Properties of Texturized Vegetable Proteins from Edible Mushrooms by Using Single-Screw Extruder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reagents
2.3. Processing of Dehydrated Mushroom Powder
2.4. Preparation of Texturized Vegetable Protein
2.5. Proximate Composition of Selected Mushrooms and TVPs
2.6. Amino Acid Compositions
2.7. Physicochemical Determination
2.7.1. Color Analysis, pH, and Water Activity
2.7.2. Visual Surface Appearance, Microstructure by Scanning Electron Microscopy (SEM)
2.7.3. Water-Holding Capacity (WHC) and Oil Holding Capacity (OHC)
2.7.4. Rehydration Capacity and Rehydration Yield
2.7.5. Cooking Loss
2.7.6. Bulk Density
2.8. Textural Properties Measurement
2.9. Thai Northern-Style Sausage (Sai-aua) Preparation
Sensory Analysis of Plant-Based Sai-aua
2.10. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Compositions of Some Edible Mushrooms
3.2. Bioactive Compounds and Bioactivities of Some Edible Mushrooms
3.2.1. Total Phenolic and Flavonoid Content
3.2.2. Antioxidants Properties
3.3. Physicochemical Analysis of Difference Mushroom-Based TVPs
3.3.1. Color Analysis
3.3.2. Visual Surface, Macrostructure, and Microstructure
3.3.3. Water and Oil Holding Capacity (WHC and OHC)
3.3.4. Water Activity (aw)
3.3.5. Rehydrating Capacity and Yield
3.3.6. Cooking Loss
3.3.7. Bulk Density
3.4. Texture Analysis of Difference Mushroom-Based TVPs
3.5. Quality Parameters of Thai Northern-Style Sausage from Mushroom-Based TVP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamad, M.M.; Talib, R.A.; Chin, N.L.; Shukri, R.; Taip, F.S.; Mohd, N.M.Z.; Abdullah, N. Physical, microstructure properties of oyster mushroom-soy protein meat analog via single-screw, extrusion. Foods 2020, 9, 1023. [Google Scholar] [CrossRef]
- Ishaq, A.; Irfan, S.; Sameen, A.; Khalid, N. Plant-based meat analogs: A review with reference to formulation and gastrointestinal fate. Curr. Res. Food Sci. 2022, 5, 973–983. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef]
- Statista. Compound Annual Growth Rate (cagr) of the Plant-Based Meat Market Worldwide between 2018 and 2026, by Region. Available online: https://www.statista.com/statistics/1067707/global-meat-substitutes-market-growth-by-region/ (accessed on 9 November 2022).
- Kyriakopoulou, K.; Dekkers, B.; van der Goot, A.J. Plant-Based Meat Analogues. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 103–126. [Google Scholar]
- Webb, D.; Li, Y.; Alavi, S. Chemical and physicochemical features of common plant proteins and their extrudates for use in plant-based meat. Trends Food Sci. Technol. 2023, 131, 129–138. [Google Scholar] [CrossRef]
- Das, A.K.; Nanda, P.K.; Dandapat, P.; Bandyopadhyay, S.; Gullón, P.; Sivaraman, G.K.; McClements, D.J.; Gullón, B.; Lorenzo, J.M. Edible mushrooms as functional ingredients for development of healthier and more sustainable muscle foods: A flexitarian approach. Molecules 2021, 26, 2463. [Google Scholar] [CrossRef]
- Pérez-Montes, A.; Rangel-Vargas, E.; Lorenzo, J.M.; Romero, L.; Santos, E.M. Edible mushrooms as a novel trend in the development of healthier meat products. Curr. Opin. Food Sci. 2021, 37, 118–124. [Google Scholar] [CrossRef]
