Using HPLC-MS/MS to Determine the Loss of Primary and Secondary Metabolites in the Dehydration Process of Apple Slices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Dry Matter
2.3. Extraction of Organic Acids, Sugars, and Phenolic Compunds
2.4. HPLC Analysis of Organic Acids and Sugars
2.5. HPLC-Mass Spectrometry Analysis for Phenolic Compounds
2.6. Chemicals
2.7. Statistical Analysis
3. Results and Discussion
3.1. Dry Matter
3.2. Content of Sugars and Organic Acids
3.3. Identification of Individual Phenolic Compounds
3.4. Quantification of Individual Phenolic Compounds and Total Analyzed Phenolic Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faramarzi, S.; Pacifico, S.; Yadollahi, A.; Lettieri, A.; Nocera, P.; Piccolella, S. Red-fleshed apples: Old autochthonous fruits as a novel source of anthocyanin antioxidants. Plant Foods Hum. Nutr. 2015, 70, 324–330. [Google Scholar] [CrossRef]
- Khanizadeh, S.; Tsao, R.; Rekika, D.; Yang, R.; Deell, J. Phenolic composition and antioxidant activity of selected apple genotypes. J. Food Agric. Environ. 2007, 5, 61–66. [Google Scholar]
- Łata, B.; Trampczynska, A.; Paczesna, J. Cultivar variation in apple peel and whole fruit phenolic composition. Sci. Hortic. 2009, 121, 176–181. [Google Scholar] [CrossRef]
- Ban, Y.; Honda, C.; Hatsuyama, Y.; Igarashi, M.; Bessho, H.; Moriguchi, T. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 2007, 48, 958–970. [Google Scholar] [CrossRef] [PubMed]
- Espley, R.V.; Hellens, R.P.; Putterill, J.; Stevenson, D.E.; Kutty-Amma, S.; Allan, A.C. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 2007, 49, 414–427. [Google Scholar] [CrossRef] [Green Version]
- Espley, R.V.; Bovy, A.; Bava, C.; Jaeger, S.R.; Tomes, S.; Norling, C.; Crawford, J.; Rowan, D.; McGhie, T.K.; Brendolise, C.; et al. Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol. J. 2013, 11, 408–419. [Google Scholar] [CrossRef]
- Wojdyło, A.; Figiel, A.; Oszmiański, J. Influence of temperature and time of apple drying on phenolic compounds content and their antioxidant activity. Polish J. Food Nutr. Sci. 2007, 57, 601–605. [Google Scholar]
- Kwok, B.H.L.; Hu, C.; Durance, T.; Kitts, D.D. Dehydration techniques affect phytochemical contents and free radical scavenging activities of Saskatoon berries (Amelanchier alnifolia Nutt.). J. Food Sci. 2004, 69, 122–126. [Google Scholar] [CrossRef]
- Sosa, N.; Salvatori, D.M.; Schebor, C. Physico-chemical and mechanical properties of apple disks subjected to osmotic dehydration and different drying methods. Food Bioprocess Technol. 2012, 5, 1790–1802. [Google Scholar] [CrossRef]
- Medic, A.; Zamljen, T.; Grohar, M.C.; Slatnar, A.; Hudina, M.; Veberic, R. Using HPLC–MS/MS to assess the quality of beet, mizuna, lettuce and corn salad after juglone and walnut leaf extract treatments. Agronomy 2022, 12, 347. [Google Scholar] [CrossRef]
