Discrimination and Characterization of Volatile Flavor Compounds in Fresh Oriental Melon after Forchlorfenuron Application Using Electronic Nose (E-Nose) and Headspace-Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Oriental Melon Field Trials
2.2. Sample Preparation
2.3. E-Nose Analysis
2.4. HS-GC-IMS Analysis
2.5. Multivariate Analysis
3. Results and Discussion
3.1. Evaluation of the Volatile Compounds of Fresh Oriental Melon Fruit by E-Nose
3.2. Qualitative Analysis of the Volatile Compounds by HS-GC-IMS
3.3. Different Profiles of Volatile Flavor Compounds in Fresh Oriental Melon after Forchlorfenuron Application by HS-GC-IMS
3.4. PCA and OPLS-DA Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lija, M.; Beevy, S.S. A Review on the diversity of Melon. Plant Sci. Today 2021, 8, 995–1003. [Google Scholar] [CrossRef]
- Wang, Q.; Su, H.; Yue, N.; Li, M.; Li, C.; Wang, J.; Jin, F. Dissipation and risk assessment of forchlorfenuron and its major metabolites in oriental melon under greenhouse cultivation. Ecotoxicol. Environ. Saf. 2021, 225, 112700. [Google Scholar] [CrossRef] [PubMed]
- Ainalidou, A.; Karamanoli, K.; Menkissoglu-Spiroudi, U.; Diamantidis, G.; Matsi, T. CPPU treatment and pollination: Their combined effect on kiwifruit growth and quality. Sci. Hortic. 2015, 193, 147–154. [Google Scholar] [CrossRef]
- Fredes, A.; Sales, C.; Barreda, M.; Valcárcel, M.; Roselló, S.; Beltrán, J. Quantification of prominent volatile compounds responsible for muskmelon and watermelon aroma by purge and trap extraction followed by gas chromatography–mass spectrometry determination. Food Chem. 2016, 190, 689–700. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Zhang, X.; Zhu, H.; Wang, H. Effects of different pollination methods on fruit quality of melon cultured in greenhouse. China Vegtables 2014, 11, 31–36. [Google Scholar] [CrossRef]
- Luo, F.; Li, Q.; Yu, L.; Wang, C.; Qi, H. High concentrations of CPPU promotes cucurbitacin B accumulation in melon (Cucumis melo var. makuwa Makino) fruit by inducing transcription factor CmBt. Plant Physiol. Bioch. 2020, 154, 770–781. [Google Scholar] [CrossRef]
- Wang, L.; Niu, Q.; Hui, Y.; Jin, H.; Chen, S.J.S. Assessment of taste attributes of peanut meal enzymatic-hydrolysis hydrolysates using an electronic tongue. Sensors 2015, 15, 11169–11188. [Google Scholar] [CrossRef] [Green Version]
- Kourkoutas, D.; Elmore, J.S.; Mottram, D.S. Comparison of the volatile compositions and flavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chem. 2006, 97, 95–102. [Google Scholar] [CrossRef]
- Shi, J.; Wu, H.; Xiong, M.; Chen, Y.; Chen, J.; Zhou, B.; Wang, H.; Li, L.; Fu, X.; Bie, Z.; et al. Comparative analysis of volatile compounds in thirty-nine melon cultivars by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Food Chem. 2020, 316, 126342. [Google Scholar] [CrossRef]
- Lignou, S.; Parker, J.K.; Oruna-Concha, M.J.; Mottram, D.S. Flavour profiles of three novel acidic varie-ties of muskmelon (Cucumis melo L.). Food Chem. 2013, 139, 1152–1160. [Google Scholar] [CrossRef]
- Pang, X.; Guo, X.; Qin, Z.; Yao, Y.; Hu, X.; Wu, J. Identification of aroma-active compounds in Jiashi muskmelon juice by GC-O-MS and OAV calculation. J. Agric. Food Chem. 2012, 60, 4179–4185. [Google Scholar] [CrossRef] [PubMed]
- Mayobre, C.; Pereira, L.; Eltahiri, A.; Bar, E.; Lewinsohn, E.; Garcia-Mas, J.; Pujol, M. Genetic dissection of aroma biosynthesis in melon and its relationship with climacteric ripening. Food Chem. 2021, 353, 129484. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Hayata, Y.; Sakamoto, T.; Maneerat, C.; Osajima, Y. Influence of the Seeds on Aroma of Muskmelon (Cucumis melo L.). J. Jpn. Soc. Hortic. Sci. 2002, 71, 532–534. [Google Scholar] [CrossRef]
