Effect of Thermal Processing on the Conformational and Digestive Properties of Myosin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Samples
2.3. UV–VIS Spectroscopy Measurement
2.4. Fluorescence Spectroscopy Measurement
2.5. Circular Dichroism Measurement
2.6. Sulfhydryl Groups
2.7. Turbidity Measurement
2.8. Enzymatic Reaction Process
2.9. Measurement of Pepsin’s Constant Michaelis (Km)
2.10. Identification of Peptides in Digested Products
2.11. Statistical Analysis
3. Results and Discussion
3.1. Myosin Structural Changes during Heating
3.1.1. UV–VIS Spectroscopy
3.1.2. Intrinsic Tryptophan Fluorescence
3.1.3. CD Spectra
3.1.4. Reactive Sulfhydryl Content (RSC)
3.1.5. Turbidity
3.2. Enzymatic Reaction
3.3. LC-MS/MS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, H.; Wang, Z.; Guo, H.; Ni, N.; Zhang, D. Heterocyclic aromatic amines in meat products consumed in China. Food Sci. Biotechnol. 2014, 23, 2089–2095. [Google Scholar] [CrossRef]
- Dominguez-Hernandez, E.; Salaseviciene, A.; Ertbjerg, P. Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Sci. 2018, 143, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, C.; Mujumdar, A.S.; Zhang, M. New development in radio frequency heating for fresh food processing: A review. Food Eng. Rev. 2019, 11, 29–43. [Google Scholar] [CrossRef]
- Tornberg, E. Effects of heat on meat proteins-implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef]
- Astruc, T.; Peyrin, F.; Venien, A.; Labas, R.; Abrantes, M.; Dumas, P.; Jamme, F. In situ thermal denaturation of myofibre sub-type proteins studied by immunohistofluorescence and synchrotron radiation FT-IR microspectroscopy. Food Chem. 2012, 134, 1044–1051. [Google Scholar] [CrossRef]
- Hamm, R. Changes of muscle proteins during the heating of meat. In Physical, Chemical Andbiological Changes in Food Caused by Thermal Processing; Hoeyem, T., Kvale, O., Eds.; Applied Science Publishing: London, UK, 1977; pp. 101–134. [Google Scholar]
- Bax, M.L.; Aubry, L.; Ferreira, C.; Daudin, J.D.; Gatellier, P.; Rémond, D.; Santé-Lhoutellier, V. Cooking temperature is a key determinant of in vitro meat protein digestion rate: Investigation of underlying mechanisms. J. Agric. Food Chem. 2012, 60, 2569–2576. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, D.; Zhu, S.R.; Nian, Y.Q.; Xu, X.L.; Zhou, G.H.; Li, C.B. Overheating induced structural changes of type I collagen and impaired the protein digestibility. Food Res. Int. 2020, 134, 109225. [Google Scholar] [CrossRef]
- Jezierny, D.; Mosenthin, R.; Sauer, N.; Eklund, M. In vitro prediction of standardised ileal crude protein and amino acid digestibilities in grain legumes for growing pig. Animal 2010, 4, 1987–1996. [Google Scholar] [CrossRef]
- Xie, Y.T.; Zhou, G.H.; Wang, C.; Xu, X.L.; Li, C.B. Specific microbiota dynamically regulate the bidirectional gut-brain axis communications in mice fed meat protein diets. J. Agric. Food Chem. 2019, 67, 1003–1017. [Google Scholar] [CrossRef]
