Establishment and Validation of Fourier Transform Infrared Spectroscopy (FT–MIR) Methodology for the Detection of Linoleic Acid in Buffalo Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. FT-MIR and Preprocessing Method
2.3. Machine Learning Algorithms
2.4. Quality Control for the Method
- (1)
- Calculate the β-content tolerance interval at a confidence level of 0.9 for each concentration level using Equations (13) or (8), resulting in a lower and upper limit for the interval, denoted as [L,U].
- (2)
- Graphically represent the results in a 2D plot, with the concentration level plotted on the horizontal axis and the tolerance interval limits (L,U) plotted on the vertical axis.
- (3)
- Compare the tolerance interval limits (L,U) with the acceptance limits of −20% to +20% around the theoretical value. If the tolerance interval falls entirely within this acceptance range, the analytical method is deemed valid for the corresponding concentration level. However, if the tolerance interval exceeds these limits, the method is not accepted for use at that concentration level.
3. Results and Discussion
3.1. Set Up of the Prediction Models
3.2. Models Built with the Spectral Regions Selected by RF
3.3. MIR Method Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhavadharini, B.; Dehghan, M.; Mente, A.; Rangarajan, S.; Sheridan, P.; Mohan, V.; Iqbal, R.; Gupta, R.; Lear, S.; Wentzel-Viljoen, E.; et al. Association of dairy consumption with metabolic syndrome, hypertension and diabetes in 147 812 individuals from 21 countries. BMJ Open Diabetes Res. Care 2020, 8, e000826. [Google Scholar] [CrossRef]
- Yu, E.; Hu, F.B. Dairy Products, Dairy Fatty Acids, and the Prevention of Cardiometabolic Disease: A Review of Recent Evidence. Curr. Atheroscler. Rep. 2018, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef] [PubMed]
- Zhiqian, L.; Rochfort, S.; Cocks, B. Milk lipidomics: What we know and what we don’t. Prog. Lipid Res. 2018, 71, 70–85. [Google Scholar] [CrossRef]
- Brown, J.M.; McIntosh, M.K. Conjugated linoleic acid in humans: Regulation of adiposity and insulin sensitivity. J. Nutr. 2003, 133, 3041–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelan, J.; Fritsche, K. Linoleic acid. Adv. Nutr. 2013, 4, 311–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morsy, T.A.; Kholif, A.E.; Matloup, O.H.; Elella, A.A.; Anele, U.Y.; Caton, J.S. Mustard and cumin seeds improve feed utilisation, milk production and milk fatty acids of Damascus goats. J. Dairy Res. 2018, 85, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Ferrand-Calmels, M.; Palhiere, I.; Brochard, M.; Leray, O.; Astruc, J.M.; Aurel, M.R.; Barbey, S.; Bouvier, F.; Brunschwig, P.; Caillatt, H.; et al. Prediction of fatty acid profiles in cow, ewe, and goat milk by mid-infrared spectrometry. J. Dairy Sci. 2014, 97, 17–35. [Google Scholar] [CrossRef] [Green Version]
- Perez-Palacios, T.; Solomando, J.C.; Ruiz-Carrascal, J.; Antequera, T. Improvements in the methodology for fatty acids analysis in meat products: One-stage transmethylation and fast-GC method. Food Chem. 2022, 371, 130995. [Google Scholar] [CrossRef]