- Medic, A.; Hudina, M.; Veberic, R. The effect of cane vigour on the kiwifruit (Actinidia chinensis) and kiwiberry (Actinidia arguta) quality. Sci. Rep. 2021, 11, 12749. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Koron, D.; Veberic, R. Quality parameters of currant berries from three different cluster positions. Sci. Hortic. 2016, 210, 188–196. [Google Scholar] [CrossRef]
- Bizjak, J.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Changes in primary metabolites and polyphenols in the peel of ‘braeburn’ apples (Malus domestica Borkh.) during advanced maturation. J. Agric. Food Chem. 2013, 61, 10283–10292. [Google Scholar] [CrossRef] [PubMed]
- Medic, A.; Jakopic, J.; Hudina, M.; Solar, A.; Veberic, R. Identification and quantification of the major phenolic constituents in Juglans regia L. peeled kernels and pellicles, using HPLC–MS/MS. Food Chem. 2021, 352, 129404. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Slatnar, A.; Schmitzer, V.; Stampar, F.; Veberic, R.; Koron, D. Chemical profile of black currant fruit modified by different degree of infection with black currant leaf spot. Sci. Hortic. 2013, 150, 399–409. [Google Scholar] [CrossRef]
- Palmer, J.W.; Harker, F.R.; Stuart, D.; Johnston, J. Fruit dry matter concentration: A new quality metric for apples. J. Sci. Food Agric. 2010, 90, 2586–2594. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Y.; Zhu, C.; Ph, D.; Wei, M. Effects of different drying methods on the physical properties and sensory characteristics of apple chip snacks. LWT 2022, 154, 112829. [Google Scholar] [CrossRef]
- Owusu, J.; Ma, H.; Wang, Z.; Amissah, A. Effect of drying methods on physicochemical properties of pretreated tomato (lycopersicon esculentum Mill.) slices. Croat. J. Food Tech. Biotech. Nutr. 2012, 7, 106–111. [Google Scholar]
- Aprea, E.; Charles, M.; Endrizzi, I.; Corollaro, M.L.; Betta, E. Sweet taste in apple: The role of sorbitol, individual sugars, organic acids and volatile compounds. Nat. Publ. Gr. 2017, 7, 44950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juhart, J.; Medic, A.; Veberic, R.; Hudina, M.; Jakopic, J.; Stampar, F. Phytochemical composition of red-fleshed apple cultivar ‘Baya Marisa’ compared to traditional, white-fleshed apple cultivar ‘Golden Delicious’. Horticulturae 2022, 8, 811. [Google Scholar] [CrossRef]
- Ghinea, C.; Prisacaru, A.E.; Leahu, A. Physico-chemical and sensory quality of oven-dried and dehydrator-dried apples of the Starkrimson, Golden Delicious and Florina cultivars. Appl. Sci. 2022, 12, 2350. [Google Scholar] [CrossRef]
- Begic-Akagić, A.; Spaho, N.; Gasi, F.; Drkenda, P.; Vranac, A.; Meland, M. Sugar and organic acid profiles of the traditional and international apple cultivars for processing. J. Hyg. Eng. Des. 2014, 7, 190–196. [Google Scholar]
