The Influence of Sensory Characteristics of Game Meat on Consumer Neuroperception: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Trophic and Biological Importance of Game Meat
3.2. The Economic Importance of Game Meat
3.3. Game Meat Nutritional Quality
3.4. Sensory Characteristics of Game Meat
3.5. Contribution of Sensory Characteristics and Psychological Considerations of Sensory Analysis
3.6. Consumer Neuroperception of Game Meat
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hsu, M.; Yoon, C. The Neuroscience of Consumer Choice. Curr. Opin. Behav. Sci. 2015, 5, 116. [Google Scholar] [CrossRef] [Green Version]
- Hubert, M.; Kenning, P. A current overview of consumer neuroscience. J. Consum. Behav. Int. Res. Rev. 2008, 7, 272–292. [Google Scholar] [CrossRef]
- Zineb, O.T.; Larbi, B.; Mohamed, J.; Yahya, C.; Hadj, O.E.M.; Ali, B. Neuromarketing: Where marketing and neuroscience meet. Afr. J. Bus. Manag. 2011, 5, 1528–1532. [Google Scholar]
- Yoon, C.; Gonzalez, R.; Bechara, A.; Berns, G.S.; Dagher, A.A.; Dube, L.; Huettel, S.A.; Kable, J.W.; Liberzon, I.; Plassmann, H.; et al. Decision neuroscience and consumer decision making. Mark. Lett. 2012, 23, 473–485. [Google Scholar] [CrossRef]
- Niedziela, M.M.; Ambroze, K. The future of consumer neuroscience in food research. Food Qual. Prefer. 2021, 92, 104124. [Google Scholar] [CrossRef]
- Folwarczny, M.; Pawar, S.; Sigurdsson, V.; Fagerstrøm, A. Using neuro-IS/consumer neuroscience tools to study healthy food choices: A review. Procedia Comput. Sci. 2019, 164, 532–537. [Google Scholar] [CrossRef]
- Morton, G.; Meek, T.; Schwartz, M. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 2014, 15, 367–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wise, R. Dopamine, learning and motivation. Nat. Rev. Neurosci. 2004, 5, 483–494. [Google Scholar]
- Gîrniceanu, D. Advertising and neuroscience. Aspects of the consumers’ behaviour. Saeculum 2020, 50, 174–183. [Google Scholar]
- Ye, Q.; Nunez, J.; Zhang, X. Oxytocin Receptor-Expressing Neurons in the Paraventricular Thalamus Regulate Feeding Motivation through Excitatory Projections to the Nucleus Accumbens Core. J. Neurosci. 2022, 42, 3949–3964. [Google Scholar] [CrossRef]
- He, J.; Hommen, F.; Lauer, N.; Balmert, S.; Scholz, H. Serotonin transporter dependent modulation of food-seeking behavior. PLoS ONE 2020, 15, e0227554. [Google Scholar] [CrossRef]
- Acebron, L.B.; Dopico, D.C. The importance of intrinsic and extrinsic cues to expected and experienced quality: An empirical application for beef. Food Qual. Prefer. 2000, 11, 229–238. [Google Scholar] [CrossRef]
- Bilska, A.; Kowalski, R. Food quality and safety management. LogForum-Sci. J. Logist. 2014, 10, 351–361. [Google Scholar]
- Lawless, H. Dimensions of sensory quality: A critique. Food Qual. Prefer. 1995, 6, 191–199. [Google Scholar] [CrossRef]
- McCarthy, M.; de Boer, M.; O’Reilly, S.; Cotter, L. Factors influencing intention to purchase beef in the Irish market. Meat Sci. 2003, 65, 1071–1083. [Google Scholar] [CrossRef]
- Pisula, A.; Tyburcy, A.; Dasiewicz, K. Czynniki decydujące o jakości mięsa wołowego. Gospod Mięsna 2007, 1, 4–11. [Google Scholar]
- Verbeke, W.; Van Wezemael, L.; de Barcellos, M.D.; Kügler, J.O.; Hocquette, J.-F.; Ueland, Ø.; Grunert, K.G. European beef consumers’ interest in a beef eating-quality guarantee: Insights from a qualitative study in four EU countries. Appetite 2010, 54, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fewtrell, M.; Kennedy, G.; Naska, A.; Riediger, K.; Roos, N.; Sanders, T.; Tuohy, K.M.; Valtueña-Martínez, S. Nutrition challenges ahead. EFSA J. 2016, 14, e00504. [Google Scholar] [CrossRef] [Green Version]
- Czarniecka-Skubina, E.; Stasiak, D.M.; Latoch, A.; Owczarek, T.; Hamulka, J. Consumers’ Perception and Preference for the Consumption of Wild Game Meat among Adults in Poland. Foods 2022, 11, 830. [Google Scholar] [CrossRef]
- Demartini, E.; Vecchiato, D.; Marescotti, M.E.; Gibbert, M.; Viganò, R.; Giacomelli, S.; Gaviglio, A. The more you know: The equivocal effects of prior knowledge on preferences for hunted vs. farmed wild boar meat. Int. J. Gastron. Food Sci. 2021, 24, 100325. [Google Scholar] [CrossRef]
- Popoola, I.O.; Soladoye, P.O.; Gaudette, N.J.; Wismer, W.V. A Review of sensory and consumer-related factors influencing the acceptance of red meats from alternative animal species. Food Rev. Int. 2020, 36, 266–285. [Google Scholar] [CrossRef]
- Hoffman, L.C.; van Schalkwyk, D.L.; Muller, M.; Needham, T.; McMillin, K.W. Carcass Yields and Physical-Chemical Meat Quality Characteristics of Namibian Red Hartebeest (Alcelaphus buselaphus) as Influenced by Sex and Muscle. Foods 2021, 10, 2347. [Google Scholar] [CrossRef]
- Valencak, T.G.; Gamsjäger, L.; Ohrnberger, S.; Culbert, N.J.; Ruf, T. Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking. BMC Res. Notes 2015, 8, 273. [Google Scholar] [CrossRef] [Green Version]