- Li, J.; Lin, T.; Ren, D.; Wang, T.; Tang, Y.; Wang, Y.; Xu, L.; Zhu, P.; Ma, G. Transcriptomic and Metabolomic Studies Reveal Mechanisms of Effects of CPPU-Mediated Fruit-Setting on Attenuating Volatile Attributes of Melon Fruit. Agronomy 2021, 11, 1007. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, X.; Chen, J.; Chen, F.; Wu, J.; Zhao, G.; Liao, X.; Wang, Z. The Effect of Freezing Modes and Frozen Storage on Aroma, Enzyme and Micro-organism in Hami Melon. Food Sci. Technol. Int. 2007, 13, 259–267. [Google Scholar] [CrossRef]
- Jung, K.; Fastowski, O.; Poplacean, I.; Engel, K.-H. Analysis and Sensory Evaluation of Volatile Constituents of Fresh Blackcurrant (Ribes nigrum L.) Fruits. J. Agric. Food Chem. 2017, 65, 9475–9487. [Google Scholar] [CrossRef]
- Kjeldsen, F.; Christensen, L.P.; Edelenbos, M. Changes in Volatile Compounds of Carrots (Daucus carota L.) During Refrigerated and Frozen Storage. J. Agric. Food Chem. 2003, 51, 5400–5407. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Bao, Y.; Zhu, J.; Wang, J.; Wei, Z. Development of a portable electronic nose based on a hybrid filter-wrapper method for identifying the Chinese dry-cured ham of different grades. J. Food Eng. 2021, 290, 110250. [Google Scholar] [CrossRef]
- Zhang, T.; Ayed, C.; Fisk, I.D.; Pan, T.; Wang, J.; Yang, N.; Sun, Q. Evaluation of volatile metabolites as potential markers to predict naturally-aged seed vigour by coupling rapid analytical profiling techniques with chemometrics. Food Chem. 2022, 367, 130760. [Google Scholar] [CrossRef]
- Arthur, K.L.; Eiceman, G.A.; Reynolds, J.C.; Creaser, C.S. Analysis of Supramolecular Complexes of 3-Methylxanthine with Field Asymmetric Waveform Ion Mobility Spectrometry Combined with Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2016, 27, 800. [Google Scholar] [CrossRef] [Green Version]
- Gallegos, J.; Garrido-Delgado, R.; Arce, L.; Medina, L.M. Volatile Metabolites of Goat Cheeses Determined by Ion Mobility Spectrometry. Potential Applications in Quality Control. Food Anal. Methods 2015, 8, 1699–1709. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Xiao, J.; Liu, J.; Tang, N.; Zhou, A. Variations of volatile flavour compounds in finger citron (Citrus medica L. var. sarcodactylis) pickling process revealed by E-nose, HS-SPME-GC-MS and HS-GC-IMS. Food Res. Int. 2020, 138, 109717. [Google Scholar] [CrossRef]
- Garrido-Delgado, R.; Mercader-Trejo, F.; Sielemann, S.; de Bruyn, W.; Arce, L.; Valcarcel, M. Direct classification of olive oils by using two types of ion mobility spectrometers. Anal. Chim. Acta. 2011, 696, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Ezhilan, M.; Nesakumar, N.; Jayanth Babu, K.; Srinandan, C.S.; Rayappan, J.B.B. An Electronic Nose for Royal Delicious Apple Quality Assessment—A Tri-layer Approach. Food Res. Int. 2018, 109, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhao, X.; Ma, Y.; Wang, Y.; Wang, D. Fingerprints and changes analysis of volatile compounds in fresh-cut yam during yellowing process by using HS-GC-IMS. Food Chem. 2022, 369, 130939. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, H.; Wang, Z.; Huang, P.; Kan, J. Discrimination and characterization of the volatile organic compounds in eight kinds of huajiao with geographical indication of China using electronic nose, HS-GC-IMS and HS-SPME-GC–MS. Food Chem. 2022, 375, 131671. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Zhu, Y.; Ben, A.; Qi, J. A novel strategy for discriminating different cultivation and screening odor and taste flavor compounds in Xinhui tangerine peel using E-nose, E-tongue, and chemometrics. Food Chem. 2022, 384, 132519. [Google Scholar] [CrossRef]
- Cheng, G.; Yang, E.; Lu, W.; Jia, Y.; Jiang, Y.; Duan, X. Effect of Nitric Oxide on Ethylene Synthesis and Softening of Banana Fruit Slice during Ripening. J. Agric. Food Chem. 2009, 57, 5799–5804. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. United States Environmental Protection Agency Washington, DC 20460. Available online: https://www3.epa.gov/pesticides/chem_search/ppls/071049-00004-20180119.pdf (accessed on 31 January 2023).