- Jan, I.; Rab, A. Influence of storage duration on physico-chemical changes in fruit of apple cultivars. J. Anim. Plant Sci. 2012, 22, 708–714. [Google Scholar]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef]
- Chinnici, F.; Bendini, A.; Gaiani, A.; Riponi, C. Radical scavenging activities of peels and pulps from cv. Golden Delicious apples as related to their phenolic composition. J. Agric. Food Chem. 2004, 52, 4684–4689. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Orbea, G.L.; García-Villalba, R.; Bernal, M.J.; Hernández, A.; Tomás-Barberán, F.A.; Sánchez-Siles, L.M. Stability of phenolic compounds in apple and strawberry: Effect of different processing techniques in industrial set up. Food Chem. 2023, 401, 134099. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Jalao, I.; Sánchez-Moreno, C.; De Ancos, B. Effect of high-pressure processing on flavonoids, hydroxycinnamic acids, dihydrochalcones and antioxidant activity of apple ‘Golden Delicious’ from different geographical origin. Innov. Food Sci. Emerg. Technol. 2019, 51, 20–31. [Google Scholar] [CrossRef]
- Ju, Z.; Liu, C.; Yuan, Y. Activities of chalcone synthase and UDPGal: Flavonoid-3-o-glycosyltransferase in relation to anthocyanin synthesis in apple. Sci. Hortic. 1995, 63, 175–185. [Google Scholar] [CrossRef]
- Salazar-Orbea, G.L.; Tom, F.A.; Sánchez-Siles, L.M. High—Pressure processing vs. thermal treatment: Effect on the stability of polyphenols in strawberry and apple products. Foods 2021, 10, 2919. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, I.; Hafsa, I.; Hamdi, S.; Charbonnel, C.; Ghoul, M. Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour. J. Food Eng. 2012, 111, 208–217. [Google Scholar] [CrossRef]
- Sonawane, S.K.; Arya, S.S. Effect of drying and storage on bioactive components of jambhul and wood apple. J. Food Sci. Technol. 2015, 52, 2833–2841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odriozola-Serrano, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Influence of storage temperature on the kinetics of the changes in anthocyanins, vitamin c, and antioxidant capacity in fresh-cut strawberries stored under high-oxygen atmospheres. J. Food Sci. 2009, 74, 184–191. [Google Scholar] [CrossRef]
- Madrau, M.A.; Piscopo, A.; Sanguinetti, A.M.; Del Caro, A.; Poiana, M.; Romeo, F.V.; Piga, A. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol. 2009, 228, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Arfaoui, L. Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef] [PubMed]
- Henry-Kirk, R.A.; McGhie, T.K.; Andre, C.M.; Hellens, R.P.; Allan, A.C. Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. J. Exp. Bot. 2012, 63, 5437–5450. [Google Scholar] [CrossRef] [Green Version]
- Alongi, M.; Verardo, G.; Gorassini, A.; Anese, M. Effect of pasteurization on in vitro α-glucosidase inhibitory activity of apple juice. LWT 2018, 98, 366–371. [Google Scholar] [CrossRef]