- Min, J.; Senut, M.C.; Rajanikant, K.; Greenberg, E.; Bandagi, R.; Zemke, D.; Mousa, A.; Kassab, M.; Farooq, M.U.; Gupta, R.; et al. Differential neuroprotective effects of carnosine, anserine, and N-acetyl carnosine against permanent focal ischemia. J. Neurosci. Res. 2008, 86, 2984–2991. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Xia, S.; He, J.; Lu, G.; Xie, Z.; Han, H. Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Sci. 2019, 231, 116584. [Google Scholar] [CrossRef] [PubMed]
- Den Hartigh, L.J. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019, 11, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhatib, A.; Feng, W.-H.; Huang, Y.-J.; Kuo, C.-H.; Hou, C.-W. Anserine Reverses Exercise-Induced Oxidative Stress and Preserves Cellular Homeostasis in Healthy Men. Nutrients 2020, 12, 1146. [Google Scholar] [CrossRef]
- Basak, S.; Duttaroy, A.K. Conjugated Linoleic Acid and Its Beneficial Effects in Obesity, Cardiovascular Disease, and Cancer. Nutrients 2020, 12, 1913. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Kaneko, S.; Sogawa, K.; Ahhmed, A.M.; Enomoto, H.; Kawarai, S.; Taira, K.; Mizunoya, W.; Minami, M.; Sakata, R. Isolation, Evaluation, and Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides from Game Meat. Foods 2020, 9, 1168. [Google Scholar] [CrossRef] [PubMed]
- Needham, T.; Engels, R.A.; Bureš, D.; Kotrba, R.; van Rensburg, B.J.; Hoffman, L.C. Carcass Yields and Physiochemical Meat Quality of Semi-extensive and Intensively Farmed Impala (Aepyceros melampus). Foods 2020, 9, 418. [Google Scholar] [CrossRef] [Green Version]
- Hadjikakou, M.; Ritchie, E.G.; Watermeyer, K.E.; Bryan, B.A. Improving the assessment of food system sustainability. Lancet Planet. Health 2019, 3, e62–e63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, L.; Wiklund, E. Game and venison—Meat for the modern consumer. Meat Sci. 2006, 74, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Demartini, E.; Vecchiato, D.; Tempesta, T.; Gaviglio, A.; Viganò, R. Consumer preferences for red deer meat: A discrete choice analysis considering attitudes towards wild game meat and hunting. Meat Sci. 2018, 146, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Fiala, M.; Marveggio, D.; Viganò, R.; Demartini, E.; Nonini, L.; Gaviglio, A. LCA and wild animals: Results from wild deer culled in a northern Italy hunting district. J. Clean. Prod. 2020, 244, 118667. [Google Scholar] [CrossRef]
- D’Souza, C. Game meats: Consumption values, theory of planned behaviour, and the moderating role of food neophobia/neophiliac behaviour. J. Retail. Consum. Serv. 2022, 66, 102953. [Google Scholar] [CrossRef]
- Pearcey, S.M.; Zhan, G.Q. A comparative study of American and Chinese college students’ motives for food choice. Appetite 2018, 123, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.F.; Blackwell, R.D.; Miniard, P.W. Consumer Behavior; The Dryden Press, Harcourt Brace College Publishers: Fort Worth, TX, USA, 1995. [Google Scholar]
- Niewiadomska, K.; Kosicka-Gębska, M.; Gębski, J.; Gutkowska, K.; Jeżewska-Zychowicz, M.; Sułek, M. Game Meat Consumption—Conscious Choice or Just a Game? Foods 2020, 9, 1357. [Google Scholar] [CrossRef]
- Verhagen, J.V. The neurocognitive bases of human multimodal food perception: Consciousness. Brain Res. Rev. 2007, 53, 271. [Google Scholar] [CrossRef] [Green Version]
- Beekman, T.L. Effects of Cognitive Style on Food Perception and Eating Behavior. Ph.D. Thesis, University of Arkansas, Fayetteville, AR, USA, 2022. Available online: https://scholarworks.uark.edu/etd/4505 (accessed on 8 March 2023).
- Vermeir, I.; Roose, G. Visual Design Cues Impacting Food Choice: A Review and Future Research Agenda. Food 2020, 9, 1495. [Google Scholar] [CrossRef]
- Kutter, A.; Hanesch, C.; Rauh, C.; Delgado, A. Impact of proprioception and tactile sensations in the mouth on the perceived thickness of semi-solid foods. Food Qual. Prefer. 2011, 22, 193–197. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Kim, S. Influence of Fragrances on Human Psychophysiological Activity: With Special Reference to Human Electroencephalographic Response. Sci. Pharm. 2016, 84, 724–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.L.; Thomas-Danguin, T.; Olofsson, J.K.; Zucco, G.M.; Prescott, J. Thought for food: Cognitive influences on chemosensory perceptions and preferences. Food Qual. Prefer. 2020, 79, 103776. [Google Scholar] [CrossRef]
- Spence, C. Multisensory flavor perception: A cognitive neuroscience perspective. In Multisensory Perception; Academic Press: Cambridge, MA, USA, 2020; pp. 221–237. [Google Scholar]
- Seo, H.S. Sensory Nudges: The Influences of Environmental Contexts on Consumers’ Sensory Perception, Emotional Responses, and Behaviors toward Foods and Beverages. Foods 2020, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Corradini, A.; Marescotti, M.E.; Demartini, E.; Gaviglio, A. Consumers’ perceptions and attitudes toward hunted wild game meat in the modern world: A literature review. Meat Sci. 2022, 194, 108955. [Google Scholar] [CrossRef] [PubMed]