- Senthilkumar, S.; Vijayakumar, R.M.; Soorianathasundaram, K. Pre-harvest implications and utility of plant bioregulators on grape: A review. Plant Arch. 2018, 18, 19–27. [Google Scholar]
- Zhou, D.; Zhang, Q.; Wu, C.; Li, T.; Tu, K. Change of soluble sugars, free and glycosidically bound volatile compounds in postharvest cantaloupe fruit response to cutting procedure and storage. Sci. Hortic. 2022, 295, 110863. [Google Scholar] [CrossRef]
- Rivera-Pérez, A.; Romero-González, R.; Garrido Frenich, A. Fingerprinting based on gas chromatography-Orbitrap high-resolution mass spectrometry and chemometrics to reveal geographical origin, processing, and volatile markers for thyme authentication. Food Chem. 2022, 393, 133377. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.C.; Grimm, C.C. Identification of Volatile Compounds in Cantaloupe at Various Developmental Stages Using Solid Phase Microextraction. J. Agric. Food Chem. 2001, 49, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
Count | Compound | CAS# | Formula | MW | RI | Rt [sec] | Dt [RIPrel] | Comment | Odor Type | Odor Strength |
---|---|---|---|---|---|---|---|---|---|---|
Esters (27) | ||||||||||
1 | Ethyl hexanoate | 123-66-0 | C8H16O2 | 144.2 | 1007.3 | 598.713 | 13.415 | monomer | fruity | high |
2 | Ethyl hexanoate | 123-66-0 | C8H16O2 | 144.2 | 1007.3 | 598.713 | 17.987 | dimer | fruity | high |
3 | Amyl acetate | 628-63-7 | C7H14O2 | 130.2 | 916.2 | 424.211 | 13.134 | monomer | fruity | / |
4 | Amyl acetate | 628-63-7 | C7H14O2 | 130.2 | 916.2 | 424.211 | 17.643 | dimer | fruity | / |
5 | 3-Methylbutyl acetate | 123-92-2 | C7H14O2 | 130.2 | 880.9 | 368.989 | 12.962 | monomer | fruity | high |
6 | 3-Methylbutyl acetate | 123-92-2 | C7H14O2 | 130.2 | 882.4 | 371.198 | 17.425 | dimer | fruity | high |
7 | Ethyl 2-methylbutanoate | 7452-79-1 | C7H14O2 | 130.2 | 852.4 | 332.543 | 12.448 | monomer | fruity | medium |
8 | Ethyl 2-methylbutanoate | 7452-79-1 | C7H14O2 | 130.2 | 850.6 | 330.334 | 16.536 | dimer | fruity | medium |
9 | Butyl acetate | 123-86-4 | C6H12O2 | 116.2 | 810.3 | 287.261 | 1237 | monomer | ethereal | high |
10 | Butyl acetate | 123-86-4 | C6H12O2 | 116.2 | 813.7 | 290.574 | 16.208 | dimer | ethereal | high |
11 | Ethyl butanoate | 105-54-4 | C6H12O2 | 116.2 | 796.7 | 274.007 | 12.058 | monomer | fruity | high |
12 | Ethyl butanoate | 105-54-4 | C6H12O2 | 116.2 | 796.7 | 274.007 | 15.615 | dimer | fruity | high |
13 | Ethyl 2-methylpropanoate | 97-62-1 | C6H12O2 | 116.2 | 756.0 | 236.253 | 11.927 | monomer | fruity | high |
14 | Ethyl 2-methylpropanoate | 97-62-1 | C6H12O2 | 116.2 | 755.3 | 235.641 | 15.619 | dimer | fruity | high |
15 | Ethyl propanoate | 105-37-3 | C5H10O2 | 102.1 | 709.0 | 198.307 | 1148 | monomer | fruity | high |
16 | Ethyl propanoate | 105-37-3 | C5H10O2 | 102.1 | 709.0 | 198.307 | 14.528 | dimer | fruity | high |
17 | Methyl 2-methylbutanoate | 868-57-5 | C6H12O2 | 116.2 | 776.1 | 254.614 | 11.927 | monomer | fruity | / |
18 | Methyl 2-methylbutanoate | 868-57-5 | C6H12O2 | 116.2 | 774.8 | 253.39 | 1533 | dimer | fruity | / |
19 | Ethyl Acetate | 141-78-6 | C4H8O2 | 88.1 | 590.9 | 145.231 | 10.968 | monomer | ethereal | high |