- Liu, X.; Le Bourvellec, C.; Guyot, S.; Renard, C.M.G.C. Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4841–4880. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.A.R.; Le Bourvellec, C.; Renard, C.M.G.C.; Nunes, F.M.; Bastos, R.; Coelho, E.; Wessel, D.F.; Coimbra, M.A.; Cardoso, S.M. Revisiting the chemistry of apple pomace polyphenols. Food Chem. 2019, 294, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Le Bourvellec, C.; Guyot, S.; Renard, C.M.G.C. Non-covalent interaction between procyanidins and apple cell wall material: Part I. Effect of some environmental parameters. Biochim. Biophys. Acta 2004, 1672, 192–202. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
Unpeeled | Peeled | |||
---|---|---|---|---|
Compunds | ‘Baya Marisa’ | ‘Golden Delicious’ | ‘Baya Marisa’ | ‘Golden Delicious’ |
Sugars | ||||
Sucrose | 165.34 ± 4.41 a | 159.40 ± 2.45 a | 173.82 ± 5.53 a | 173.65 ± 5.91 a |
Glucose | 74.26 ± 2.19 b | 104.53 ± 5.90 a | 79.46 ± 3.00 b | 72.40 ± 1.19 b |
Fructose | 231.87 ± 5.53 b | 319.66 ± 22.50 a | 230.34 ± 7.93 b | 242.50 ± 3.16 b |
Sorbitol | 26.11 ± 0.77 a | 30.17 ± 1.32 a | 26.81 ± 1.09 a | 23.78 ± 0.19 a |
Organic acids | ||||
Citric acid | 45.66 ± 0.57 a | 26.04 ± 1.50 b | 28.85 ± 1.28 b | 20.38 ± 0.75 c |
Malic acid | 89.46 ± 2.23 a | 65.73 ± 0.57 c | 77.92 ± 0.36 b | 64.95 ± 3.31 c |
Ascorbic acid | 0.09 ± 0.01 a | 0.06 ± 0.00 b | 0.08 ± 0.00 a | 0.04 ± 0.00 b |
Phenolic Compounds | Rt (min) | [M − H]− (m/z) | [M + H]+ (m/z) | MS2 (m/z) | MS3 (m/z) | Expressed as | Unpeeled | Peeled | ||
---|---|---|---|---|---|---|---|---|---|---|
‘Baya Marisa’ | ‘Golden Delicious’ | ‘Baya Marisa’ | ‘Golden Delicious’ | |||||||
Hydroxycinnamic acids | ||||||||||
Caffeic acid derivative | 15.8 | 335 | 179,135 | caffeic acid | X | X | X | X | ||
Caffeic acid derivative 2 | 12.9 | 311 | 179 | caffeic acid | X | X | ||||
Dicaffeic acid derivative 1 | 10.8 | 457 | 179,135 | caffeic acid | X | X | ||||
Dicaffeic acid derivative 2 | 19.3 | 403 | 233,179,135 | caffeic acid | X | X | X | |||
Dicaffeic acid derivative 3 | 22.6 | 429 | 249,205,179,135 | caffeic acid | X | X | X | X | ||
Dicaffeic acid derivative 5 | 11.5 | 457 | 277,189,179 | 179,135 | caffeic acid | X | X | |||
Dihydrodicaffeic acid derivative 2 | 20.4 | 405 | 225,181 | caffeic acid | X | X | X | X | ||
5-O-p-coumaroylquinic acid | 16.5 | 337 | 191,163,119 | chlorogenic acid | X | X | X | X | ||
Chlorogenic acid (5-caffeoylquinic acid) | 13.4 | 353 | 191,179 | chlorogenic acid | X | X | X | X | ||
Caffeoylferuoylquinic acid | 14.2 | 563 | 385,205 | 191,193 | chlorogenic acid | X | ||||
Caffeoylquinnic acid | 14.1 | 353 | 191,179 | chlorogenic acid | X | |||||
Caffeoylquinnic acid derivative | 12.4 | 451 | 353,311 | 191,179,135 | chlorogenic acid | X | X | |||
Feruloylquinic acid derivative 1 | 12.7 | 431 | 385,331 | 193,191 | chlorogenic acid | X | X | |||
Caffeoylferuoylquinnic acid 1 | 13.9 | 563 | 385,321,205 | 193,191 | ferulic acid | X | X | X | X | |