- Geisser, H.; Reyer, H.U. Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. J. Wildl. Manag. 2004, 68, 939–946. [Google Scholar] [CrossRef]
- Baldus, R.D.; Damm, G.R.; Wollscheid, K. Best Practices in Sustainable Hunting—A Guide to Best Practices from around the World; CIC Technical Series Publication (Austria): CIC, Administrative Office: Vienna, Austria, 2008. [Google Scholar]
- European Environment Agency. Europe’s Ecological Backbone: Recognising the True Value of Our Mountains; EEA Report 6; European Environment Agency: Copenhagen, Denmark, 2010; p. 248. [Google Scholar] [CrossRef]
- Vingada, J.; Fonseca, C.; Cancela, J.; Ferreira, J.; Eira, C. Ungulates and their Management in Portugal. In European Ungulates and Their Management in the 21st Century; Appollonio, M., Andersen, R., Putman, R., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 392–417. [Google Scholar]
- Razmaitė, V.; Šiukščius, A.; Šveistienė, R.; Bliznikas, S.; Švirmickas, G.J. Comparative evaluation of longissimus and semimembranosus muscle characteristics from freeliving and farmed red deer (Cervus elaphus) in Lithuania. Zool. Ecol. 2017, 27, 176–183. [Google Scholar] [CrossRef]
- Ivanović, S.; Pisinov, B.; Pavlović, M.; Pavlović, I. Quality of meat from female fallow deer (Dama Dama) and Roe deer (Capreolus Capreolus) hunted in Serbia. Ann. Anim. Sci. 2020, 20, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Frunză, G.; Murariu, O.C.; Ciobanu, M.M.; Radu-Rusu, R.M.; Simeanu, D.; Boișteanu, P.C. Meat Quality in Rabbit (Oryctolagus cuniculus) and Hare (Lepus europaeus Pallas)—A Nutritional and Technological Perspective. Agriculture 2023, 13, 126. [Google Scholar] [CrossRef]
- Williams, P. Nutritional composition of red meat. Nutr. Diet. 2007, 64, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Kononiuk, A.D.; Karwowska, M. Bioactive Compounds in Fermented Sausages Prepared from Beef and Fallow Deer Meat with Acid Whey Addition. Molecules 2020, 25, 2429. [Google Scholar] [CrossRef]
- Strazdina, V.; Jemeïjanovs, A.; Sterna, V. Nutrition Value of Wild Animal Meat. Proc. Latv. Acad. Sci. 2013, 67, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Soriano, A.; Sánchez-García, C. Nutritional Composition of Game Meat from Wild Species Harvested in Europe. Meat Nutr. 2021, 77–100. [Google Scholar] [CrossRef]
- Gaviglio, A.; Marescotti, M.E.; Demartini, E. The Local Value Chain of Hunted Red Deer Meat: A Scenario Analysis Based on a Northern Italian Case Study. Resources 2018, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Martinez–Jauregui, M.; Pardos, M.; Balogh, P.; Chauvin, C.; Klopcic, M.; Wilhelmsson, E.; Herruzo, A.C. Hunting in European mountain systems: An economic assessment of game gross margins in nine case study areas. Eur. J. Wildl. Res. 2014, 60, 933–936. [Google Scholar] [CrossRef]
- Macmillan, D.C.; Phillip, S. Consumptive and non-consumptive values of wild mammals in Britain. Mamm. Rev. 2008, 38, 189–204. [Google Scholar] [CrossRef]
- Whitnall, T.; Pitts, N. Global trends in meat consumption. Agric. Commod. 2019, 9, 96–99. [Google Scholar]
- Kupren, K.; Hakuć-Błażowska, A. Profile of a Modern Hunter and the Socio-Economic Significance of Hunting in Poland as Compared to European Data. Land 2021, 10, 1178. [Google Scholar] [CrossRef]
- Dincă, L.; Enescu, C.M.; Timiș-Gânsac, V. Game species from Tulcea county and their management. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2018, 18, 101–106. [Google Scholar]
- Pellikka, J.; Kuikka, S.; Lindén, H.; Varis, O. The role of game management in wildlife populations: Uncertainty analysis of expert knowledge. Eur. J. Wildl. Res. 2005, 51, 48–59. [Google Scholar] [CrossRef]
- Rosell, C.; Pericas, B.; Colomer, J.; Navàs, F.B.P.C. Guide to Measures for Reducing the Damage Caused by Wild Mammals in Rural Areas, Urban Areas and Infrastructures; Barcelona Provincial Council: Barcelona, Spain, 2019. [Google Scholar]
- Di Minin, E.; Clements, H.S.; Correia, R.A.; Cortes-Capano, G.; Fink, C.; Haukka, A.; Hausmann, A.; Kulkarni, R.; Bradshaw, C.J. Consequences of recreational hunting for biodiversity conservation and livelihoods. One Earth 2021, 4, 238–253. [Google Scholar] [CrossRef]
- Fischer, A.; Sandström, C.; Delibes-Mateos, M.; Arroyo, B.; Tadie, D.; Randall, D.; Hailu, F.; Lowassa, A.; Msuha, M.; Kereži, V.; et al. On the multifunctionality of hunting—An institutional analysis of eight cases from Europe and Africa. J. Environ. Plan. Manag. 2013, 56, 531–552. [Google Scholar] [CrossRef] [Green Version]
- Brainerd, S.M. European Charter on Hunting and Biodiversity; Council of Europe Publishing: Strasbourg, France, 2008. [Google Scholar]
- Chomei, Y.; Hirooka, H. Structure of consciousness in purchasing behavior of beef: A structural equation modeling analysis. J. Rural Probl. 2016, 52, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Marescotti, M.E.; Caputo, V.; Demartini, E.; Gaviglio, A. Discovering market segments for hunted wild game meat. Meat Sci. 2019, 149, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Blaška, J.; Gašparík, J.; Šmehýl, P.; Gondekova, M. Comparison of basic nutritive components of venison in selected species of hoofed game. J. Cent. Eur. Agric. 2016, 17, 1233–1240. [Google Scholar] [CrossRef] [Green Version]
