Relationship among Sugars, Organic Acids, Mineral Composition, and Chilling Injury Sensitivity on Six Pomegranate Cultivars Stored at 2 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. CI Index
2.3. Fruit Quality Parameters
2.4. Peel Mineral Composition
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melgarejo, P.; Melgarejo-Sánchez, P.; Martínez, J.J.; Hernández, F.; Legua, P.; Martínez, R. The pomegranate tree in the world: New cultivars and uses. Acta Hortic. 2013, 1089, 327–332. [Google Scholar]
- Pareek, S.; Valero, D.; Serrano, M. Postharvest biology and technology of pomegranate. J. Sci. Food Agric. 2015, 95, 2360–2379. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Mento, J.M.; Guillén, F.; Castillo, S.; Martínez-Romero, D.; Valverde, J.M.; Valero, D.; Serrano, M. Melatonin treatment to pomegranate trees enhances fruit bioactive compounds and quality traits at harvest and during postharvest storage. Antioxidants 2021, 10, 820. [Google Scholar] [CrossRef]
- Tinebra, I.; Scuderi, D.; Sortino, G.; Mazzaglia, A.; Farina, V. Pomegranate cultivation in mediterranean climate: Plant adaptation and fruit quality of ‘mollar de elche’and ‘wonderful’cultivars. Agronomy 2021, 11, 156. [Google Scholar] [CrossRef]
- Passafiume, R.; Perrone, A.; Sortino, G.; Gianguzzi, G.; Saletta, F.; Gentile, C.; Farina, V. Chemical–physical characteristics, polyphenolic content and total antioxidant activity of three Italian-grown pomegranate cultivars. NFS J. 2019, 16, 9–14. [Google Scholar] [CrossRef]
- Kashash, Y.; Doron-Faigenboim, A.; Bar-Ya’akov, I.; Hatib, K.; Beja, R.; Trainin, T.; Holland, D.; Porat, R. Diversity among pomegranate varieties in chilling tolerance and transcriptome responses to cold storage. J. Agric. Food Chem. 2018, 67, 760–771. [Google Scholar] [CrossRef]
- Kashash, Y.; Mayuoni-Kirshenbaum, L.; Goldenberg, L.; Choi, H.J.; Porat, R. Effects of harvest date and low-temperature conditioning on chilling tolerance of ‘Wonderful’ pomegranate fruit. Sci. Hortic. 2016, 209, 286–292. [Google Scholar] [CrossRef]
- Garcia-Pastor, M.E.; Serrano, M.; Guillen, F.; Zapata, P.J.; Valero, D. Preharvest or a combination of preharvest and postharvest treatments with methyl jasmonate reduced chilling injury, by maintaining higher unsaturated fatty acids, and increased aril colour and phenolics content in pomegranate. Postharvest Biol. Technol. 2020, 167, 111226. [Google Scholar] [CrossRef]
- Mirdehghan, S.H.; Rahemi, M.; Martínez-Romero, D.; Guillén, F.; Valverde, J.M.; Zapata, P.J.; Serrano, M.; Valero, D. Reduction of pomegranate chilling injury during storage after heat treatment: Role of polyamines. Postharvest Biol. Technol. 2019, 44, 19–25. [Google Scholar] [CrossRef]