- Arora, B.; Kamal, S.; Sharma, V.P. Effect of binding agents on quality Characteristics of mushroom based sausage analogue. J. Food Process. Preserv. 2017, 41, e13134. [Google Scholar] [CrossRef]
- Lang, M. Consumer acceptance of blending plant-based ingredients into traditional meat-based foods: Evidence from the meat-mushroom blend. Food Qual. Prefer. 2020, 79, 103758. [Google Scholar] [CrossRef]
- Riaz, M.N. Texturized vegetable proteins. In Handbook of Food Proteins; Elsevier: Amsterdam, The Netherlands, 2011; pp. 395–418. [Google Scholar]
- Featherstone, S. Ingredients used in the preparation of canned foods. In A Complete Course in Canning and Related Processes, 14th ed.; Featherstone, S., Ed.; Woodhead Publishing: Oxford, UK, 2015; pp. 147–211. [Google Scholar]
- Thadavathi, Y.L.N.; Wassén, S.; Kádár, R. In-line rheological and microstroctural characterization of high moisture content protein vegetable mixtures in single screw extrusion. J. Food Eng. 2019, 245, 112–123. [Google Scholar] [CrossRef]
- Yuan, X.; Jiang, W.; Zhang, D.; Liu, H.; Sun, B. Textural, sensory and volatile compounds analyses in formulations of sausages analogue elaborated with edible mushrooms and soy protein isolate as meat substitute. Foods 2022, 11, 52. [Google Scholar] [CrossRef]
- Lee, J.-S.; Oh, H.; Choi, I.; Yoon, C.S.; Han, J. Physico-chemical characteristics of rice protein-based novel textured vegetable proteins as meat analogues produced by low-moisture extrusion cooking technology. LWT—Food Sci. Technol. 2022, 157, 113056. [Google Scholar] [CrossRef]
- Myrdal Miller, A.; Mills, K.; Wong, T.; Drescher, G.; Lee, S.M.; Sirimuangmoon, C.; Schaefer, S.; Langstaff, S.; Minor, B.; Guinard, J.X. Flavor-enhancing properties of mushrooms in meat-based dishes in which sodium has been reduced and meat has been partially substituted with mushrooms. J. Food Sci. 2014, 79, S1795–S1804. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- EN ISO/CIE 11664-4:2019; Colorimetry—Part 4: CIE 1976 L*a*b* Colour Space. ISO: Geneva, Switzerland, 2019.
- Hong, S.; Shen, Y.; Li, Y. Physicochemical and functional properties of texturized vegetable proteins and cooked patty textures: Comprehensive characterization and correlation analysis. Foods 2022, 11, 2619. [Google Scholar] [CrossRef]
- Everitt, M. Consumer-Targeted Sensory Quality. In Global Issues in Food Science and Technology; Barbosa-Cánovas, G., Mortimer, A., Lineback, D., Spiess, W., Buckle, K., Colonna, P., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 117–128. [Google Scholar]
- Mörlein, D. Sensory evaluation of meat and meat products: Fundamentals and applications. IOP Conf. Ser. Earth Environ. Science. 2019, 333, 012007. [Google Scholar] [CrossRef]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulou, M.; Kolonas, A.; Mourtakos, S.; Androutsos, O.; Gortzi, O. Nutritional composition and biological properties of sixteen edible mushroom species. Appl. Sci. 2022, 12, 8074. [Google Scholar] [CrossRef]
- Tepsongkroh, B.; Jangchud, K.; Trakoontivakorn, G. Antioxidant properties and selected phenolic acids of five different tray-dried and freeze-dried mushrooms using methanol and hot water extraction. J. Food Meas. Charact. 2019, 13, 3097–3105. [Google Scholar] [CrossRef]