- Quaresma, M.A.G.; Pimentel, F.B.; Ribeiro, A.P.; Ferreira, J.D.; Alves, S.P.; Rocha, I.; Bessa, R.J.B.; Oliveira, M. Lipid and protein quality of common pheasant (Phasianus colchicus) reared in semi-extensive conditions. J. Food Compos. Anal. 2016, 46, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Barton, L.; Bureš, D.; Kotrba, R.; Sales, J. Comparison of meat quality between eland (Taurotragus oryx) and cattle (Bos taurus) raised under similar conditions. Meat Sci. 2014, 96, 346–352. [Google Scholar] [CrossRef]
- McMillin, K.W.; Hoffman, L.C. Improving the quality of meat from ratites. In Improving the Sensory and Nutritional Quality of Fresh Meat; Kerry, J., Ed.; CRC Press: Cambridge, UK, 2009; pp. 418–446. [Google Scholar]
- Okuskhanova, E.; Assenova, B.; Rebezov, M.; Amirkhanov, K.; Yessimbekov, Z.; Smolnikova, F.; Nurgazezova, A.; Nurymkhan, G.; Stuart, M. Study of Morphology, Chemical, and Amino Acid Composition of Red Deer Meat. Vet. World 2017, 10, 623–629. [Google Scholar] [CrossRef]
- Boişteanu, P.C.; Lazăr, R.; Coşuleanu, A.E.; Postolache, A.N. Research on the chemical composition of the deer meat preserved by freezing. Lucr. Ştiinţ. USAMV Iaşi 2009, 51, 389–393. [Google Scholar]
- Kaimbaeva, L.A.; Gurinovich, G.V. Study of Autolytic Changes in Red Deer Meat and Beef. Indian J. Sci. Technol. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Pérez-Serrano, M.; De Palo, P.; Maggiolino, A.; Pateiro, M.; Gallego, L.; Domínguez, R.; García-Díaz, A.; Landete-Castillejos, T.; Lorenzo, J.M. Seasonal Variations of Carcass Characteristics, Meat Quality and Nutrition Value in Iberian Wild Red Deer. Span. J. Agric. Res. 2020, 18, 16. [Google Scholar] [CrossRef]
- Kudrnáčová, E.; Bartoň, L.; Bureš, D.; Hoffmanc, L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018, 141, 9–27. [Google Scholar] [CrossRef]
- Poławska, E.; Cooper, R.G.; Jóźwik, A.; Pomianowski, J. Meat from alternative species–nutritive and dietetic value, and its benefit for human health—A review. CyTA–J. Food 2013, 11, 37–42. [Google Scholar] [CrossRef]
- Wiklund, E.; Farouk, M.; Finstad, G. Venison: Meat from red deer (Cervus elaphus) and reindeer (Rangifer tarandus tarandus). Anim. Front. 2014, 4, 55–61. [Google Scholar] [CrossRef]
- Bondoc, I. Controlul Produselor și Alimentelor de Origine Animală; Publisher Ion Ionescu de la Brad: Iași, Romania, 2014. [Google Scholar]
- Damm, G.R. A Matter of Taste—Wild game meat, the consumption thereof, is important in Germany-and should be worldwide. Conservation Frontlines E-Magazine 2021, III-1. [Google Scholar]
- Postolache, A.N. Research on the Knowledge of Quality Parameters that Characterize the Meat of Certain Game Species Used in Human Con-Sumption. Ph.D. Thesis, University of Agricultural Sciences and Veterinary Medicine, Iași, Romania, 2011. [Google Scholar]
- Dannenberger, D.; Nuernberg, G.; Nuernberg, K.; Hagemann, E. The effects of gender, age and region on macro- and micronutrients contents and datty acid profiles in the muscles of roe deer and wild boar in Mecklenburg-Western Pomerania (Germany). Meat Sci. 2013, 94, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, M.M.; Postolache, A.N.; Lipșa, F.D.; Munteanu, M.; Rațu, R.N.; Murariu, O.C.; Boișteanu, P.C. Meat Fatty Acid Composition of Wild Boars Hunted in Romania in Relationship to Gender and Age-Class. Animals 2022, 12, 810. [Google Scholar] [CrossRef]
- Marsico, G.; Rasulo, A.; Dimatteo, S.; Tarricone, S.; Pinto, F.; Ragni, M. Pig, F1 (wild boar x pig) and wild boar meat quality. Ital. J. Anim. Sci. 2007, 6, 701–703. [Google Scholar] [CrossRef]
- Amici, A.; Cifuni, G.F.; Conto, M.; Esposito, L.; Failla, S. Hunting Area Affects Chemical and Physical Characteristics and Fatty Acid Composition of Wild Boar (Sus Scrofa). Meat. Rend. Fis. Acc. Lincei 2015, 26, S527–S534. [Google Scholar] [CrossRef]
- Skobrák, E.B.; Bodnár, K.; Jónás, E.M.; Gundel, J.; Jávor, A. The Comparison Analysis of the Main Chemical Composition Parameters of Wild Boar Meat and Pork. J. Anim. Sci. Biotechnol. 2011, 44, 105–112. [Google Scholar]
- Macháčková, K.; Zelený, J.; Lang, D.; Vinš, Z. Wild boar meat as a sustainable substitute for pork: A mixed methods approach. Sustainability 2021, 13, 2490. [Google Scholar] [CrossRef]
- Fernstrom, J.D. Aromatic amino acids and monoamine synthesis in the central nervous system: Influence of the diet. J. Nutr. Biochem. 1990, 1, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Dalangin, R.; Kim, A.; Campbell, R.E. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int. J. Mol. Sci. 2020, 21, 6197. [Google Scholar] [CrossRef]
- Winkelmayer, R. Hygiena Zveriny-Prírucka pro Mysliveckou Praxi; Game Hygiene—A Handbook for Hunting Practice; Institut Ekologie Zvere VFU: Brno, Czech Republic, 2005. [Google Scholar]