- Nazoori, F.; Mollai, S.; Sobhani, F.; Mirdehghan, S.H.; Sahhafi, S.R. Carboxymethyl cellulose and carnauba wax treatments kept the pomegranate fruit (Punica granatum L.) quality during cold storage via improving enzymatic defense system and bioactive compounds. Sci. Hortic. 2023, 309, 111645. [Google Scholar] [CrossRef]
- Artés, F.; Villaescusa, R.; Tudela, J.A. Modified atmosphere packaging of pomegranate. J. Food Sci. 2000, 65, 1112–1116. [Google Scholar] [CrossRef]
- Sayyari, M.; Castillo, S.; Valero, D.; Díaz-Mula, H.M.; Serrano, M. Acetyl salicylic acid alleviates chilling injury and maintains nutritive and bioactive compounds and antioxidant activity during postharvest storage of pomegranates. Postharvest Biol. Technol. 2011, 60, 136–142. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Al-Otaibi, H.H.; Ali, M.R. A new approach for extending shelf-life of pomegranate arils with combined application of salicylic acid and methyl jasmonate. Hortic. 2023, 9, 225. [Google Scholar] [CrossRef]
- Nian, Y.; Wang, N.; Li, R.; Shao, Y.; Li, W. Cold shock treatment alleviates chilling injury in papaya fruit during storage by improving antioxidant capacity and related gene expression. Sci. Hortic. 2022, 294, 110784. [Google Scholar] [CrossRef]
- Kashash, Y.; Holland, D.; Porat, R. Molecular mechanisms involved in postharvest chilling tolerance of pomegranate fruit. J. Sci. Food Agric. 2019, 99, 5617–5623. [Google Scholar] [CrossRef]
- Rey, F.; Zacarías, L.; Rodrigo, M.J. Carotenoids, vitamin C, and antioxidant capacity in the peel of mandarin fruit in relation to the susceptibility to chilling injury during postharvest cold storage. Antioxidants 2020, 9, 1296. [Google Scholar] [CrossRef]
- Nukuntornprakit, O.A.; Chanjirakul, K.; van Doorn, W.G.; Siriphanich, J. Chilling injury in pineapple fruit: Fatty acid composition and antioxidant metabolism. Postharvest Biol. Technol. 2015, 99, 20–26. [Google Scholar] [CrossRef]
- Gomez, P.; Ferrer, M.Á.; Fernández-Trujillo, J.P.; Calderón, A.; Artés, F.; Egea-Cortines, M.; Weiss, J. Structural changes, chemical composition and antioxidant activity of cherry tomato fruits (cv. Micro-Tom) stored under optimal and chilling conditions. J. Sci. Food Agric. 2009, 89, 1543–1551. [Google Scholar] [CrossRef]
- Jannatizadeh, A. Exogenous melatonin applying confers chilling tolerance in pomegranate fruit during cold storage. Sci. Hortic. 2019, 246, 544–549. [Google Scholar] [CrossRef]