Feruoylquinnic acid hexoside | 20.8 | 547 | 385,325 | 193,191 | ferulic acid | X | X | X | X | |
Ferulic acid hexoside derivative | 11.6 | 401 | 355 | 265,235,193 | ferulic acid | X | X | |||
Cryptochlorogenic acid (4-caffeoylquinic acid) | 14.7 | 353 | 191,179 | cryptochlorogenic acid | X | X | X | X | ||
Dihydrochalcones | ||||||||||
Phloridzin | 23.9 | 481 | 435,273 | phloridzin | X | X | X | X | ||
Phloretin-2-O-xyloside | 22.2 | 567 | 273,167 | phloridzin | X | X | X | X | ||
Flavonols | ||||||||||
Quercetin-3-O-arabinofuranoside | 22.9 | 433 | 301,3 | quercetin-3-O-arabinofuranoside | X | X | X | X | ||
Quercetin-3-O-galactoside | 21.2 | 463 | 301,3 | quercetin-3-O-galactoside | X | X | X | X | ||
Quercetin-3-O-glucoside | 21.4 | 463 | 301,3 | quercetin-3-O-glucoside | X | X | X | X | ||
Quercetin-3-O-rhamnoside | 23.0 | 447 | 301,3 | quercetin-3-O-rhamnoside | X | X | X | X | ||
Flavanols | ||||||||||
(-)epicatechin | 15.8 | 289 | 271,245,205,179 | (-) epicatechin | X | X | ||||
(Epi)catechin derivative | 18.6 | 583 | 289,271 | 271,245,205179 | (-) epicatechin | X | X | X | X | |
Flavanol monomer | 22.0 | 289 | 245,205,179 | (-) epicatechin | X | X | ||||
Procyanidin dimer 4 | 14.6 | 577 | 451,425,407 | 289,245 | procyanidin B1 | X | X | X | X | |
Procyanidin trimer | 16.9 | 865 | 739,695,577 | procyanidin B1 | X | X | ||||
Anthocyanins | ||||||||||
Cyanidin-3-O-galactoside | 8.9 | 449 | 287 | cyanidin-3-O-galactoside | X | X | ||||
Cyanidin-3-O-arabinoside | 1.9 | 419 | 287 | cyanidin-3-O-arabinoside | X | X |
Unpeeled | Peeled | |||
---|---|---|---|---|
Compounds | ‘Baya Marisa’ | ‘Golden Delicious’ | ‘Baya Marisa’ | ‘Golden Delicious’ |
Hydroxycinnamic acids | ||||
Caffeic acid derivative | 9.6 ± 2.9 b | 22.6 ± 1.0 a | 8.5 ± 1.5 b | 4.8 ± 0.6 b |
Caffeic acid derivative 2 | 19.7 ± 3.9 a | nd | 23.9 ± 1.3 a | nd |
Dicaffeic acid derivative 1 | 5.8 ± 1.5 a | nd | 5.4 ± 0.9 a | nd |
Dicaffeic acid derivative 2 | 5.9 ± 1.8 a | 5.4 ± 0.5 a | 3.3 ± 1.0 ab | 0.8 ± 0.05 b |
Dicaffeic acid derivative 3 | 4.9 ± 1.1 ab | 6.8 ± 0.4 a | 3.0 ± 0.7 b | 2.9 ± 0.5 b |
Dicaffeic acid derivative 5 | 2.2 ± 0.7 a | nd | 1.8 ± 0.2 a | nd |
Dihydrodicaffeic acid derivative 2 | 8.9 ± 2.2 a | 8.4 ± 0.7 a | 5.0 ± 1.4 b | 1.6 ± 0.3 c |
5-O-p-coumaroylquinic acid | 6.3 ± 1.0 c | 80.9 ± 2.9 a | 4.0 ± 0.9 c | 23.5 ± 3.1 b |
Chlorogenic acid (5-caffeoylquinic acid) | 107.9 ± 19.5 c | 377.1 ± 4.1 a | 138.8 ± 5.6 bc | 164.6 ± 11.7 b |
Caffeoylferuoylquinic acid | nd | 14.7 ± 1.6 | nd | nd |
Caffeoylquinic acid | nd | nd | nd | 3.5 ± 1.1 |
Caffeoylquinic acid derivative | nd | 139.8 ± 19.0 a | nd | 23.3 ± 5.2 b |
Feruloylquinnic acid derivative 1 | 19.6 ± 0.4 a | nd | 19.2 ± 1.6 a | nd |
Caffeoyl feruoylquinic acid 1 | 19.5 ± 1.3 b | 36.4 ± 2.9 a | 10.9 ± 1.8 c | 9.6 ± 2.3 c |
Ferulic acid hexoside derivative | 3.9 ± 0.3 a | nd | 2.6 ± 0.5 a | nd |