- Wang, F.; Chen, M.; Luo, R.; Huang, G.; Wu, X.; Zheng, N.; Zhang, Y.; Wang, J. Fatty acid profiles of milk from Holstein cows, Jersey cows, buffalos, yaks, humans, goats, camels, and donkeys based on gas chromatography–mass spectrometry. J. Dairy Sci. 2022, 105, 1687–1700. [Google Scholar] [CrossRef]
- Sivakesava, S.; Irudayaraj, J. Rapid determination of tetracycline in milk by FT-MIR and FT-NIR Spectroscopy. J. Dairy Sci. 2002, 85, 487–493. [Google Scholar] [CrossRef]
- Drackova, M.; Navratilova, P.; Hadra, L.; Vorlova, L.; Hudcova, L. Determination Residues of Penicillin G and Cloxacillin in Raw Cow Milk Using Fourier Transform Near Infrared Spectroscopy. Acta Vet Brno 2009, 78, 685–690. [Google Scholar] [CrossRef] [Green Version]
- Grelet, C.; Bastin, C.; Gelé, M.; Davière, J.-B.; Johan, M.; Werner, A.; Reding, R.; Pierna, J.F.; Colinet, F.; Dardenne, P. Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. J. Dairy Sci. 2016, 99, 4816–4825. [Google Scholar] [CrossRef] [Green Version]
- Vanlierde, A.; Dehareng, F.; Gengler, N.; Froidmont, E.; McParland, S.; Kreuzer, M.; Bell, M.; Lund, P.; Martin, C.; Kuhla, B. Improving robustness and accuracy of predicted daily methane emissions of dairy cows using milk mid-infrared spectra. J. Sci. Food Agric. 2021, 101, 3394–3403. [Google Scholar] [CrossRef] [PubMed]
- Atashi, H.; Salavati, M.; De Koster, J.; Crowe, M.; Opsomer, G.; Hostens, M. Genome-wide association for metabolic clusters in early-lactation Holstein dairy cows. J. Dairy Sci. 2020, 103, 6392–6406. [Google Scholar] [CrossRef]
- Foldager, L.; Gaillard, C.; Sorensen, M.T.; Larsen, T.; Matthews, E.; O’flaherty, R.; Carter, F.; Crowe, M.A.; Grelet, C.; Salavati, M. Predicting physiological imbalance in Holstein dairy cows by three different sets of milk biomarkers. Prev. Vet. Med. 2020, 179, 105006. [Google Scholar] [CrossRef]
- Tiplady, K.M.; Lopdell, T.J.; Sherlock, R.G.; Johnson, T.J.; Spelman, R.J.; Harris, B.L.; Davis, S.R.; Littlejohn, M.D.; Garrick, D.J. Comparison of the genetic characteristics of directly measured and Fourier-transform mid-infrared-predicted bovine milk fatty acids and proteins. J. Dairy Sci. 2022, 105, 9763–9791. [Google Scholar] [CrossRef]
- Bassbasi, M.; Platikanov, S.; Tauler, R.; Oussama, A. FTIR-ATR determination of solid non fat (SNF) in raw milk using PLS and SVM chemometric methods. Food Chem. 2014, 146, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Laporte, M.F.; Paquin, P. Near-infrared analysis of fat, protein, and casein in cow’s milk. J. Agric. Food Chem. 1999, 47, 2600–2605. [Google Scholar] [CrossRef]
- Pereira, E.V.D.; Fernandes, D.D.D.; de Araujo, M.C.U.; Diniz, P.H.G.D.; Maciel, M.I.S. Simultaneous determination of goat milk adulteration with cow milk and their fat and protein contents using NIR spectroscopy and PLS algorithms. Lwt-Food Sci. Technol. 2020, 127, 109427. [Google Scholar] [CrossRef]
- Coppa, M.; Revello-Chion, A.; Giaccone, D.; Ferlay, A.; Tabacco, E.; Borreani, G. Comparison of near and medium infrared spectroscopy to predict fatty acid composition on fresh and thawed milk. Food Chem. 2014, 150, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Flores-Valdez, M.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Identification and Quantification of Adulterants in Coffee (Coffea arabica L.) Using FT-MIR Spectrosc. Coupled Chemom. Foods 2020, 9, 851. [Google Scholar]