- Garcia-Pastor, M.E.; Giménez, M.J.; Valverde, J.M.; Guillén, F.; Castillo, S.; Martínez-Romero, D.; Serrano, M.; Valero, D.; Zapata, P.J. Preharvest application of oxalic acid improved pomegranate fruit yield, quality, and bioactive compounds at harvest in a concentration-dependent manner. Agronomy 2020, 10, 1522. [Google Scholar] [CrossRef]
- Miguel, G.; Fontes, C.; Antunes, D.; Neves, A.; Martins, D. Anthocyanin concentration of “Assaria” pomegranate fruits during different cold storage conditions. J. Biomed. Biotechnol. 2004, 2004, 338–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Guo, X.; Du, J.; Guo, Y.; Guo, X.; Kou, L. Comparative analysis of husk microstructure, fruit quality and concentrations of bioactive compounds of different pomegranate cultivars during low temperature storage. Food Biosci. 2023, 52, 102400. [Google Scholar] [CrossRef]
- Lufu, R.; Ambaw, A.; Opara, U.L. Determination of moisture loss of pomegranate cultivars under cold and shelf storage conditions and control strategies. Sustain. Food Technol. 2023, 1, 79–91. [Google Scholar] [CrossRef]
- Mirdehghan, S.H.; Rahemi, M.; Serrano, M.; Guillén, F.; Martínez-Romero, D.; Valero, D. The application of polyamines by pressure or immersion as a tool to maintain functional properties in stored pomegranate arils. J. Agric. Food Chem. 2007, 55, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Tezcan, F.; Gültekin-Özgüven, M.; Diken, T.; Özçelik, B.; Erim, F.B. Antioxidant activity and total phenolic, organic acid and sugar content in commercial pomegranate juices. Food Chem. 2009, 115, 873–877. [Google Scholar] [CrossRef]
- Bustamante, C.A.; Monti, L.L.; Gabilondo, J.; Scossa, F.; Valentini, G.; Budde, C.O.; Lara, M.V.; Fermie, A.R.; Drincovich, M.F. Differential metabolic rearrangements after cold storage are correlated with chilling injury resistance of peach fruits. Front. Plant. Sci. 2016, 7, 1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sevillano, L.; Sanchez-Ballesta, M.T.; Romojaro, F.; Flores, F.B. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. J. Sci. Food Agric. 2009, 89, 555–573. [Google Scholar] [CrossRef]
- Fawole, O.A.; Atukuri, J.; Arendse, E.; Opara, U.O. Postharvest physiological responses of pomegranate fruit (cv. Wonderful) to exogenous putrescine treatment and effects on physico-chemical and phytochemical properties. Food Sci. Hum. Wellness. 2020, 9, 146–161. [Google Scholar] [CrossRef]