Feruoylquinic acid hexoside | 24.4 ± 1.7 a | 16.3 ± 1.5 b | 7.5 ± 0.9 c | 7.2 ± 1.8 c |
Cryptochlorogenic acid (4-caffeoylquinic acid) | 31.9 ± 2.9 a | 34.7 ± 2.3 a | 19.6 ± 2.6 b | 14.3 ± 0.8 b |
Dihydrochalcones | ||||
Phloridzin | 35.3 ± 4.3 a | 49.3 ± 0.9 a | 20.5 ± 2.9 b | 11.5 ± 2.3 c |
Phloretin-2-O-xyloside | 22.9 ± 3.7 a | 23.2 ± 3.3 a | 26.4 ± 2.0 a | 10.1 ± 1.4 b |
Flavonols | ||||
Quercetin-3-O-arabinofuranoside | 17.0 ± 2.7 a | 9.5 ± 0.6 b | 8.3 ± 1.3 b | 8.0 ± 1.5 b |
Quercetin-3-O-galactoside | 11.4 ± 0.7 b | 18.7 ± 1.6 a | 6.2 ± 1.8 c | 8.2 ± 1.3 c |
Quercetin-3-O-glucoside | 23.6 ± 2.0 a | 32.6 ± 0.9 a | 14.5 ± 3.1 b | 15.8 ± 3.1 b |
Quercetin-3-O-rhamnoside | 30.3 ± 1.2 a | 30.6 ± 1.0 a | 20.2 ± 3.2 b | 18.7 ± 2.8 b |
Flavanols | ||||
(-)epicatechin | nd | 126.2 ± 2.9 a | nd | 21.2 ± 5.6 b |
Epicatechin derivative | 78.6 ± 5.3 a | 56.0 ± 0.6 ab | 43.2 ± 6.9 b | 27.2 ± 4.4 c |
Flavanol monomer | 8.8 ± 0.6 a | nd | 1.8 ± 0.5 b | nd |
Procyanidin dimer 4 | 116.2 ± 33.3 b | 237.2 ± 33.7 a | 86.7 ± 16.3 bc | 48.3 ± 14.5 c |
Procyanidin trimer | 111.4 ± 6.4 a | nd | 78.5 ± 9.7 b | nd |
Anthocyanins | ||||
Cyanidin-3-galactoside | 6.8 ± 1.6 a | nd | 3.4 ± 0.2 b | nd |
Cyanidin-3-arabinoside | 27.5 ± 3.0 a | nd | 15.8 ± 1.8 b | nd |
Total hydroxycinnamic acids | 270.6 ± 42.5 b | 743.1 ± 34.5 a | 253.6 ± 19.9 b | 256.0 ± 27.1 b |
Total dihydrochalcones | 58.2 ± 8.0 b | 72.5 ± 2.5 a | 46.9 ± 4.9 b | 21.5 ± 3.6 c |
Total flavonols | 82.3 ± 6.5 a | 91.3 ± 4.2 a | 49.3 ± 9.5 b | 50.7 ± 7.8 b |
Total flavanols | 315.0 ± 44.6 ab | 419.4 ± 36.1 a | 210.0 ± 31.4 b | 96.8 ± 24.3 c |
Total anthocyanins | 34.3 ± 2.9 a | nd | 19.2 ± 2.0 b | nd |
TAPC | 760.4 ± 103.5 b | 1326.4 ± 72.4 a | 579.2 ± 66.2 b | 425.0 ± 62.0 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juhart, J.; Medic, A.; Jakopic, J.; Veberic, R.; Hudina, M.; Stampar, F. Using HPLC-MS/MS to Determine the Loss of Primary and Secondary Metabolites in the Dehydration Process of Apple Slices. Foods 2023, 12, 1201. https://doi.org/10.3390/foods12061201
Juhart J, Medic A, Jakopic J, Veberic R, Hudina M, Stampar F. Using HPLC-MS/MS to Determine the Loss of Primary and Secondary Metabolites in the Dehydration Process of Apple Slices. Foods. 2023; 12(6):1201. https://doi.org/10.3390/foods12061201
Chicago/Turabian StyleJuhart, Jan, Aljaz Medic, Jerneja Jakopic, Robert Veberic, Metka Hudina, and Franci Stampar. 2023. "Using HPLC-MS/MS to Determine the Loss of Primary and Secondary Metabolites in the Dehydration Process of Apple Slices" Foods 12, no. 6: 1201. https://doi.org/10.3390/foods12061201
APA StyleJuhart, J., Medic, A., Jakopic, J., Veberic, R., Hudina, M., & Stampar, F. (2023). Using HPLC-MS/MS to Determine the Loss of Primary and Secondary Metabolites in the Dehydration Process of Apple Slices. Foods, 12(6), 1201. https://doi.org/10.3390/foods12061201