- El Orche, A.; Mamad, A.; Elhamdaoui, O.; Cheikh, A.; El Karbane, M.; Bouatia, M. Comparison of Machine Learning Classification Methods for Determining the Geographical Origin of Raw Milk Using Vibrational Spectroscopy. J. Spectrosc. 2021, 2021, 5845422. [Google Scholar] [CrossRef]
- Amsaraj, R.; Ambade, N.D.; Mutturi, S. Variable selection coupled to PLS2, ANN and SVM for simultaneous detection of multiple adulterants in milk using spectral data. Int. Dairy J. 2021, 123, 105172. [Google Scholar] [CrossRef]
- Lovatti, B.P.; Nascimento, M.H.; Neto, Á.C.; Castro, E.V.; Filgueiras, P.R. Use of Random forest in the identification of important variables. Microchem. J. 2019, 145, 1129–1134. [Google Scholar] [CrossRef]
- Wu, X.-M.; Zhang, Q.-Z.; Wang, Y.-Z. Traceability of wild Paris polyphylla Smith var. yunnanensis based on data fusion strategy of FT-MIR and UV–Vis combined with SVM and random forest. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 205, 479–488. [Google Scholar] [CrossRef]
- Beriain, M.J.; Ibanez, F.C.; Beruete, E.; Gomez, I.; Beruete, M. Estimation of Fatty Acids in Intramuscular Fat of Beef by FT-MIR Spectroscopy. Foods 2021, 10, 155. [Google Scholar] [CrossRef]
- Bonfatti, V.; Degano, L.; Menegoz, A.; Carnier, P. Mid-infrared spectroscopy prediction of fine milk composition and technological properties in Italian Simmental. J. Dairy Sci. 2016, 99, 8216–8221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossoba, M.; Kramer, J.; Fritsche, J.; Yurawecz, M.; Eulitz, K.; Ku, Y.; Rader, J. Application of standard addition to eliminate conjugated linoleic acid and other interferences in the determination of total trans fatty acids in selected food products by infrared spectroscopy. J. Am. Oil Chem. Soc. 2001, 78, 631–634. [Google Scholar] [CrossRef]
- Caredda, M.; Addis, M.; Ibba, I.; Leardi, R.; Scintu, M.F.; Piredda, G.; Sanna, G. Prediction of fatty acid content in sheep milk by Mid-Infrared spectrometry with a selection of wavelengths by Genetic Algorithms. Lwt-Food Sci. Technol. 2016, 65, 503–510. [Google Scholar] [CrossRef]
- Hemmateenejad, B.; Yousefinejad, S. Multivariate standard addition method solved by net analyte signal calculation and rank annihilation factor analysis. Anal. Bioanal. Chem. 2009, 394, 1965–1975. [Google Scholar] [CrossRef]
- Zhang, T.-M.; Yuan, B.; Liang, Y.-Z.; Cao, J.; Pan, C.-X.; Ying, B.; Lu, D.-Y. Elimination of matrix effect and simultaneous determination of multi-components in complex systems by matrix coefficient non-linearity multivariate calibration based on single point response signals. Anal. Sci. 2007, 23, 581–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbas, K.H.; O’Brien, K.; Forbes, P.W.; Belfort, M.B.; Connor, J.A.; Thiagarajan, R.R.; Huh, S.Y. Macronutrient Analysis of Modified-Fat Breast Milk Produced by 3 Methods of Fat Removal. J. Parenter. Enter. Nutr. 2020, 44, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, S.; Sats, A.; Poikalainen, V.; Karus, A. Method for determination of fatty acids in bovine colostrum using GC-FID. Food Chem. 2016, 212, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Soyeurt, H.; Grelet, C.; McParland, S.; Calmels, M.; Coffey, M.; Tedde, A.; Delhez, P.; Dehareng, F.; Gengler, N. A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra. J. Dairy Sci. 2020, 103, 11585–11596. [Google Scholar] [CrossRef] [PubMed]