- Fernstrom, J.D. Branched-chain amino acids and brain function. J. Nutr. 2005, 135, 1539S–1546S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef] [Green Version]
- Strazdina, V.; Jemeljanovs, A.; Sterna, V.; Ikauniece, D. Nutritional characteristics of wild boar meat hunted in Latvia. Proc Foodbalt 2014, 1, 32–36. [Google Scholar]
- Murariu, O.C.; Murariu, F.; Frunză, G.; Ciobanu, M.M.; Boișteanu, P.C. Fatty Acids Indices and Nutritional Properties of Karakul Sheep Meat. Nutrients 2023, 15, 1061. [Google Scholar] [CrossRef]
- Bureš, D.; Bartoň, L.; Kotrba, R.; Hakl, J. Quality attributes and composition of meat from red deer (Cervus elaphus), fallow deer (Dama dama) and Aberdeen Angus and Holstein cattle (Bos taurus). J. Sci. Food Agric. 2015, 95, 2299–2306. [Google Scholar] [CrossRef] [PubMed]
- Strazdina, A.; Jemeljanovs, V.; Sterna, V. Fatty acids composition of the meat of elk, deer, roe deer and wild boar hunted in Latvia. Res. Rural. Dev.–Int. Sci. Conf. 2012, 1, 176. [Google Scholar]
- Viganò, R.; Demartini, E.; Riccardi, F.; Corradini, A.; Besozzi, M.; Lanfranchi, P.; Chiappini, P.L.; Cottini, A.; Gaviglio, A. Quality parameters of hunted game meat: Sensory analysis and pH monitoring. Ital. J. Food Saf. 2019, 8, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Pedrazzoli, M.; Dal Bosco, A.; Castellini, C.; Ranucci, D.; Mattioli, S.; Pauselli, M.; Roscini, V. Effect of age and feeding area on meat quality of wild boars. Ital. J. Anim. Sci. 2017, 16, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.K.; Lee, S.J.; Moon, S.H.; Jeon, B.T.; Kim, B.; Park, T.K.; Han, J.S.; Park, P.J. Neuroprotective effects of a novel peptide purified from venison protein. J. Microbiol. Biotechnol. 2010, 20, 700–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Sun-Waterhouse, D.; Waterhouse, G.I.N.; Zheng, L.; Su, G.; Zhao, M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci. Technol. 2021, 116, 712–732. [Google Scholar] [CrossRef]
- Kim, E.; Lee, S.; Jeon, B.; Moon, S.; Kim, B.; Park, T.; Han, J.; Park, P. Purification and characterisation of antioxidative peptides from enzymatic hydrolysates of venison protein. Food Chem 2009, 114, 1365–1370. [Google Scholar] [CrossRef]
- Xin, J.L.; Zhang, Y.; Li, Y.; Zhang, L.Z.; Lin, Y.; Zheng, L.W. Protective effects of cervus nippon temminck velvet antler polypeptides against MPP+-induced cytotoxicity in SH-SY5Y neuroblastoma cells. Mol. Med. Rep. 2017, 16, 5143–5150. [Google Scholar] [CrossRef] [Green Version]
- Xia, P.; Liu, D.; Jiao, Y.; Wang, Z.; Chen, X.; Zheng, S.; Fang, J.; Hao, L. Health Effects of Peptides Extracted from Deer Antler. Nutrients 2022, 14, 4183. [Google Scholar] [CrossRef]
- Feiner, G. Products Handbook; Wood Head Publishing Limited: Cambridge, UK, 2006. [Google Scholar]
- Holzbauer, S.M.; Agger, W.A.; Hall, R.L.; Johnson, G.M.; Schmitt, D.; Garvey, A.; Bishop, H.S.; Rivera, H.; De Almeida, M.E.; Hill, D. Outbreak of Trichinella spiralis infections associated with a wild boar hunted at a game farm in Iowa. Clin. Infect. Dis. 2014, 59, 1750–1756. [Google Scholar] [CrossRef] [Green Version]
- Tomasevic, I.; Novakovic, S.; Solowiej, B.; Zdolec, N.; Skunca, D.; Krocko, M.; Nedomova, S.; Kolaj, R.; Aleksiev, G.; Djekic, I. Consumers’ perceptions, attitudes and perceived quality of game meat in ten European countries. Meat Sci. 2018, 142, 5–13. [Google Scholar] [CrossRef]
- Hedman, H.D.; Varga, C.; Duquette, J.; Novakofski, J.; Mateus-Pinilla, N.E. Food Safety Considerations Related to the Consumption and Handling of Game Meat in North America. Vet. Sci. 2020, 7, 188. [Google Scholar] [CrossRef]
- Gaulin, C.; Ramsay, D.; Thivierge, K.; Tataryn, J.; Courville, A.; Martin, C.; Cunningham, P.; Désilets, J.; Morin, D.; Dion, R. Acute toxoplasmosis among Canadian deer hunters associated with consumption of undercooked deer meat hunted in the United States. Emerg. Infect. Dis. 2020, 26, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiecinska, K.; Kosicka-Gebska, M.; Gebski, J. Poziom bezpieczenstwa jako czynnik warunkujacy konsumpcj ˛e dziczyzny. Probl. Hig. Epidemiol. 2015, 96, 594–597. [Google Scholar]
- Martin, A.; Müller-Graf, C.; Selhorst, T.; Gerofke, A.; Ulbig, E.; Gremse, C.; Greiner, M.; Lahrssen-Wiederholt, M.; Hensel, A. Comparison of lead levels in edible parts of red deer hunted with lead or non-lead ammunition. Sci. Total Environ. 2019, 653, 315–326. [Google Scholar] [CrossRef]
- Thomas, V.G.; Pain, D.J.; Kanstrup, N.; Green, R.E. Setting maximum levels for lead in game meat in EC regulations: An adjunct to replacement of lead ammunition. Ambio 2020, 49, 2026–2037. [Google Scholar] [CrossRef]
- Barendse, W. Should animal fats be back on the table? A critical review of the human health effects of animal fat. Anim. Prod. Sci. 2014, 54, 831–855. [Google Scholar] [CrossRef] [Green Version]
- Neethling, J.; Hoffman, L.C.; Muller, M. Factors influencing the flavour of game meat: A review. Meat Sci. 2016, 113, 139–153. [Google Scholar] [CrossRef]