- Sardar, H.; Ali, M.A.; Anjum, M.A.; Nawaz, F.; Hussain, S.; Naz, S.; Karimi, S.M. Agro-industrial residues influence mineral elements accumulation and nutritional composition of king oyster mushroom (Pleurotus eryngii). Sci. Hortic. 2017, 225, 327–334. [Google Scholar] [CrossRef]
- Kalač, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef]
- Elavarasan, K.; Shamasundar, B.A. Angiotensin-I-converting enzyme inhibitory activity and antioxidant properties of cryptides derived from natural actomyosin of Catla catla using papain. J. Food Qual. 2018, 2018, 9354829. [Google Scholar] [CrossRef] [Green Version]
- Cuptapun, Y.; Hengsawadi, D.; Mesomya, W.; Yaieiam, S. Quality and quantity of protein in certain kinds of edible mushroom in Thailand. Agric. Nat. Resour. 2010, 44, 664–670. [Google Scholar]
- Sande, D.; de Oliveira, G.P.; Fidelis e Moura, M.A.; Martins, B.d.A.; Lima, M.T.N.S.; Takahashi, J.A. Edible mushrooms as a ubiquitous source of essential fatty acids. Food Res. Int. 2019, 125, 108524. [Google Scholar] [CrossRef]
- González-Palma, I.; Escalona-Buendía, H.B.; Ponce-Alquicira, E.; Téllez-Téllez, M.; Gupta, V.K.; Díaz-Godínez, G.; Soriano-Santos, J. Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Front. Microbiol. 2016, 7, 1099. [Google Scholar] [CrossRef] [Green Version]
- Sudha, G.; Vadivukkarasi, S.; Shree, R.B.I.; Lakshmanan, P. Antioxidant activity of various extracts from an edible mushroom Pleurotus eous. Food Sci. Biotechnol. 2012, 21, 661–668. [Google Scholar] [CrossRef]
- Tan, Y.S.; Baskaran, A.; Nallathamby, N.; Chua, K.H.; Kuppusamy, U.R.; Sabaratnam, V. Influence of customized cooking methods on the phenolic contents and antioxidant activities of selected species of oyster mushrooms (Pleurotus spp.). J. Food Sci. Technol. 2015, 52, 3058–3064. [Google Scholar] [CrossRef] [Green Version]
- Ng, Z.X.; Tan, W.C. Impact of optimised cooking on the antioxidant activity in edible mushrooms. J. Food Sci. Technol. 2017, 54, 4100–4111. [Google Scholar] [CrossRef]
- Schmid, E.-M.; Farahnaky, A.; Adhikari, B.; Torley, P.J. High moisture extrusion cooking of meat analogs: A review of mechanisms of protein texturization. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4573–4609. [Google Scholar] [CrossRef]
- Osen, R.; Toelstede, S.; Wild, F.; Eisner, P.; Schweiggert-Weisz, U. High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. J. Food Eng. 2014, 127, 67–74. [Google Scholar] [CrossRef]
- McClements, D.J.; Weiss, J.; Kinchla, A.J.; Nolden, A.A.; Grossmann, L. Methods for testing the quality attributes of plant-based foods: Meat- and processed-meat analogs. Foods 2021, 10, 260. [Google Scholar] [CrossRef]
- Mozafarpour, R.; Koocheki, A.; Milani, E.; Varidi, M. Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property. Food Hydrocoll. 2019, 93, 361–373. [Google Scholar] [CrossRef]
- Bueno, A.S.; Pereira, C.M.; Menegassi, B.; Arêas, J.A.G.; Castro, I.A. Effect of extrusion on the emulsifying properties of soybean proteins and pectin mixtures modelled by response surface methodology. J. Food Eng. 2009, 90, 504–510. [Google Scholar] [CrossRef]
