu, J.; Zhu, Y.; Thompson, I.P.; Huang, W.E. Raman-Deuterium Isotope Probing for in-situ identification of antimicrobial resistant bacteria in Thames River. Sci. Rep. 2017, 7, 16648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Ye, C.; Cui, L.; Wan, K.; Chen, S.; Zhang, S.; Yu, X. Population and single cell metabolic activity of UV-induced VBNC bacteria determined by CTC-FCM and D2O-labeled Raman spectroscopy. Environ. Int. 2019, 130, 104883. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Y.; Huang, S.; Zhu, P.; Huang, W.E.; Ling, J.; Xu, J. Metabolic-Activity-Based Assessment of Antimicrobial Effects by D2O-Labeled Single-Cell Raman Microspectroscopy. Anal. Chem. 2017, 89, 4108–4115. [Google Scholar] [CrossRef]
- Jun, X.U.; Kazuasa, S.; Katsuya, O.; Akiko, T.; Tomoko, Y.; Emiko, I. Membrane vesicle protein PagC as a novel biomarker for detecting pathogenic Salmonella in the viable but not culturable state. J. Vet. Med. Sci. 2018, 80, 133–137. [Google Scholar]
- Wei, C.; Zhao, X. Induction of Viable but Nonculturable Escherichia coli O157:H7 by Low Temperature and Its Resuscitation. Front. Microbiol. 2018, 9, 2728. [Google Scholar] [CrossRef] [Green Version]
- Wong, H. Resuscitation of viable but non-culturable Vibrio parahaemolyticus in a minimum salt medium. Fems Microbiol. Lett. 2004, 233, 269–275. [Google Scholar] [CrossRef]
- Truchado, P.; Gómez-Galindo, M.; Gil, M.I.; Allende, A. Cross-contamination of Escherichia coli O157:H7 and Listeria monocytogenes in the viable but non-culturable (VBNC) state during washing of leafy greens and the revival during shelf-life. Food Microbiol. 2023, 109, 104155. [Google Scholar] [CrossRef]
- Truchado, P.; Gil, M.I.; Allende, A. Peroxyacetic acid and chlorine dioxide unlike chlorine induce viable but non-culturable (VBNC) stage of Listeria monocytogenes and Escherichia coli O157:H7 in wash water. Food Microbiol. 2021, 100, 103866. [Google Scholar] [CrossRef] [PubMed]
- Salma, M.; Michel, D.; Sami, M. Inactivation of the gene katA or sodA affects the transient entry into the viable but non-culturable response of Staphylococcus aureus in natural seawater at low temperature. Mar. Pollut. Bull. 2010, 60, 2209–2214. [Google Scholar]
- Del Mar Lleò, M.; Benedetti, D.; Tafi, M.C.; Signoretto, C.; Canepari, P. Inhibition of the resuscitation from the viable but non-culturable state in Enterococcus faecalis. Environ. Microbiol. 2007, 9, 2313–2320. [Google Scholar] [CrossRef] [PubMed]
Bacterial Genus | Bacterial Strain | Bacterial Culture Medium | Induction Conditions | Common Food Species | Reference |
---|---|---|---|---|---|
Salmonella | Salmonella typhimurium | Sterilized water, beef peptone yeast broth/apple/carrot juice/physiological saline/phosphate buffer solution | −20 °C/CuSO4, thermo-sonication of 380 W at 53 °C for 30 min | Animal foodstuff | [13,14] |
Salmonella enterica | Culture medium | NaCl/peracetic acid/hydrogen peroxide at 4 °C | [15] | ||
Staphylococcus | Staphylococcus aureus | Tryptic soy broth | Low-temperature treatment/nutrient starvation treatment/acid treatment, nonthermal-plasma treatment | Dairy, meat, starchy food (rice and flour products, leftovers), etc. | [10,16] |
Escherichia | E. coli (ATCC 25922), E. coli DSM 498 | Culture solution | Pulsed light, low level chlorination, and atmospheric pressure plasma jet | Meat, dairy products, vegetables, marine products, etc. | [12,17,18] |
E. coli O157:H7 | Tap water, artificial soil; 0.85% NaCl with pH 3.0 | Boiling and microwave treatment, low soil moisture, and high-pressure carbon dioxide | [19,20,21] | ||