- Ramezanian, A.; Rahemi, M.; Maftoun, M.; Bahman, K.; Eshghi, S.; Safizadeh, M.R.; Tavallali, V. The ameliorative effects of spermidine and calcium chloride on chilling injury in pomegranate fruits after long-term storage. Fruits 2010, 65, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.Y.; Wang, C.K.; Zhao, Y.W.; Sun, C.H.; Hu, D.G. Mechanisms and regulation of organic acid accumulation in plant vacuoles. Hortic. Res. 2021, 8, 227. [Google Scholar] [CrossRef]
- Vallarino, J.G.; Osorio, S. Organic acids. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Carrillo-Lopez, A., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2019; pp. 207–224. [Google Scholar]
- Shiratake, K.; Martinoia, E. Transporters in fruit vacuoles. Plant Biotech. 2007, 24, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.M.; Sasada, Y.; Sato, H.; Nii, N. Cell structure and sugar and acid contents in the arils of developing pomegranate fruit. J. Jpn. Soc. Hortic. Sci. 2004, 73, 241–243. [Google Scholar] [CrossRef]
- Serna-Escolano, V.; Giménez, M.J.; Castillo, S.; Valverde, J.M.; Martínez-Romero, D.; Guillén, F.; Serrano, M.; Valero, D.; Zapata, P.J. Preharvest treatment with oxalic acid improves postharvest storage of lemon fruit by stimulation of the antioxidant system and phenolic content. Antioxidants 2021, 10, 963. [Google Scholar] [CrossRef]
- Sayyari, M.; Valero, D.; Babalar, M.; Kalantari, S.; Zapata, P.J.; Serrano, M. Prestorage oxalic acid treatment maintained visual quality, bioactive compounds, and antioxidant potential of pomegranate after long-term storage at 2 °C. J. Agric. Food Chem. 2010, 58, 6804–6808. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, H.; Cao, J.; Jiang, W. Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables. Trends Food Sci. Technol. 2021, 113, 355–365. [Google Scholar] [CrossRef]
- Ramírez-Gil, J.G.; Henao-Rojas, J.C.; Morales-Osorio, J.G. Postharvest diseases and disorders in avocado cv. Hass and their relationship to preharvest management practices. Heliyon 2021, 7, e05905. [Google Scholar] [CrossRef]
- Ferguson, I.B.; Watkins, C.B. Crop load affects mineral concentrations and incidence of bitter pit in Cox’s Orange Pippin’apple fruit. J. Am. Soc. Hortic. Sci. 1992, 117, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Yamane, T.; Hayama, H.; Mitani, N.; Inoue, H.; Kusaba, S. Contribution of several fruit quality factors and mineral elements to water-soaked brown flesh disorder in peaches. Sci. Hortic. 2020, 272, 109523. [Google Scholar] [CrossRef]
- Itai, A. Watercore in fruits. In Abiotic Stress Biology in Horticultural Plants; Kochetov, A., Ed.; Springer: Tokyo, Japan, 2015; pp. 127–145. [Google Scholar]
- Doryanizadeh, M.; Ghasemnezhad, M.; Sabouri, A. Estimation of postharvest quality of “Red Delicious” apple fruits based on fruit nutrient elements composition. J. Agric. Sci. 2017, 9, 164–173. [Google Scholar] [CrossRef]