- Samard, S.; Ryu, G.-H. Physicochemical and functional characteristics of plant protein-based meat analogs. J. Food Process. Preserv. 2019, 43, e14123. [Google Scholar] [CrossRef]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of water activity (aw) on microbial stability as a hurdle in food preservation. In Water Activity in Foods: Fundamentals and Applications; Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J., Labuza, T.P., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 323–355. [Google Scholar]
- Webb, D.; Plattner, B.J.; Donald, E.; Funk, D.; Plattner, B.S.; Alavi, S. Role of chickpea flour in texturization of extruded pea protein. J. Food Sci. 2020, 85, 4180–4187. [Google Scholar] [CrossRef] [PubMed]
- Maningat, C.C.; Jeradechachai, T.; Buttshaw, M.R. Textured wheat and pea proteins for meat alternative applications. Cereal Chem. 2022, 99, 37–66. [Google Scholar] [CrossRef]
- Aaslyng, M.D.; Bejerholm, C.; Ertbjerg, P.; Bertram, H.C.; Andersen, H.J. Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Qual. Prefer. 2003, 14, 277–288. [Google Scholar] [CrossRef]
- Brishti, F.H.; Chay, S.Y.; Muhammad, K.; Ismail-Fitry, M.R.; Zarei, M.; Karthikeyan, S.; Caballero-Briones, F.; Saari, N. Structural and rheological changes of texturized mung bean protein induced by feed moisture during extrusion. Food Chem. 2021, 344, 128643. [Google Scholar] [CrossRef] [PubMed]
- Philipp, C.; Oey, I.; Silcock, P.; Beck, S.M.; Buckow, R. Impact of protein content on physical and microstructural properties of extruded rice starch-pea protein snacks. J. Food Eng. 2017, 212, 165–173. [Google Scholar] [CrossRef]
- Morey, A.; Owens, C.M. Methods for measuring meat texture. In Poultry Quality Evaluation; Elsevier: Amsterdam, The Netherlands, 2017; pp. 115–132. [Google Scholar]
- Riaz, M.N. Texturized soy protein as an ingredient. In Proteins in Food Processing; Woodhead Publishing Ltd.: Cambridge, UK, 2004; pp. 517–558. [Google Scholar]
- Rothman, L. The Use of Just-About-Right (JAR) Scales in Food Product Development and Reformulation. In Consumer-Led Food Product Development; Woodhead Publishing Ltd.: Cambridge, UK, 2007; pp. 407–433. [Google Scholar]
Ingredients (g) | Commercial Plant-Based Minced Meat | TVP Analogs |
---|---|---|
Water | 55 | 30–35 |
Soy protein isolate | 19 | 15–20 |
Mushroom: Split gill/King Oyster/Pheonix | 17 | 30–35 |
Wheat flour or gluten | 3 | 5–10 |
Canola oil | 2 | 3–5 |
Coconut oil | 1 | 0 |
Yeast extract | 1 | 0.5–1 |
Beet juice powder | 1 | 1–2 |
Chickpea flour | 0 | 5–10 |
INS 407 Carrageenan | 0.5 | 0 |
INS 461 Methyl Cellulose | 0.5 | 0 |
Total | 100 | 100 |
Sample (g/100 g, wt%) | Moisture | Dry Matter | Protein | Ash | Lipid | Carbohydrate |
---|---|---|---|---|---|---|
Pheonix/Indian Oyster | 4.61 ± 0.15 e | 95.39 ± 0.15 a | 29.29 ± 0.05 a | 6.95 ± 0.07 c | 1.39 ± 0.03 c | 57.76 ± 0.22 e (Dietary fiber: 32.63) |
King Oyster | 8.16 ± 0.09 c | 91.84 ± 0.19 c | 23.25 ± 0.03 b | 6.90 ± 0.09 c | 0.73 ± 0.04 e | 60.97 ± 0.07 c (45.73) |
Enoki | 7.34 ± 0.19 d | 92.66 ± 0.19 b | 22.02 ± 0.15 c | 7.43 ± 0.08 a | 1.37 ± 0.02 d | 61.84 ± 0.20 c |