- Belay, T.K.; Dagnachew, B.S.; Kowalski, Z.M.; Ådnøy, T. An attempt at predicting blood β-hydroxybutyrate from Fourier-transform mid-infrared spectra of milk using multivariate mixed models in Polish dairy cattle. J. Dairy Sci. 2017, 100, 6312–6326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portnoy, M.; Coon, C.; Barbano, D. Infrared milk analyzers: Milk urea nitrogen calibration. J. Dairy Sci. 2021, 104, 7426–7437. [Google Scholar] [CrossRef]
- Tibble, H.; Chan, A.; Mitchell, E.A.; Horne, E.; Doudesis, D.; Horne, R.; Mizani, M.A.; Sheikh, A.; Tsanas, A. A data-driven typology of asthma medication adherence using cluster analysis. Sci. Rep. 2020, 10, 14999. [Google Scholar] [CrossRef]
- Smith, A.E.; Mason, A.K. Cost estimation predictive modeling: Regression versus neural network. Eng. Econ. 1997, 42, 137–161. [Google Scholar] [CrossRef]
- Wang, N.; Er, M.J.; Han, M. Generalized single-hidden layer feedforward networks for regression problems. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 1161–1176. [Google Scholar] [CrossRef]
- Dreiseitl, S.; Ohno-Machado, L. Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inform. 2002, 35, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.; Gunn, S. Identifying feature relevance using a random forest. In Subspace, Latent Structure and Feature Selection; Saunders, G., Grobelnik, M., Gunn, S., ShaweTaylor, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3940, pp. 173–184. [Google Scholar]
- Archer, E.; Archer, M.E. Package ‘rfPermute’; R Project: Indianapolis, IN, USA, 2016. [Google Scholar]
- Miranda, E.N.; Barbosa, B.H.G.; Silva, S.H.G.; Monti, C.A.U.; Tng, D.Y.P.; Gomide, L.R. Variable selection for estimating individual tree height using genetic algorithm and random forest. For. Ecol. Manag. 2022, 504, 119828. [Google Scholar] [CrossRef]
- Liu, J.; Wen, Y.; Dong, N.; Lai, C.L.; Zhao, G.H. Authentication of lotus root powder adulterated with potato starch and/or sweet potato starch using Fourier transform mid-infrared spectroscopy. Food Chem. 2013, 141, 3103–3109. [Google Scholar] [CrossRef]
- Xue, Z.; Xu, B.; Yang, C.; Cui, X.L.; Li, J.Y.; Shi, X.Y.; Qiao, Y.J. Method validation for the analysis of licorice acid in the blending process by near infrared diffuse reflectance spectroscopy. Anal. Methods 2015, 7, 5830–5837. [Google Scholar] [CrossRef]
- Rozet, E.; Ceccato, A.; Hubert, C.; Ziemons, E.; Oprean, R.; Rudaz, S.; Boulanger, B.; Hubert, P. Analysis of recent pharmaceutical regulatory documents on analytical method validation. J Chromatogr A 2007, 1158, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration, Bioanalytical Method Validation Guidance for Industry. p. 2018. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry (accessed on 1 February 2023).