- Everett, K.R.; Boyd, L.M.; Pak, H.A.; Cutting, J.G.M. Calcium, fungicide sprays and canopy density influence postharvest rots of avocado. Australas. Plant Pathol. 2007, 36, 22–31. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Wang, Y.; Yang, S.; Qu, H. The changes of intracellular calcium concentration and distribution in the hard end pear (Pyrus pyrifolia cv. ‘Whangkeumbae’) fruit. Cell Calcium. 2018, 71, 15–23. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, S.T.; Mitcham, E.J. Factors involved in fruit calcium deficiency disorders. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; Volume 40, pp. 107–146. [Google Scholar]
- Molla, S.M.H.; Rastegar, S.; Omran, V.G.; Khademi, O. Ameliorative effect of melatonin against storage chilling injury in pomegranate husk and arils through promoting the antioxidant system. Sci. Hortic. 2022, 295, 110889. [Google Scholar] [CrossRef]
- Mishra, V.; Kaplan, Y.; Ginzberg, I. Mitigating chilling injury of pomegranate fruit skin. Sci. Hortic. 2022, 304, 111329. [Google Scholar] [CrossRef]
- Jiang, Y.; Duan, X.; Joyce, D.; Zhang, Z.; Li, J. Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chem. 2004, 88, 443–446. [Google Scholar] [CrossRef]
Wonderful | Kingdom | Bigful | Acco | Purple Queen | Mollar | ||
---|---|---|---|---|---|---|---|
Diameter (mm) | 105.80 ± 10.67 | 99.40 ± 9.10 | 90.11 ± 1.11 | 81.16 ± 1.78 | 79.19 ± 1.08 | 112.79 ± 3.02 | |
Weight (g) | 423.50 ± 14.53 | 433.71 ± 14.35 | 333.26 ± 6.49 | 311.57 ± 6.20 | 255.05 ± 3.99 | 435.07 ± 13.11 | |
Color | L | 51.94 ± 2.33 | 52.36 ± 1.75 | 54.38 ± 0.94 | 52.88 ± 0.77 | 52.49 ± 0.78 | 70.17 ± 1.93 |
a | 40.55 ± 2.42 | 41.61 ± 2.22 | 47.73 ± 0.95 | 48.68 ± 0.90 | 45.97 ± 0.91 | 16.11 ± 1.74 | |
b | 26.33 ± 0.68 | 27.93 ± 0.51 | 26.61 ± 0.49 | 27.18 ± 0.40 | 26.60 ± 0.51 | 37.92 ± 0.61 |
TSS | TA | Ext D | Int D | IL | WL | Firm. | ACNs | Oxalic | Citric | Tartaric | Malic | Ascorbic | Succinic | Fumaric | Sucr. | Gluc. | Fruct. | Ca | Cu | Fe | K | Mg | Mn | Na | Zn | ΣMin. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TA | 0.76 *** | -- | |||||||||||||||||||||||||
Ext D | 0.68 *** | 0.84 *** | -- | ||||||||||||||||||||||||
Int D | 0.56 ** | 0.87 *** | 0.93 *** | -- | |||||||||||||||||||||||
IL | −0.54 *** | −0.09 | 0.05 | 0.07 | -- | ||||||||||||||||||||||
WL | −0.7 *** | −0.43 ** | −0.28 | −0.18 | 0.36 * | -- | |||||||||||||||||||||
Firm. | 0.47 ** | 0.33 * | 0.5 *** | 0.49 * | 0.09 | −0.63 *** | -- | ||||||||||||||||||||