- Wen, S.; Zhou, G.; Li, L.; Xu, X.L.; Yu, X.B.; Bai, Y.; Li, C.B. Effect of cooking on in vitro digestion of pork proteins: A peptidomic perspective. J. Agric. Food Chem. 2015, 63, 250–261. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, D.; Nian, Y.Q.; Wu, J.Q.; Zhang, M.; Li, Q.; Li, C.B. Ultrasonic treatment increased functional properties and in vitro digestion of actomyosin complex during meat storage. Food Chem. 2021, 352, 129398. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, H. Enhancing tilapia fish myosin solubility using proline in low ionic strength solution. Food Chem. 2020, 320, 126665. [Google Scholar] [CrossRef]
- Chen, J.H.; Zhang, X.; Fu, M.Y.; Chen, X.; Bassey, A.P.; Xu, X.L. Ultrasound-assisted covalent reaction of myofibrillar protein: The improvement of functional properties and its potential mechanism. Ultrason. Sonochem. 2021, 76, 105652. [Google Scholar] [CrossRef]
- Saif, F.A.; Yaseen, S.A.; Alameen, A.S.; Mane, S.B.; Undre, P.B. Identification and characterization of Aspergillus species of fruit rot fungi using microscopy, FT-IR, Raman and UV–vis spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 119010. [Google Scholar] [CrossRef]
- Pan, J.F.; Lian, H.; Jia, H.; Li, S.J.; Hao, R.Y.; Wang, Y.J.; Zhang, X.N.; Dong, X.P. Ultrasound treatment modified the functional mode of gallic acid on properties of fish myofibrillar protein. Food Chem. 2020, 320, 126637. [Google Scholar] [CrossRef]
- Keerati, M.; Miriani, M.; Iametti, S.; Bonomi, F.; Corredig, M. Structural changes of soy proteins at the oil–water interface studied by fluorescence spectroscopy. Colloids Surf. B Biointerfaces 2012, 93, 41–48. [Google Scholar] [CrossRef]
- Zhao, X.; Xing, T.; Xu, X.; Zhou, G. Influence of extreme alkaline pH induced unfolding and aggregation on PSE-like chicken protein edible film formation. Food Chem. 2020, 319, 126574. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, R.; Zhao, H.; Yin, Y.; Li, X.; Yi, S.; Li, J. Effect of heat treatment duration on the interaction between fish myosin and selected flavor compounds. J. Sci. Food Agric. 2020, 100, 4457–4463. [Google Scholar]
- Li, Z.Y.; Sun, Q.; Zheng, Y.M.; Wang, J.Y.; Tian, Y.T.; Zheng, B.D.; Guo, Z.B. Effect of two-step microwave heating on the gelation properties of golden threadfin bream (Nemipterus virgatus) myosin. Food Chem. 2020, 328, 127104. [Google Scholar] [CrossRef]
- Ding, Q.; Tian, G.; Wang, X.; Deng, W.; Mao, K.; Sang, Y. Effect of ultrasonic treatment on the structure and functional properties of mantle proteins from scallops (Patinopecten yessoensis). Ultrason. Sonochem. 2021, 79, 105770. [Google Scholar] [CrossRef]
- Amiri, A.; Sharifian, P.; Morakabati, N.; Mousakhani-Ganjeh, A.; Mirtaheri, M.; Azadeh, N.; Guo, Y.; Pratap-Singh, A. Modification of functional, rheological and structural characteristics of myofibrillar proteins by high-intensity ultrasonic and papain treatment. Innov. Food Sci. Emerg. 2021, 72, 102748. [Google Scholar] [CrossRef]
- Liu, H.T.; Zhang, H.; Liu, Q.; Chen, Q.; Kong, B.H. Solubilization and stable dispersion of myofibrillar proteins in water through the destruction and inhibition of the assembly of filaments using high-intensity ultrasound. Ultrason. Sonochem. 2020, 67, 105160. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Chen, X.; Zhou, G.H.; Xu, X.L. New insights into the ultrasound impact on covalent reactions of myofibrillar protein. Ultrason. Sonochemistry 2022, 84, 105973. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Liu, H.; Song, T.; Xiong, Z.Y.; Yuan, L.; McClements, D.J.; Jin, W.G.; Sun, Q.C.; Gao, R.C. Use of l-arginine-assisted ultrasonic treatment to change the molecular and interfacial characteristics of fish myosin and enhance the physical stability of the emulsion. Food Chem. 2021, 342, 128314. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Xue, S.; Xu, X. Effects of ultrasound frequency mode on myofibrillar protein structure and emulsifying properties. Int. J. Biol. Macromol. 2020, 163, 1768–1779. [Google Scholar] [CrossRef]
- Xue, S.W.; Yang, H.J.; Yu, X.B.; Qian, C.; Wang, M.Y.; Zou, Y.F.; Xu, X.L.; Zhou, G.H. Applications of high pressure to pre-rigor rabbit muscles affect the water characteristics of myosin gels. Food Chem. 2018, 240, 59–66. [Google Scholar] [CrossRef]
- Huang, X.; Sun, L.; Liu, L.; Wang, G.Z.; Luo, P.; Tang, D.B.; Huang, Q. Study on the mechanism of mulberry polyphenols inhibiting oxidation of beef myofibrillar protein. Food Chem. 2022, 372, 131241. [Google Scholar] [CrossRef]
- Xue, S.W.; Wang, C.; Kim, Y.H.B.; Bian, G.L.; Han, M.Y.; Xu, X.L.; Zhou, G.H. Application of high-pressure treatment improves the in vitro protein digestibility of gel-based meat product. Food Chem. 2020, 306, 125602. [Google Scholar] [CrossRef]
- Liu, F.; Huang, H.; Lin, W.; Li, L.; Wu, Y.; Yang, S.; Wang, Y. Effects of temperature on the denaturation and aggregation of (Lateolabrax japonicus) myosin from sea bass surimi. J. Food Process. Pres. 2021, 45, e15417. [Google Scholar] [CrossRef]
- Du, X.; Zhao, M.; Pan, N.; Wang, S.; Xia, X.; Zhang, D. Tracking aggregation behaviour and gel properties induced by structural alterations in myofibrillar protein in mirror carp (Cyprinus carpio) under the synergistic effects of pH and heating. Food Chem. 2021, 362, 130222. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, X.; Zhou, G. Temperature-dependent in vitro digestion properties of isoelectric solubilization/precipitation (ISP)-isolated PSE-like chicken protein. Food Chem. 2021, 343, 128501. [Google Scholar] [CrossRef]
- Savoie, L.; Agudelo, R.; Gauthier, S.F.; Marin, J.; Pouliot, Y. In vitro determination of the release kinetics of peptides and free amino acids during the digestion of food proteins. J. AOAC Int. 2005, 88, 935–948. [Google Scholar] [CrossRef] [Green Version]
- Du, X.J.; Sun, Y.Y.; Pan, D.D.; Wang, Y.; Ou, C.R.; Cao, J.X. Change of the structure and the digestibility of myofibrillar proteins in Nanjing dry-cured duck during processing. J. Sci. Food Agric. 2018, 98, 3140–3147. [Google Scholar] [CrossRef]
- Fang, M.; You, J.; Yin, T.; Hu, Y.; Liu, R.; Du, H.; Liu, Y.M.; Xiong, S. Peptidomic analysis of digested products of surimi gels with different degrees of cross-linking: In vitro gastrointestinal digestion and absorption. Food Chem. 2021, 375, 131913. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Zhang, Y.; Kang, C.; Zhao, W.; Ren, N.; Guo, W.; Wang, S. Rapid LC-MS/MS method for the detection of seven animal species in meat products. Food Chem. 2022, 371, 131075. [Google Scholar] [CrossRef]
- Zhao, D.; He, J.; Zou, X.Y.; Xie, Y.T.; Xu, X.L.; Zhou, G.H.; Li, C.B. Influence of hydrothermal treatment on the structural and digestive changes of actomyosin In vitro protein digestion of pork cuts differ with muscle type. J. Sci. Food Agric. 2019, 99, 6209–6218. [Google Scholar]