- Hubert, P.; Chiap, P.; Crommen, J.; Boulanger, B.; Chapuzet, E.; Mercier, N.; Bervoas-Martin, S.; Chevalier, P.; Grandjean, D.; Lagorce, P. The SFSTP guide on the validation of chromatographic methods for drug bioanalysis: From the Washington Conference to the laboratory. Anal. Chim. Acta 1999, 391, 135–148. [Google Scholar] [CrossRef]
- Hoffman, D.; Kringle, R. A total error approach for the validation of quantitative analytical methods. Pharm Res 2007, 24, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.; Kushary, D. β Expectation and β-content tolerance intervals for dependent observations. Commun. Stat. Theory Methods 1991, 20, 1043–1054. [Google Scholar] [CrossRef]
- Saffaj, T.; Ihssane, B.; Jhilal, F.; Bouchafra, H.; Laslami, S.; Sosse, S.A. An overall uncertainty approach for the validation of analytical separation methods. Analyst 2013, 138, 4677–4691. [Google Scholar] [CrossRef] [PubMed]
- Saffaj, T.; Ihssane, B. Uncertainty profiles for the validation of analytical methods. Talanta 2011, 85, 1535–1542. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Bovenhuis, H. Validation strategy can result in an overoptimistic view of the ability of milk infrared spectra to predict methane emission of dairy cattle. J. Dairy Sci. 2019, 102, 6288–6295. [Google Scholar] [CrossRef]
- Tao, F.F.; Ngadi, M. Applications of spectroscopic techniques for fat and fatty acids analysis of dairy foods. Curr Opin Food Sci 2017, 17, 100–112. [Google Scholar] [CrossRef]
- Du, C.; Wei, J.; Wang, S.; Jia, Z. Genomic selection using principal component regression. Heredity 2018, 121, 12–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desta, F.; Buxton, M.; Jansen, J. Fusion of mid-wave infrared and long-wave infrared reflectance spectra for quantitative analysis of minerals. Sensors 2020, 20, 1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Qu, L.; Yang, L.; Liu, D.; Morrissey, E.; Miao, R.; Liu, Z.; Wang, Q.; Fang, Y.; Bai, E. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Glob. Chang. Biol. 2021, 27, 2039–2048. [Google Scholar] [CrossRef]
- Chen, W.; Xu, R.; Chen, J.; Yuan, X.; Zhou, L.; Tan, T.; Fan, J.; Zhang, Y.; Hu, T. Consistent responses of surface-and subsurface soil fungal diversity to N enrichment are mediated differently by acidification and plant community in a semi-arid grassland. Soil Biol. Biochem. 2018, 127, 110–119. [Google Scholar] [CrossRef]
- Oehm, A.W.; Springer, A.; Jordan, D.; Strube, C.; Knubben-Schweizer, G.; Jensen, K.C.; Zablotski, Y. A machine learning approach using partitioning around medoids clustering and random forest classification to model groups of farms in regard to production parameters and bulk tank milk antibody status of two major internal parasites in dairy cows. PLoS ONE 2022, 17, e0271413. [Google Scholar] [CrossRef] [PubMed]
- Szymczak, S.; Holzinger, E.; Dasgupta, A.; Malley, J.D.; Molloy, A.M.; Mills, J.L.; Brody, L.C.; Stambolian, D.; Bailey-Wilson, J.E. r2VIM: A new variable selection method for random forests in genome-wide association studies. Biodata Min. 2016, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Cammarota, C.; Pinto, A. Variable selection and importance in presence of high collinearity: An application to the prediction of lean body mass from multi-frequency bioelectrical impedance. J. Appl. Stat. 2021, 48, 1644–1658. [Google Scholar] [CrossRef]