ACNs | 0.39 * | 0.80 *** | 0.85 *** | 0.94 *** | 0.27 | −0.1 | 0.26 | -- | |||||||||||||||||||
Oxalic | −0.36 | −0.74 *** | −0.88 *** | −0.94 *** | −0.26 | 0.01 | −0.41 * | −0.94 *** | -- | ||||||||||||||||||
Cítric | 0.82 *** | 0.95 *** | 0.87 *** | 0.87 *** | −0.25 | −0.4 | 0.47 * | 0.84 *** | −0.73 *** | -- | |||||||||||||||||
Tartaric | 0.71 *** | 0.75 *** | 0.59 ** | 0.62 *** | −0.35 | −0.55 ** | 0.50 * | 0.57 ** | −0.45 * | 0.75 *** | -- | ||||||||||||||||
Málic | −0.62 *** | −0.91 *** | −0.84 *** | −0.91 *** | 0.06 | 0.19 | −0.29 | −0.94 *** | 0.81 *** | −0.94 *** | −0.68 *** | -- | |||||||||||||||
Ascorbic | −0.67 *** | −0.24 | −0.02 | 0.10 | 0.60 ** | 0.74 *** | −0.38 | 0.21 | −0.33 | −0.24 | −0.45 * | 0.01 | -- | ||||||||||||||
Succinic | −0.85 *** | −0.58 ** | −0.34 | −0.28 | 0.56 ** | 0.75 *** | −0.52 ** | −0.18 | 0.03 | −0.59 ** | −0.7 *** | 0.38 | 0.87 *** | -- | |||||||||||||
Fumaric | −0.31 | −0.01 | 0.19 | 0.24 | 0.51 * | 0.36 | −0.02 | 0.27 | −0.39 | −0.02 | −0.16 | −0.19 | 0.64 *** | 0.53 ** | -- | ||||||||||||
Sucr. | −0.48 * | −0.83 *** | −0.67 *** | −0.8 *** | 0.04 | 0.07 | −0.05 | −0.9 *** | 0.72 *** | −0.86 *** | −0.6 ** | 0.94 *** | −0.05 | 0.32 | −0.12 | -- | |||||||||||
Gluc. | 0.8 *** | 0.78 *** | 0.75 *** | 0.71 *** | −0.29 | −0.42 * | 0.59 ** | 0.56 ** | −0.51 * | 0.83 *** | 0.64 *** | −0.72 *** | −0.33 | −0.54 ** | −0.06 | −0.51 ** | -- | ||||||||||
Fruct. | 0.74 *** | 0.51 * | 0.48 * | 0.38 | −0.42 * | −0.53 ** | 0.62 *** | 0.17 | −0.15 | 0.56 ** | 0.49 ** | −0.37 | −0.52 * | −0.56 ** | −0.19 | −0.13 | 0.90 *** | -- | |||||||||
Ca | 0.01 | −0.06 | 0.05 | 0.12 | 0.03 | −0.27 | 0.41 | −0.07 | −0.01 | −0.11 | 0.10 | 0.03 | −0.03 | −0.06 | 0.18 | 0.22 | 0.11 | 0.21 | -- | ||||||||
Cu | 0.36 | 0.57 ** | 0.70 *** | 0.58 ** | 0.01 | −0.02 | 0.17 | 0.63 ** | −0.65 ** | 0.58 * | 0.19 | −0.53 * | 0.16 | −0.02 | −0.09 | −0.48 | 0.43 | 0.19 | −0.32 | -- | |||||||
Fe | −0.17 | 0.10 | 0.42 | 0.35 | 0.53 * | 0.39 | 0.09 | 0.37 | −0.54 * | 0.06 | −0.09 | −0.17 | 0.51 * | 0.52 | 0.28 | −0.05 | 0.03 | −0.15 | −0.15 | 0.55 ** | -- | ||||||
K | 0.87 *** | 0.81 *** | 0.71 *** | 0.66 ** | −0.51 * | −0.42 | 0.60 ** | 0.51 * | −0.48 * | 0.80 *** | 0.69 ** | −0.63 ** | −0.39 | −0.65 ** | −0.15 | −0.51 * | 0.84 *** | 0.74 *** | 0.08 | 0.42 | −0.07 | -- | |||||
Mg | 0.01 | −0.09 | −0.04 | 0.02 | 0.049 | −0.47 * | 0.45 | −0.13 | 0.08 | −0.12 | 0.16 | 0.09 | −0.19 | −0.16 | −0.01 | 0.24 | 0.02 | 0.14 | 0.87 *** | −0.37 | −0.2 | −0.06 | -- | ||||
Mn | −0.42 | −0.06 | 0.26 | 0.32 | 0.70 *** | 0.38 | 0.18 | 0.29 | −0.48 | −0.13 | −0.13 | −0.07 | 0.70 *** | 0.56 * | 0.61 ** | 0.01 | −0.15 | −0.3 | 0.44 | 0.1 | 0.64 ** | −0.21 | 0.33 | -- | |||