20 | Ethyl Acetate | 141-78-6 | C4H8O2 | 88.1 | 599.6 | 148.029 | 13.349 | dimer | ethereal | high |
21 | Methyl isobutyrate | 547-63-7 | C5H10O2 | 102.1 | 687.5 | 184.409 | 11.419 | monomer | fruity | / |
22 | Methyl isobutyrate | 547-63-7 | C5H10O2 | 102.1 | 688.1 | 184.759 | 14.424 | dimer | fruity | / |
23 | Isobutyl acetate | 110-19-0 | C6H12O2 | 116.2 | 767.5 | 246.674 | 16.135 | fruity | medium | |
24 | Ethyl pentanoate | 539-82-2 | C7H14O2 | 130.2 | 901.4 | 399.717 | 12.764 | monomer | fruity | high |
25 | Ethyl pentanoate | 539-82-2 | C7H14O2 | 130.2 | 901.4 | 399.717 | 16.829 | dimer | fruity | high |
26 | Methyl hexanoate | 106-70-7 | C7H14O2 | 130.2 | 925.4 | 440.483 | 12.895 | monomer | fruity | medium |
27 | Methyl hexanoate | 106-70-7 | C7H14O2 | 130.2 | 926.1 | 441.667 | 16.845 | dimer | fruity | medium |
Alcohols (7) | ||||||||||
28 | Ethanol | 64-17-5 | C2H6O | 46.1 | 483.8 | 110.843 | 10.485 | monomer | alcoholic | medium |
29 | Ethanol | 64-17-5 | C2H6O | 46.1 | 484.8 | 111.146 | 11.285 | dimer | alcoholic | medium |
33 | 1-Octen-3-ol | 3391-86-4 | C8H16O | 128.2 | 985.1 | 555.176 | 11.583 | monomer | earthy | high |
31 | 1-Octene-3-ol | 3391-86-4 | C8H16O | 128.2 | 986.2 | 557.384 | 15.954 | dimer | earthy | high |
32 | 1-Octen-3-ol | 3391-86-4 | C8H16O | 128.2 | 985.1 | 555.176 | 17.302 | polymer | earthy | high |
33 | 2-Methylbutanol | 137-32-6 | C5H12O | 88.1 | 736.3 | 219.252 | 12.326 | monomer | ethereal | medium |
34 | 2-Methylbutanol | 137-32-6 | C5H12O | 88.1 | 738.5 | 221.168 | 1472 | dimer | ethereal | medium |
Aldehydes (7) | ||||||||||
35 | Benzaldehyde | 100-52-7 | C7H6O | 106.1 | 957.5 | 500.837 | 11.488 | fruity | high | |
36 | 3-Methylbutanal | 590-86-3 | C5H10O | 86.1 | 665.8 | 173.049 | 11.584 | monomer | aldehydic | high |
37 | 3-Methylbutanal | 590-86-3 | C5H10O | 86.1 | 661.3 | 170.97 | 14.065 | dimer | aldehydic | high |
38 | n-Nonanal | 124-19-6 | C9H18O | 142.2 | 1106.9 | 783.669 | 14.789 | monomer | aldehydic | high |
39 | n-Nonanal | 124-19-6 | C9H18O | 142.2 | 1106.9 | 783.669 | 19.299 | dimer | aldehydic | high |
40 | (E)-Hept-2-enal | 18829-55-5 | C7H12O | 112.2 | 956.9 | 499.653 | 16.611 | green | high | |
41 | Pentanal | 110-62-3 | C5H10O | 86.1 | 697.5 | 190.514 | 1183 | fermented | / | |
Ketones (4) | ||||||||||
42 | Acetone | 67-64-1 | C3H6O | 58.1 | 500.2 | 116.093 | 11.249 | solvent | high | |
43 | 2,3-Butanedione | 431-03-8 | C4H6O2 | 86.1 | 582.4 | 142.503 | 11.657 | buttery | high | |
44 | 2-Butanone | 78-93-3 | C4H8O | 72.1 | 584.4 | 143.132 | 10.575 | monomer | ethereal | / |
45 | 2-Butanone | 78-93-3 | C4H8O | 72.1 | 583.3 | 142.782 | 12.482 | dimer | ethereal | / |
Sulfides (2) | ||||||||||
46 | Butyl sulfide | 544-40-1 | C8H18S | 146.3 | 1072.9 | 721.533 | 12.851 | alliaceous | high | |
47 | Dimethyl trisulfide | 3658-80-8 | C2H6S3 | 126.3 | 947.6 | 481.593 | 13.084 | alliaceous | / | |
Terpenes (1) | ||||||||||
48 | Alpha-Pinene | 80-56-8 | C10H16 | 136.2 | 938.3 | 464.062 | 12.175 | herbal | high |
Compound | CAS# | Formula | Odor Descriptor | Peak Area | |||
---|---|---|---|---|---|---|---|
CK | 10 mg/kg | 15 mg/kg | 20 mg/kg | ||||
Esters | |||||||