Vibrio | Vibrio parahaemolyticus | Sterile 3% NaCl | 4 °C | Marine products | [22] |
Vibrio cholerae | Artificial seawater/c-di-GMP VacciGrade | 4 °C | [23] | ||
Vibrio vulnificus | Artificial seawater (pH 4–7) | NaCl treatment at 4 °C | [24] | ||
Listeria | Listeria monocytogenes | Brain heart infusion broth | Benzalkonium chloride | Meat, eggs, marine products, vegetables, etc. | [25] |
Campylobacte | Campylobater jejuni | Mueller–Hinton Broth | 4 °C treatment under aerobic conditions | Animal foodstuff | [26] |
Shigella | Shigella dysenteriae | Deionized water | - | Cold dishes | [27] |
Proteus | Proteus mirabilis | Deionized water | High and low osmotic pressure/acidic conditions | Animal foodstuff (cooked meat and visceral products) | [28] |
Clostridium | Clostridium perfringens | Meat products | - | Animal foodstuff | [29] |
Bacillus | Bacillus cereus | Meat products, milk | - | Meat products, dairy products, vegetables, rice noodles, rice, etc. | [29,30] |
Helicobacter | Helicobacter pylori | Sterile lake water, drinking water, and natural fresh water | 4 °C treatment in the dark, chlorine treatment | Contaminated water, milk, instant food, leftovers, etc. | [31,32,33] |
Yersinia | Yersinia pestis | Artificial sea water | 4 °C | Meat products, dairy products, drinking water, vegetables, etc. | [34] |
Yersinia pseudotubercnlosis | Liquid nutrient broth | - | [35] | ||
Yersinia enterocolitica | Trypticase soy broth | Neutral electrolyzed water | [36] |
Detection Principal | Detection Methods | Advantages | Disadvantages |
---|---|---|---|
Staining or fluorescent labeling | Redox test method | Easy to operate | Toxic to active bacteria; flow cytometer or fluorescence microscope required |
DVC | Easy to operate | Fluorescence microscope required | |
Cell membrane permeability test based on fluorescent dyes | Easy to operate | Flow cytometer or fluorescence microscope required | |
Nucleic acid amplification assay | PMA-qPCR | Easy to operate, fast detection, and high accuracy | qPCR thermocycler required |
PMA-LAMP | Easy to operate, fast detection, and simple equipment requirements | Difficulty in amplification primer design | |
RT-qPCR | Easy to operate and fast detection | qPCR thermocycler required | |
Novel test methods | Raman spectroscopy | High accuracy; analysis possible at the single-cell level | Raman spectrometer required |
Biomarker product testing | High sensitivity | Limited to available biomarkers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yang, H.; Li, J.; Hu, J.; Lin, G.; Tan, B.K.; Lin, S. Current Perspectives on Viable but Non-Culturable Foodborne Pathogenic Bacteria: A Review. Foods 2023, 12, 1179. https://doi.org/10.3390/foods12061179
Zhang J, Yang H, Li J, Hu J, Lin G, Tan BK, Lin S. Current Perspectives on Viable but Non-Culturable Foodborne Pathogenic Bacteria: A Review. Foods. 2023; 12(6):1179. https://doi.org/10.3390/foods12061179
Chicago/Turabian StyleZhang, Jiawen, Haoqing Yang, Jing Li, Jiamiao Hu, Guanyuan Lin, Bee K. Tan, and Shaoling Lin. 2023. "Current Perspectives on Viable but Non-Culturable Foodborne Pathogenic Bacteria: A Review" Foods 12, no. 6: 1179. https://doi.org/10.3390/foods12061179
APA StyleZhang, J., Yang, H., Li, J., Hu, J., Lin, G., Tan, B. K., & Lin, S. (2023). Current Perspectives on Viable but Non-Culturable Foodborne Pathogenic Bacteria: A Review. Foods, 12(6), 1179. https://doi.org/10.3390/foods12061179