- Verikas, A.; Gelzinis, A.; Bacauskiene, M. Mining data with random forests: A survey and results of new tests. Pattern Recogn. 2011, 44, 330–349. [Google Scholar] [CrossRef]
- Christy, A.A.; Egeberg, P.K. Quantitative determination of saturated and unsaturated fatty acids in edible oils by infrared spectroscopy and chemometrics. Chemom. Intell Lab. 2006, 82, 130–136. [Google Scholar] [CrossRef]
- El Jabri, M.; Trossat, P.; Wolf, V.; Beuvier, E.; Rolet-Répécaud, O.; Gavoye, S.; Gaüzère, Y.; Belysheva, O.; Gaudillière, N.; Notz, E. Mid-infrared spectrometry prediction of the cheese-making properties of raw Montbéliarde milks from herds and cheese dairy vats used for the production of Protected Designation of Origin and Protected Geographical Indication cheeses in Franche-Comté. J. Dairy Sci. 2020, 103, 5992–6002. [Google Scholar] [CrossRef]
- Sanchez, M.P.; El Jabri, M.; Minéry, S.; Wolf, V.; Beuvier, E.; Laithier, C.; Delacroix-Buchet, A.; Brochard, M.; Boichard, D. Genetic parameters for cheese-making properties and milk composition predicted from mid-infrared spectra in a large data set of Montbéliarde cows. J. Dairy Sci. 2018, 101, 10048–10061. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 1999. [Google Scholar]
- Mota, L.F.M.; Giannuzzi, D.; Bisutti, V.; Pegolo, S.; Trevisi, E.; Schiavon, S.; Gallo, L.; Fineboym, D.; Katz, G.; Cecchinato, A. Real-time milk analysis integrated with stacking ensemble learning as a tool for the daily prediction of cheese-making traits in Holstein cattle. J. Dairy Sci. 2022, 105, 4237–4255. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Dórea, J.; Borchers, M.; Wallace, R.; Bertics, S.; DeNise, S.; Weigel, K.; White, H. Comparison of methods to predict feed intake and residual feed intake using behavioral and metabolite data in addition to classical performance variables. J. Dairy Sci. 2021, 104, 8765–8782. [Google Scholar] [CrossRef] [PubMed]
- Rutten, M.; Bovenhuis, H.; Hettinga, K.A.; Valenberg, H.; Arendonk, J. Predicting bovine milk fat composition using infrared spectroscopy based on milk samples collected in winter and summer. J. Dairy Sci. 2009, 92, 6202–6209. [Google Scholar] [CrossRef] [Green Version]
- Xue, Z.; Xu, B.; Liu, Q.; Shi, X.-Y.; Li, J.-Y.; Wu, Z.-S.; Qiao, Y.-J. Application of uncertainty assessment in NIR quantitative analysis of Traditional Chinese Medicine. Guang Pu Xue Yu Guang Pu Fen Xi 2014, 34, 2657–2661. [Google Scholar]
- Borman, P.; Chatfield, M.; Asahara, H.; Tamura, F.; Watkins, A. Risk-Based Intermediate Precision Studies for Analytical Procedure Validation. Pharm. Technol. Regul. Sourceb 2019, 2019, 12–22. [Google Scholar]
- Shewiyo, D.H.; Kaale, E.; Risha, P.; Dejaegher, B.; De Beer, J.; Smeyers-Verbeke, J.; Vander Heyden, Y. Accuracy profiles assessing the validity for routine use of high-performance thin-layer chromatographic assays for drug formulations. J. Chromatogr. A 2013, 1293, 159–169. [Google Scholar] [CrossRef]