Ethyl acetate dimer | 141-78-6 | C4H8O2 | ethereal fruity sweet weedy green | 33,030.65 | 31,044.70 | 31,555.70 | 31,832.88 |
3_Methylbutyl acetate dimer | 123-92-2 | C7H14O2 | sweet fruity banana solvent | 9685.77 | 10,484.30 | 10,242.62 | 10,906.42 |
Ethyl propanoate dimer | 105-37-3 | C5H10O2 | sweet fruity rum juicy fruit grape pineapple | 9154.11 | 9455.36 | 9616.75 | 9970.14 |
Isobutyl acetate | 110-19-0 | C6H12O2 | sweet fruity ethereal banana tropical | 5429.39 | 4908.41 | 4740.68 | 4901.22 |
Ethyl hexanoate dimer | 123-66-0 | C8H16O2 | sweet fruity pineapple waxy green banana | 1320.87 | 3116.89 | 2774.75 | 3979.39 |
Ethyl hexanoate monome | 123-66-0 | C8H16O2 | sweet fruity pineapple waxy green banana | 2109.47 | 3067.76 | 2806.68 | 3155.46 |
Amyl acetate dime | 628-63-7 | C7H14O2 | ethereal fruity banana pear banana apple | 1403.12 | 2094.79 | 1673.21 | 2559.41 |
Ethyl 2-methylbutanoate dime | 7452-79-1 | C7H14O2 | sharp sweet green apple fruity | 6161.62 | 6653.40 | 6602.08 | 7472.25 |
Ethyl 2-methylbutanoate monome | 7452-79-1 | C7H14O2 | sharp sweet green apple fruity | 1103.21 | 1326.94 | 1325.19 | 1380.20 |
Ethyl pentanoate monomer | 539-82-2 | C7H14O2 | sweet fruity apple pineapple green tropical | 492.25 | 889.20 | 661.18 | 972.12 |
Methyl 2-methylbutanoate dime | 868-57-5 | C6H12O2 | ethereal estery fruity tutti frutti green apple lily of the valley powdery fatty | 491.19 | 679.60 | 770.23 | 900.93 |
Methyl hexanoate monomer | 106-70-7 | C7H14O2 | fruity pineapple ether | 137.25 | 379.01 | 441.57 | 604.47 |
Aldehydes | |||||||
Benzaldehyde | 100-52-7 | C7H6O | strong sharp sweet bitter almond cherry | 241.09 | 389.94 | 335.86 | 425.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Chen, X.; Zhang, C.; Li, X.; Yue, N.; Shao, H.; Wang, J.; Jin, F. Discrimination and Characterization of Volatile Flavor Compounds in Fresh Oriental Melon after Forchlorfenuron Application Using Electronic Nose (E-Nose) and Headspace-Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS). Foods 2023, 12, 1272. https://doi.org/10.3390/foods12061272
Wang Q, Chen X, Zhang C, Li X, Yue N, Shao H, Wang J, Jin F. Discrimination and Characterization of Volatile Flavor Compounds in Fresh Oriental Melon after Forchlorfenuron Application Using Electronic Nose (E-Nose) and Headspace-Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS). Foods. 2023; 12(6):1272. https://doi.org/10.3390/foods12061272
Chicago/Turabian StyleWang, Qi, Xueying Chen, Chen Zhang, Xiaohui Li, Ning Yue, Hua Shao, Jing Wang, and Fen Jin. 2023. "Discrimination and Characterization of Volatile Flavor Compounds in Fresh Oriental Melon after Forchlorfenuron Application Using Electronic Nose (E-Nose) and Headspace-Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS)" Foods 12, no. 6: 1272. https://doi.org/10.3390/foods12061272
APA StyleWang, Q., Chen, X., Zhang, C., Li, X., Yue, N., Shao, H., Wang, J., & Jin, F. (2023). Discrimination and Characterization of Volatile Flavor Compounds in Fresh Oriental Melon after Forchlorfenuron Application Using Electronic Nose (E-Nose) and Headspace-Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS). Foods, 12(6), 1272. https://doi.org/10.3390/foods12061272