- Zochowska-Kujawska, J.; Lachowicz, K.; Sobczak, M.; Gajowiecki, L.; Oryl, B. Effects of carcass weight and muscle on texture, structure, rheological properties and myofibre characteristics of deer. Med. Weter. 2008, 64, 1304–1307. [Google Scholar]
- Daszkiewicz, T.; Kubiak, D.; Panfil, A. The Effect of Long-Term Frozen Storage on the Quality of Meat (Longissimus thoracis et Lumborum) from Female Roe Deer (Capreolus capreolus L.). J. Food Qual. 2018, 2018, 4691542. [Google Scholar] [CrossRef] [Green Version]
- Ilic, J.; Tomasevic, I.; Djekic, I. Influence of boiling, grilling, and sous-vide on mastication, bolus formation, and dynamic sensory perception of wild boar ham. Meat Sci. 2022, 188, 108805. [Google Scholar] [CrossRef] [PubMed]
- Plutowska, B.; Wardencki, W. Aromagrams—Aromatic profiles in the appreciation of food quality. Food Chem. 2007, 101, 845–872. [Google Scholar] [CrossRef]
- Moran, L.; Vivanco, C.; Lorenzo, J.M.; Barron, L.J.R.; Aldai, N. Characterization of volatile compounds of cooked wild Iberian red deer meat extracted with solid phase microextraction and analysed by capillary gas chromatography-mass spectrometry. LWT 2022, 163, 113472. [Google Scholar] [CrossRef]
- Martin, G.N. The Neuropsychology of Smell and Taste, 1st ed.; Psychology Press: London, UK, 2013. [Google Scholar]
- Petzold, G.C.; Hagiwara, A.; Murthy, V.N. Serotonergic modulation of odor input to the mammalian olfactory bulb. Nat. Neurosci. 2009, 12, 784–791. [Google Scholar] [CrossRef]
- Needham, T.; Engels, R.A.; Hoffman, L.C. Sensory Characteristics of Male Impala (Aepyceros melampus) Meat, Produced under Varying Production Systems and Nutrition. Foods 2021, 10, 619. [Google Scholar] [CrossRef]
- Ross, C.F. Physiology of Sensory Perception. In The Sensory Evaluation of Dairy Products, 2nd ed.; Springer Science Business Media: New York, NY, USA, 2009; pp. 17–42, Chapter 3. [Google Scholar]
- Babicz-Zielinska, E. Role of psychological factors in food choice–A review. Pol. J. Food Nutr. Sci. 2006, 15, 379–384. [Google Scholar]
- Silayoi, P.; Speece, M. Packaging and purchase decisions: An exploratory study on the impact of involvement level and time pressure. Br. Food J. 2003, 106, 607–628. [Google Scholar] [CrossRef]
- Han, H.; Back, K.-J. Relationships among Image Congruence, Consumption Emotions, and Customer Loyalty in the Lodging Industry. J. Hosp. Tour. Res. 2008, 32, 467–490. [Google Scholar] [CrossRef]
- Calanche, J.B.; Beltrán, J.A.; Hernández Arias, A.J. Aquaculture and sensometrics: The need to evaluate sensory attributes and the consumers’ preferences. Rev. Aquac. 2020, 12, 805–821. [Google Scholar] [CrossRef]
- Yuksel, A.; Yuksel, F.; Bilim, Y. Destination attachment: Effects on customer satisfaction and cognitive, affective and conative loyalty. Tour. Manag. 2010, 31, 274–284. [Google Scholar] [CrossRef]
- Cruz, A.; Green, B.G. Thermal stimulation of taste. Nature 2000, 403, 889–892. [Google Scholar] [CrossRef]
- Delwiche, J.F. The impact of perceptual interactions on perceived flavor. Food Qual. Prefer. 2004, 15, 137–146. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Babicz-Zielinska, E. Factor influencing consumers behavior. Zesz. Nauk. Politech. 2003, 48, 59–64. [Google Scholar]
- Steele, G.R. Hayek’s Sensory Order. Theory Psychol. 2002, 12, 387–409. [Google Scholar] [CrossRef]
- D’Souza, R.D.; Burkhalter, A. A laminar organization for selective cortico-cortical communication. Front. Neuroanat. 2017, 11, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crick, F.; Koch, C. Are we aware of neural activity in primary visual cortex? Nature 1995, 375, 121–123. [Google Scholar] [CrossRef]
- DiNuzzo, M.; Mangia, S.; Moraschi, M.; Mascali, D.; Hagberg, G.E.; Giove, F. Perception is associated with the brain’s metabolic response to sensory stimulation. eLife 2022, 11, e71016. [Google Scholar] [CrossRef]
- Fletcher, M.L.; Wilson, D.A. Experience modifies olfactory acuity: Acetylcholine-dependent learning decreases behavioral generalization between similar odorants. J. Neurosci. 2002, 22, RC201. [Google Scholar] [CrossRef] [Green Version]
- Gottfried, J.A.; Wilson, D.A. Smell. In Neurobiology of Sensation and Reward; Gottfried, J.A., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011; Chapter 5. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices, 2nd ed.; Springer Science Business Media: New York, USA, 2010. [Google Scholar]
- Byrd, E.; Lee, J.G.; Widmar, N.J.O. Perceptions of Hunting and Hunters by U.S. Respondents. Animals 2017, 7, 83. [Google Scholar] [CrossRef] [Green Version]