Na | −0.05 | 0.08 | 0.33 | 0.18 | 0.21 | 0.30 | −0.11 | 0.24 | −0.25 | 0.10 | −0.13 | −0.15 | 0.30 | 0.25 | −0.04 | −0.07 | 0.10 | −0.03 | −0.21 | 0.49 ** | 0.54 ** | −0.09 | −0.29 | 0.20 | -- | ||
Zn | 0.10 | 0.33 | 0.44 | 0.40 | 0.01 | 0.46 | −0.17 | 0.45 * | −0.47 * | 0.31 | 0.08 | −0.34 | 0.28 | 0.16 | −0.02 | −0.36 | 0.24 | 0.03 | −0.45 * | 0.67 ** | 0.54 | 0.31 | −0.68 ** | 0.10 | 0.48 * | -- | |
ΣMin. | 0.83 *** | 0.78 *** | 0.76 *** | 0.69 *** | −0.44 | −0.42 | 0.66 ** | 0.51 * | −0.51 * | 0.76 *** | 0.67 ** | −0.62 ** | −0.33 | −0.6 ** | −0.11 | −0.4 | 0.85 *** | 0.76 *** | 0.29 | 0.42 | −0.01 | 0.96 *** | 0.11 | −0.06 | 0.04 | 0.26 | -- |
Ca/K | −0.84 *** | −0.77 *** | −0.69 *** | −0.66 ** | 0.48 * | 0.46 * | −0.66 ** | −0.61 ** | 0.46 * | −0.74 *** | −0.69 *** | 0.59 ** | 0.38 | 0.64 *** | 0.1 | 0.39 | −0.83 *** | −0.76 *** | −0.29 | −0.34 | 0.1 | −0.97 *** | −0.13 | 0.11 | 0.13 | −0.19 | −0.98 *** |
Pomegranate Variables at Harvest | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 d at 2 °C | TSS | TA | ILd0 | Firm. | ACNs | Oxalic | Citric | Tartaric | Malic | Ascorbic | Succinic | Fumaric | Sucr. | Gluc. | Fruct. |
Ext D | 0.64 *** | 0.91 *** | 0.63 *** | −0.004 | 0.75 *** | −0.91 *** | 0.90 *** | 0.34 | −0.84 *** | −0.02 | −0.20 | 0.04 | −0.59 ** | 0.11 | −0.06 |
Int D | 0.59 ** | 0.91 *** | 0.80 *** | −0.001 | 0.89 *** | −0.92 *** | 0.89 *** | 0.31 | −0.90 *** | 0.06 | −0.19 | 0.13 | −0.66 *** | 0.05 | −0.12 |
ILd30 | −0.39 * | −0.02 | 0.16 | 0.17 | 0.42 * | −0.25 | −0.19 | −0.50 * | 0.13 | 0.60 ** | 0.58 * | 0.58 * | 0.28 | −0.56 * | −0.58 * |
Time and Temp. | Cultivar | TSS (%) | TA (g L−1) | Oxalic (10−3 g L−1) | Citric (g L−1) | Tartaric (10−3 g L−1) | Malic (g L−1) | Ascorbic (g L−1) | Succinic (g L−1) | Fumaric (10−3 g L−1) | Sucrose (g L−1) | Glucose (g L−1) | Fructose (g L−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
At harvest | Wonderful | 16.10 ± 0.13 cA | 12.1 ± 0.3 cA | 3.8 ± 0.5 aA | 9.7 ± 0.2 dA | 21.0 ± 1.8 bA | 0.63 ± 0.04 aA | 0.77 ± 0.01 aA | 0.5 ± 0.09 aA | 0 aA | 0.31 ± 0.01 aA | 50.9 ± 01.5 abA | 49.4 ± 1.4 abA |
Kingdom | 16.03 ± 0.16 cA | 13.8 ± 1.2 dA | 5.6 ± 0.1 aA | 11.8 ± 0.3 eA | 40.3 ± 3.1 bA | 0.60 ± 0.01 aA | 0.92 ± 0.01 aA | 0.45 ± 0.09 aA | 0 aA | 0.29 ± 0.01 aA | 49.2 ± 0.7 abA | 47.7 ± 0.6 abA | |
Bigful | 14.23 ± 0.18 bA | 7.3 ± 0.1 bA | 4.6 ± 0.1 aA | 5.4 ± 0.1 bA | 0 aA | 0.73 ± 0.02 bA | 1.69 ± 0.03 cA | 0.81 ± 0.03 bA | 79.6 ± 4.8 bA | 0.44 ± 0.06 bA | 48.5 ± 1.0 abA | 47.3 ± 1.0 abA | |