- Schaefer, C.; Clicq, D.; Lecomte, C.; Merschaert, A.; Norrant, E.; Fotiadu, F. A Process Analytical Technology (PAT) approach to control a new API manufacturing process: Development, validation and implementation. Talanta 2014, 120, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Frampas, C.; Ney, J.; Coburn, M.; Augsburger, M.; Varlet, V. Xenon detection in human blood: Analytical validation by accuracy profile and identification of critical storage parameters. J. Forensic Leg. Med. 2018, 58, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, J.; Bezerra, M.; Markl, D.; Berghaus, A.; Borman, P.; Schlindwein, W. Development and Validation of an in-line API Quantification Method Using AQbD Principles Based on UV-Vis Spectroscopy to Monitor and Optimise Continuous Hot Melt Extrusion Process. Pharmaceutics 2020, 12, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, F.; Wang, P.; Yang, L.; Ma, Y.; Day, L. Quantification of Fatty Acids in Human, Cow, Buffalo, Goat, Yak, and Camel Milk Using an Improved One-Step GC-FID Method. Food Anal. Method 2017, 10, 2881–2891. [Google Scholar] [CrossRef]
Pre-Processing | LV | RMSECV | RMSECV SD | R2CV | RMSEp | R2p | |
---|---|---|---|---|---|---|---|
PLSR | SG-1 | nLV 2 = 20 | 7.325 | 0.546 | 0.958 | 4.094 | 0.984 |
PCR | SG | Nlv = 17 | 5.198 | 0.725 | 0.980 | 3.662 | 0.987 |
ANN | SNV-SG-1 | Size 3 = 5 Decay = 0.3 | 6.274 | 1.809 | 0.963 | 6.426 | 0.961 |
Pre-Processing | LV | RMSECV | RMSECV SD | R2CV | RMSEP | R2P | |
---|---|---|---|---|---|---|---|
PLSR | SG | nLV 2 = 8 | 4.714 | 1.188 | 0.983 | 4.113 | 0.984 |
PCR | SG | nLV = 14 | 5.669 | 0.836 | 0.976 | 4.161 | 0.983 |
ANN | SNV | Size 3 = 6 Decay = 0.4 | 7.616 | 2.373 | 0.951 | 6.566 | 0.959 |
Trueness | Precision | Accuracy | |||||
---|---|---|---|---|---|---|---|
Level (mg/100 mL) | Mean Calculated Concentration 2 (mg/100 mL) | Relative Bias (%) | Recovery (%) | Repeatability (%) | Intermediate Precision (%) | Relative β-Expectation Tolerance Limits (%) 3 | β-Expectation Tolerance Limits (mg/100 mL) 4 |
5 | 6.52 ± 1.72 | 30.4 | 130.4 | 3.89 | 8.21 | [−59.18, 119.99] | [2.04, 10.99] |
10 | 10.67 ± 1.29 | 6.7 | 106.7 | 1.89 | 1.89 | [−14.8, 28.21] | [8.51, 12.82] |
20 | 20.43 ± 1.35 | 2.15 | 102.15 | 2.07 | 2.07 | [−9.11, 13.41] | [18.17, 22.68] |
50 | 49.72 ± 2.85 | 0.56 | 99.44 | 8.34 | 9.46 | [−10.17, 9.07] | [44.91, 54.53] |
100 | 102.02 ± 3.42 | 2.63 | 102.63 | 11.76 | 13.61 | [−10.24, 14.96] | [96.05, 108.66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Z.; Nie, P.; Zhang, X.; Chen, C.; An, Z.; Wei, K.; Zhao, J.; Lv, H.; Niu, K.; Yang, Y.; et al. Establishment and Validation of Fourier Transform Infrared Spectroscopy (FT–MIR) Methodology for the Detection of Linoleic Acid in Buffalo Milk. Foods 2023, 12, 1199. https://doi.org/10.3390/foods12061199
Yao Z, Nie P, Zhang X, Chen C, An Z, Wei K, Zhao J, Lv H, Niu K, Yang Y, et al. Establishment and Validation of Fourier Transform Infrared Spectroscopy (FT–MIR) Methodology for the Detection of Linoleic Acid in Buffalo Milk. Foods. 2023; 12(6):1199. https://doi.org/10.3390/foods12061199
Chicago/Turabian StyleYao, Zhiqiu, Pei Nie, Xinxin Zhang, Chao Chen, Zhigao An, Ke Wei, Junwei Zhao, Haimiao Lv, Kaifeng Niu, Ying Yang, and et al. 2023. "Establishment and Validation of Fourier Transform Infrared Spectroscopy (FT–MIR) Methodology for the Detection of Linoleic Acid in Buffalo Milk" Foods 12, no. 6: 1199. https://doi.org/10.3390/foods12061199
APA StyleYao, Z., Nie, P., Zhang, X., Chen, C., An, Z., Wei, K., Zhao, J., Lv, H., Niu, K., Yang, Y., Zou, W., & Yang, L. (2023). Establishment and Validation of Fourier Transform Infrared Spectroscopy (FT–MIR) Methodology for the Detection of Linoleic Acid in Buffalo Milk. Foods, 12(6), 1199. https://doi.org/10.3390/foods12061199