- Bocchio, M.; McHugh, S.B.; Bannerman, D.M.; Sharp, T.; Capogna, M. Serotonin, Amygdala and Fear: Assembling the Puzzle. Front. Neural Circuits 2016, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Kim, T.-K.; Kim, J.-E.; Park, J.-Y.; Lee, Y.; Kang, M.; Kim, K.-S.; Han, P.-L. Adenylyl cyclase-5 in the dorsal striatum function as a molecular switch for the generation of behavioral preferences for cue-directed food choices. Mol. Brain 2014, 7, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, D.L.; Aarts, E.; Dang, L.C.; Greer, S.M.; Jagust, W.J.; D’Esposito, M. Dorsal striatal dopamine, food preference and health perception in humans. PLoS ONE 2014, 9, e96319. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Logan, J.; Jayne, M.; Franceschi, D.; Wong, C.; Gatley, S.J.; Gifford, A.N.; Ding, Y.S.; et al. “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 2002, 44, 175–180. [Google Scholar] [CrossRef]
- Becker, C.A.; Flaisch, T.; Renner, B.; Schupp, H.T. Neural Correlates of the Perception of Spoiled Food Stimuli. Front. Hum. Neurosci. 2016, 10, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnett, E.B.; Southwick, R. Economic and social benefits of hunting in North America. Int. J. Environ. Stud. 2015, 72, 734–745. [Google Scholar] [CrossRef]
- Fantechi, T.; Contini, C.; Scozzafava, G.; Casini, L. Consumer preferences for wild game meat: Evidence from a hybrid choice model on wild boar meat in Italy. Agric. Food Econ. 2022, 10, 23. [Google Scholar] [CrossRef]
- Niewiadomska, K.; Kosicka-Gebska, M.; Gebski, J.; Jezewska-Zychowicz, M.; Sułek, M. Perception of the Health Threats Related to the Consumption of Wild Animal Meat—Is Eating Game Risky? Foods 2021, 10, 1544. [Google Scholar] [CrossRef] [PubMed]
- Krokowska-Paluszak, M.; Lukowski, A.; Wierzbicka, A.; Gruchała, A.; Sagan, J.; Skorupski, M. Attitudes towards hunting in Polish society and the related impacts of hunting experience, socialisation and social networks. Eur. J. Wildl. Res. 2020, 66, 73. [Google Scholar] [CrossRef]
- Xie, X.; Huang, L.; Li, J.J.; Zhu, H. Generational differences in perceptions of food health/risk and attitudes toward organic food and game meat: The case of the COVID-19 crisis in China. Int. J. Environ. Res. Public Health 2020, 17, 3148. [Google Scholar] [CrossRef]
- Ingram, D.J. Wild meat in changing times. J. Ethnobiol. 2020, 40, 117–130. [Google Scholar] [CrossRef]
- Goguen, A.D.; Riley, S.J. Consumption of Wild-Harvested Meat in Society. Wildl. Soc. Bull. 2020, 44, 553–563. [Google Scholar] [CrossRef]
- Ljung, P.E.; Riley, S.J.; Heberlein, T.A.; Ericsson, G. Eat prey and love: Game-meat consumption and attitudes toward hunting. Wildl. Soc. Bull. 2012, 36, 669–675. [Google Scholar] [CrossRef]
- Ljung, P.E.; Riley, S.J.; Ericsson, G. Game meat consumption feeds urban support of traditional use of natural resources. Soc. Nat. Resour. 2015, 28, 657–669. [Google Scholar] [CrossRef]
- Tanrikulu, C. Theory of consumption values in consumer behaviour research: A review and future research agenda. Int. J. Consum. Stud. 2021, 45, 1176–1197. [Google Scholar] [CrossRef]
- Park, J.; Back, S.Y.; Kim, D. Masstige consumption values and its effect on consumer behavior. J. Retail. Consum. Serv. 2022, 67, 102943. [Google Scholar] [CrossRef]
- Lee, C.K.C.; Levy, D.S.; Yap, C.S.F. How does the theory of consumption values contribute to place identity and sustainable consumption? Int. J. Consum. Stud. 2015, 39, 597–607. [Google Scholar] [CrossRef]
Species | Chemical Composition (%) | Energy (kcal) | Cholesterol (mg/100 g) | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Moisture | Dry Matter | Protein | Lipids | Minerals | ||||
Red Deer | 76.82 ± 1.16 | 22.02–23.18 | 18.71 ± 0.27 | 2.26 ± 0.03 | 2.21 ± 0.04 | 91.04 | - | [76] |
76.90 | 23.10 | 21.70 | 0.6 | 1.11 | - | - | [77] | |
- | - | 22.36 | 1.90 | - | - | 70.57 | [57] | |
75.8 | 24.2 | 19.99 | 3.2 | 1.2 | - | - | [78] | |
76.0 | 24.0 | 22.2 | 0.10–0.16 | 1.32 | - | 48.6 | [79] | |
74.16–74.29 | 25.71 ± 0.13 | 22.79 ± 0.11 | 0.50 ± 0.04 | 1.10 ± 0.03 | - | - | [80] | |
75.22–77.11 | 24.78 | 22.89 | 0.10–0.96 | 1.10–1.34 | 90.0–98.0 | 45.3–52.8 | [58] | |
- | - | 21.7 | 2.0 | 4.55 | - | 74.0–87.0 | [81] | |
- | - | 22.6 | 1.2 | - | - | 59.0 | [82] | |
75.0 | 25.0 | 21.5 | 0.5–2.0 | 1.1–1.2 | - | - | [83] | |
74.1–74.26 | 25.74–25.90 | 23.30–24.10 | 0.25–1.06 | 1.25–1.34 | - | - | [84] | |
74.82 ± 0.409 | 25.17 ± 0.418 | 22.09 ± 0.356 | 1.28 ± 0.175 | 1.03 ± 0.078 | 158.87 ± 3.38 | - | [85] | |
Fallow deer | 74.90 | 25.10 | 22.0 | 2.50 | 1.08 | - | - | [77] |
Roe Deer | 71.4–74.4 | 25.6–28.6 | 22.82–25.70 | 1.0–2.12 | 1.29 | - | - | [86] |
Wild boar | 61.83–64.59 | 35.41–38.17 | 21.99–22.78 | 4.52–7.60 | - | - | - | [87] |
- | - | 22.92 | 2.82 | 1.13 ± 0.07 | - | 70.57–2.49 | [57] | |
70.50 | 29.50 | 21.24–25.87 | 0.69–2.80 | 1.03–1.26 | 101.0–117.0 | 34.4 | [58] | |
74.1 | 25.9 | 23.75 | 1.02 | 1.14 | - | - | [78] | |
70.5 | 29.50 | 25.87 | 1.55 | 1.23 | - | - | [88] | |
74.72 | 25.28 | 21.24 | 2.78 | 1.23 | - | - | [89] | |
- | - | 21.83 ± 0.57 | 4.27 ± 1.78 | 2.91 | - | - | [90] | |
73.0 ± 0.472 | 26.99 ± 0.472 | 21.92 ± 0.273 | 3.37 ± 0.322 | 1.11 ± 0.078 | 159.46 ± 3.58 | [85] |
Fatty Acids | Amino Acids (mg/100 g) | Ref. | |||
---|---|---|---|---|---|
SFA * | MUFA ** | PUFA *** | Essential | Non–Essential | |
Red Deer | |||||