- Márquez-Lázaro, J.P.; Mora, L.; Méndez-Cuadro, D.; Rodríguez-Cavallo, E.; Toldrá, F. In vitro oxidation promoted by chlorpyrifos residues on myosin and chicken breast proteins. Food Chem. 2020, 326, 126922. [Google Scholar] [CrossRef]
- Xu, Y.; Yin, Y.; Wang, R.; Zhao, H.; Li, X.; Yi, S.; Li, J.R.; Xie, J. Effect of deacetylated konjac glucomannan on heat-induced structural changes and flavor binding ability of fish myosin. Food Chem. 2021, 365, 130540. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, R.; Rong, J.; Xiong, S. Heat-induced denaturation and aggregation of actomyosin and myosin from yellowcheek carp during setting. Food Chem. 2014, 149, 237–243. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, S.M.; Xiong, S.B.; Xie, B.J.; Qin, L.H. Role of secondary structures in the gelation of porcine myosin at different pH values. Meat Sci. 2008, 80, 632–639. [Google Scholar] [CrossRef]
- Escudero, E.; Sentandreu, M.Á.; Toldrá, F. Characterization of peptides released by in vitro digestion of pork meat. J. Agric. Food Chem. 2010, 58, 5160–5165. [Google Scholar] [CrossRef] [PubMed]
Abs287 nm | |
---|---|
Unheated | 0.22 ± 0.01 |
70 °C-15 min | 0.43 ± 0.02 Ba |
70 °C-30 min | 0.47 ± 0.02 Aa |
100 °C-15 min | 0.41 ± 0.02 Aa |
100 °C-30 min | 0.42 ± 0.02 Ab |
70 °C | 100 °C | Unheated | |||
---|---|---|---|---|---|
15 min | 30 min | 15 min | 30 min | ||
α-helix | 30.86 ± 0.49 Aa | 28.42 ± 1.34 Ba | 29.74 ± 2.13 Aa | 24.76 ± 3.13 Bb | 31.44 ± 1.15 |
β-sheet | 0.00 ± 0.00 Aa | 1.00 ± 2.23 Ab | 0.60 ± 0.83 Ba | 22.08 ± 5.39 Aa | 0.00 ± 0.00 |
β-turn | 32.78 ± 0.32 Bb | 36.46 ± 2.33 Aa | 35.80 ± 0.57 Aa | 28.40 ± 6.03 Bb | 33.62 ± 1.60 |
Randow coil | 36.38 ± 0.65 Aa | 34.14 ± 1.43 Aa | 33.86 ± 2.14 Aa | 29.14 ± 2.41 Bb | 34.94 ± 2.40 |
Peptide Sequence | Control | 70 °C | 100 °C |
---|---|---|---|
RQRYRILNPAAIPEGQF | 0 | 1 | 0 |
ITKQEYDEAGPSIVHRKCF | 1 | 1 | 0 |
LMKILTERGYSF | 0 | 1 | 1 |
IGMESAGIHETTY | 1 | 1 | 1 |
MNVKHWPW | 1 | 0 | 0 |
SLVHYAGTVDY | 1 | 1 | 1 |
TVIDQNRDGIIDKEDLRDTF | 0 | 0 | 1 |
MNVKHWPWMKLYF | 0 | 1 | 0 |
DDMEKIWHHTFY | 1 | 1 | 1 |
GEAAPYLRKSEKERIEAQNKPFDAKSSVF | 0 | 0 | 1 |
DDMEKIWHHTF | 0 | 0 | 1 |
TNEKLQQFFNHHMF | 1 | 1 | 1 |
TITDLPTDAKIF | 0 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhu, S.; Li, Q.; Xue, D.; Jiang, S.; Han, Y.; Li, C. Effect of Thermal Processing on the Conformational and Digestive Properties of Myosin. Foods 2023, 12, 1249. https://doi.org/10.3390/foods12061249
Zhang M, Zhu S, Li Q, Xue D, Jiang S, Han Y, Li C. Effect of Thermal Processing on the Conformational and Digestive Properties of Myosin. Foods. 2023; 12(6):1249. https://doi.org/10.3390/foods12061249
Chicago/Turabian StyleZhang, Miao, Shuran Zhu, Qian Li, Dejiang Xue, Shuai Jiang, Yu Han, and Chunbao Li. 2023. "Effect of Thermal Processing on the Conformational and Digestive Properties of Myosin" Foods 12, no. 6: 1249. https://doi.org/10.3390/foods12061249
APA StyleZhang, M., Zhu, S., Li, Q., Xue, D., Jiang, S., Han, Y., & Li, C. (2023). Effect of Thermal Processing on the Conformational and Digestive Properties of Myosin. Foods, 12(6), 1249. https://doi.org/10.3390/foods12061249