White Shimeji | 8.05 ± 0.06 c | 91.95 ± 0.06 c | 20.71 ± 0.17 d | 7.40 ± 0.08 a | 1.85 ± 0.17 b | 61.99 ± 0.15 c |
Black Shimeji | 8.55 ± 0.07 b | 91.45 ± 0.07 d | 23.06 ± 0.11 b | 7.36 ± 0.13 a | 2.00 ± 0.06 a | 59.05 ± 0.15 d |
White Jelly Fungus | 11.10 ± 0.08 a | 88.90 ± 0.08 e | 9.09 ± 0.04 f | 7.11 ± 0.18 b | 0.46 ± 0.05 f | 72.24 ± 0.24 b |
Black Fungus | 11.05 ± 0.11 a | 88.95 ± 0.11 e | 9.38 ± 0.02 e | 2.62 ± 0.02 d | 0.47 ± 0.01 f | 76.48 ± 0.10 a |
Amino Acid (mg/100 g, Dry Basis) | King Oyster | Pheonix |
---|---|---|
Essential amino acids | ||
Histidine | 526.39 | 726.05 |
Isoleucine | 858.90 | 970.69 |
Leucine | 1617.33 | 1897.47 |
Lysine | 1329.64 | 1575.17 |
Methionine | 217.77 | 287.18 |
Phenylalanine | 901.33 | 1275.33 |
Threonine | 1081.28 | 1367.32 |
Tryptophan | 261.18 | 418.61 |
Valine | 1398.37 | 1685.61 |
Non-essential amino acids | ||
Glutamic acid | 2855.36 | 6302.33 |
Aspartic acid | 1747.43 | 2331.38 |
Alanine | 1700.02 | 2045.82 |
Glycine | 1084.61 | 1329.72 |
Proline | 890.07 | 1011.94 |
Serine | 1126.27 | 1508.64 |
Tyrosine | 598.82 | 830.67 |
Arginine | 907.38 | 1217.31 |
Cystine | ND | ND |
Hydroxylysine | ND | ND |
Hydroxyproline | ND | ND |
Properties | TVP-KO | TVP-PH | TVP-Com |
---|---|---|---|
Proximate compositions (wt%, dry basis) | |||
Moisture | 8.27 ± 0.07 a | 8.09 ± 0.07 b | 7.99 ± 0.06 b |
Protein | 45.59 ± 0.33 c | 47.78 ± 0.24 a | 47.29 ± 0.59 b |
Ash | 3.99 ± 0.33 c | 4.54 ± 0.08 b | 8.02 ± 0.04 a |
Lipids | 8.10 ± 0.19 a | 7.89 ± 0.09 a | 0.84 ± 0.06 b |
Carbohydrates | 33.86 ± 0.34 c | 35.59 ± 0.16 b | 39.73 ± 0.55 a |
Water-holding capacity (g H2O/g sample) | 2.19 ± 0.07 b | 2.09 ± 0.08 b | 3.45 ± 0.10 a |
Oil-binding capacity (g Canola oil/g sample) | 1.23 ± 0.09 b | 1.08 ± 0.09 b | 1.42 ± 0.05 a |
Bulk density (g/L) | 0.44 ± 0.04 b | 0.50 ± 0.01 a | 0.28 ± 0.01 c |
Rehydration capacity (g/g) | 0.96 ± 0.00 c | 1.21 ± 0.04 b | 2.08 ± 0.06 a |
Rehydration yield (%) | 102.07 ± 0.53 c | 108.05 ± 0.66 b | 187.65 ± 0.02 a |
Cooking loss (%) | 33.88 ± 0.02 c | 35.53 ± 0.05 b | 63.58 ± 0.02 a |
pH | 7.01 ± 0.01 a | 7.09 ± 0.01 b | 7.06 ± 0.01 c |
aW | 0.90 ± 0.01 a | 0.84 ± 0.00 b | 0.65 ± 0.00 c |
Color parameters | |||
L* | 31.58 ± 0.50 c | 34.95 ± 0.67 b | 54.58 ± 0.41 a |
a* | 9.30 ± 0.72 a | 9.23 ± 0.37 a | 4.68 ± 0.23 b |
b* | 16.92 ± 0.2 c | 18.72 ± 0.40 b | 22.61 ± 0.65 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ketnawa, S.; Rawdkuen, S. Properties of Texturized Vegetable Proteins from Edible Mushrooms by Using Single-Screw Extruder. Foods 2023, 12, 1269. https://doi.org/10.3390/foods12061269
Ketnawa S, Rawdkuen S. Properties of Texturized Vegetable Proteins from Edible Mushrooms by Using Single-Screw Extruder. Foods. 2023; 12(6):1269. https://doi.org/10.3390/foods12061269
Chicago/Turabian StyleKetnawa, Sunantha, and Saroat Rawdkuen. 2023. "Properties of Texturized Vegetable Proteins from Edible Mushrooms by Using Single-Screw Extruder" Foods 12, no. 6: 1269. https://doi.org/10.3390/foods12061269
APA StyleKetnawa, S., & Rawdkuen, S. (2023). Properties of Texturized Vegetable Proteins from Edible Mushrooms by Using Single-Screw Extruder. Foods, 12(6), 1269. https://doi.org/10.3390/foods12061269