34.35 1 | 19.9 1 | 44.65 1 | 9504 | 10,485 | [79] |
356.0–424.0 2 | 270.0–372.0 2 | 259.0–374.0 2 | - | - | [81] |
53.84 1 | 26.11 1 | 20.50 1 | - | - | [85] |
42.7 ± 2.36 1 | 22.2 ± 1.43 1 | 31.0 ± 3.59 1 | 9590 | 13,019 | [80] |
30.4–38.2 1 | 15.3–22.7 1 | 37.6–50.1 1 | - | - | [58] |
42.13 1 | 26.57 1 | 23.47 1 | - | - | [57] |
42.13 | 26.56 | 23.38 | [100] | ||
0.17 3 | 0.07 3 | 0.01 3 | - | - | [101] |
Wild Boar | |||||
35.79 1 | 45.29 1 | 18.91 1 | 9797 | 11,875 | [85] |
31.6–44.7 1 | 30.2–46.8 1 | 17.3–30.5 1 | - | - | [58] |
34.79 1 | 35.63 1 | 17.25 1 | - | - | [100] |
35.25 1 | 42.74 1 | 20.15 1 | - | - | [102] |
35.40 1 | 48.05 1 | 16.55 1 | - | - | [89] |
36.74 1 | 33.20 1 | 30.06 1 | - | - | [90] |
32.67–34.28 1 | 41.79–44.31 1 | 17.12–19.19 1 | [87] | ||
Roe Deer | |||||
40.90–42.13 | 21.10–26.56 | 23.48–37.70 | [100] | ||
1.173 | 0.66 3 | 0.11 3 | - | - | [101] |
Socio-Demographic Characteristics | Statements of Acceptance | Statements of Refusal | Ref. | ||
---|---|---|---|---|---|
2020 | |||||
N = 450 | Gender | 41.3% Female; 58.7% Male | Nutritional and health value Weight control Low fat content Sensory appeal Natural content Familiarity | Convenience (purchase and preparation methods) Safety concerns Fear of an unknown product Ethical concerns (production methods, environment and animal welfare) Price | [38] |
Education | 2.4% Primary; 77.3% Secondary; 20.3% Higher | ||||
Age (years) | 25–34 (37.1%); 35–44 (27.1%); 45–54 (24.7%); 55 and over (11.1%) | ||||
Place of living | 54.7% Town; 45.3% Village | ||||
2021 | |||||
N = 450 | Gender | 41.3% Female; 58.7% Male | Quality attributes Natural content Price (paying for better quality) Purchase and preparation method | Obtaining method Health risks (infection with parasites/zoonoses; increase in cholesterol level, weight control, risks of contamination with different xenobiotics) Not enough information (culinary programs or books, producers websites, nutrition specialists, advertising) Familiarity | [145] |
Education | 2.4% Primary; 77.3% Secondary; 20.3% Higher | ||||
Age (years) | 25–34 (37.1%); 35–44 (27.1%); 45–54 (24.7%); 55 and over (11.1%) | ||||
Place of living | 54,7% Urban area; 45.3% Rural area | ||||
Professional situation (work) | 75.6% full-time; 6.4% part-time; 10.7% partner; 3.3% study; 4.0% pensioner | ||||
2022 | |||||
N = 1251 | Gender | 52.2 Female; 47.8% Male | Distinctive taste of game meat Health properties Family traditions Participation in hunting Availability of game meat Popularity of this game | High price Low availability Unacceptable sensorial appeals Not enough information about health benefits Ethical aspects Fear of disease No family tradition | [19] |
Age (years) | 18–30 (39.5%); 31–40 (20.2%); 41–50 (17.8%); 51 and over (22.5%) | ||||
Education | 3% Vocational or primary; 36.4% Secondary; 60.6% Higher | ||||
Place of living | 33,8% Rural area; 66.2% Urban area | ||||
Financial situation | 18% Very Good; 56.2% Good; 24.5% Not good, not bad; 1.3% Bad and very bad | ||||
Game consumers | 26.2% Hunters; 73.8% Others | ||||
Hunters (hunting years) | 0–5 (21.10%); 6–10 (22.6%); 11 or over (56.3%) |
Socio-Demographic Variables | Attitudes | Reasons | Ref. | |
---|---|---|---|---|
Young | Negative | More information needed; Territorial influences; In progress or completed studies | [38,71,153,154] | |
Gender | 70.7% Female; 29.3% Male | |||
Age (years) | Below 20 (20.4%); 20–29 (47.2%); 30–39 (12.4%) | |||
Men | Positive | Passion for hunting led them to inform themselves; The perception of the unique taste | ||
Women | Negative | More scientific information needed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciobanu, M.-M.; Manoliu, D.-R.; Ciobotaru, M.-C.; Anchidin, B.-G.; Matei, M.; Munteanu, M.; Frunză, G.; Murariu, O.C.; Flocea, E.-I.; Boișteanu, P.-C. The Influence of Sensory Characteristics of Game Meat on Consumer Neuroperception: A Narrative Review. Foods 2023, 12, 1341. https://doi.org/10.3390/foods12061341
Ciobanu M-M, Manoliu D-R, Ciobotaru M-C, Anchidin B-G, Matei M, Munteanu M, Frunză G, Murariu OC, Flocea E-I, Boișteanu P-C. The Influence of Sensory Characteristics of Game Meat on Consumer Neuroperception: A Narrative Review. Foods. 2023; 12(6):1341. https://doi.org/10.3390/foods12061341
Chicago/Turabian StyleCiobanu, Marius-Mihai, Diana-Remina Manoliu, Mihai-Cătălin Ciobotaru, Bianca-Georgiana Anchidin, Mădălina Matei, Mugurel Munteanu, Gabriela Frunză, Otilia Cristina Murariu, Elena-Iuliana Flocea, and Paul-Corneliu Boișteanu. 2023. "The Influence of Sensory Characteristics of Game Meat on Consumer Neuroperception: A Narrative Review" Foods 12, no. 6: 1341. https://doi.org/10.3390/foods12061341
APA StyleCiobanu, M. -M., Manoliu, D. -R., Ciobotaru, M. -C., Anchidin, B. -G., Matei, M., Munteanu, M., Frunză, G., Murariu, O. C., Flocea, E. -I., & Boișteanu, P. -C. (2023). The Influence of Sensory Characteristics of Game Meat on Consumer Neuroperception: A Narrative Review. Foods, 12(6), 1341. https://doi.org/10.3390/foods12061341