Acco | 14.18 ± 0.15 aA | 7.1 ± 0.4 bA | 3.4 ± 0.2 aA | 6.0 ± 0.2 cA | 0 aA | 0.57 ± 0.03 aA | 1.97 ± 0.12 cA | 1.13 ± 0.02 bA | 132.2 ± 5.6 dA | 0.40 ± 0.13 bA | 44.4 ± 0.3 aA | 42.9 ± 0.4 aA | |
Purple Q | 13.28 ± 0.09 aA | 3.9 ± 0.2 aA | 5.7 ± 0.3 cA | 1.5 ± 0.4 aA | 0 aA | 0.86 ± 0.02 cA | 1.31 ± 0.01 bA | 0.49 ± 0.02 aA | 101.2 ± 0.6 cA | 0.53 ± 0.01 cA | 44.1 ± 0.9 abA | 44.7 ± 1.1 abA | |
Mollar | 15.83 ± 0.72 bA | 3.6 ± 0.2 aA | 4.1 ± 0.1 bA | 0.9 ± 0.1 aA | 45.6 ± 01.2 cA | 1.00 ± 0.15 cA | 0.67 ± 0.02 aA | 0.59 ± 0.02 aA | 0 aA | 0.66 ± 0.03 dA | 51.4 ± 1.3 bA | 53.4 ± 1.1 bA | |
30 d at 2 °C plus 2 d at 20 °C | Wonderful | 15.78 ± 0.04 dA | 13.4 ± 1.1 cA | 3.5 ± 0.2 aA | 10.7 ± 0.3 cA | 6.5 ± 2.1 bB | 0 aB | 0.79 ± 0.02 aA | 0.05 ± 0.01 aB | 48.4 ± 1.8 bB | 0 aB | 48.2 ± 0.3 bcB | 46.7 ± 0.4 abB |
Kingdom | 16.30 ± 0.12 eA | 15.7 ± 1.1 dA | 5.7 ± 0.1 aA | 12.7 ± 0.1 dA | 5.0 ± 3.8 abB | 0 aB | 0.95 ± 0.05 abA | 0.09 ± 0.01 aB | 57.5 ± 2.6 cB | 0 aB | 49.5 ± 1.3 cA | 48.1 ± 1.1 bA | |
Bigful | 14.13 ± 0.10 bA | 7.5 ± 0.1 bA | 5.7 ± 0.1 aA | 4.6 ± 0.2 bA | 8.1 ± 5.7 abB | 0.47 ± 0.04 bB | 1.66 ± 0.09 cA | 1.17 ± 0.2 dB | 84.1 ± 5.7 dB | 0.59 ± 0.04 bB | 46.2 ± 0.7 abcB | 45.6 ± 0.7 abB | |
Acco | 13.82 ± 0.06 abB | 6.9 ± 0.1 bA | 5.1 ± 0.5 aA | 4.5 ± 0.1 bA | 6.2 ± 4.3 abB | 0.49 ± 0.02 bB | 1.69 ± 0.08 cB | 1.27 ± 0.1 dB | 88.3 ± 1.7 dB | 0.58 ± 0.05 bB | 43.8 ± 0.4 abA | 43.3 ± 0.3 aA | |
Purple Q | 12.08 ± 0.07 aB | 3.9 ± 0.6 aA | 22.2 ± 6.5 bA | 1.9 ± 0.6 aA | 1.7 ± 1.1 aB | 0.56 ± 0.12 cB | 1.12 ± 0.22 bA | 0.85 ± 0.02 cB | 52.8 ± 1.5 cB | 0.59 ± 0.09 gB | 35.3 ± 3.5 aB | 35.7 ± 7.1 aB | |
Mollar | 14.92 ± 0.23 cA | 3.6 ± 0.1 aA | 34.6 ± 0.1 bA | 0.9 ± 0.1 aA | 8.4 ± 3.0 abB | 1.08 ± 0.02 dA | 0.65 ± 0.01 aB | 0.44 ± 0.01 bB | 40.0 ± 5.4 aB | 1.43 ± 0.02 cB | 44.6 ± 0.7 abB | 47.1 ± 0.7 abB |
Cultivar | Ca (g kg−1) | Cu (10−3 g kg−1) | Fe (10−3 g kg−1) | K (g kg−1) | Mg (g kg−1) | Mn (10−3 g kg−1) | Na (g kg−1) | Zn (10−3 g kg−1) | Σ Minerals (g kg−1) | Ca/K |
---|---|---|---|---|---|---|---|---|---|---|
Wonderful | 3.2 ± 0.1 b | 3.1 ± 0.4 b | 4.7 ± 0.5 c | 12.8 ± 0.7 b | 0.53 ± 0.02 a | 5.4 ± 0.3 c | 0.26 ± 0.09 ab | 9.4 ± 1.4 bc | 16.8 ± 0.8 a | 0.24 ± 0.01 d |
Kingdom | 2.6 ± 0.1 c | 4.0 ± 0.4 a | 6.0 ± 1.2 bc | 14.1 ± 0.3 c | 0.32 ± 0.02 d | 3.7 ± 0.1 e | 0.57 ± 0.06 c | 13.8 ± 2.4 a | 17.6 ± 0.6 a | 0.18 ± 0.03 e |
Bigful | 3.4 ± 0.3 ba | 2.7 ± 0.2 b | 7.8 ± 1.8 b | 10.6 ± 0.2 b | 0.40 ± 0.03 c | 6.9 ± 0.4 b | 0.47 ± 0.06 bc | 13.5 ± 2.5 a | 14.9 ± 0.6 b | 0.32 ± 0.01 c |
Acco | 3.1 ± 0.2 b | 3.8 ± 0.6 a | 10.2 ± 2 a | 9.1 ± 0.8 d | 0.44 ± 0.01 c | 7.7 ± 0.5 a | 0.72 ± 0.14 c | 11.6 ± 1.2 ab | 13.3 ± 0.5 bcd | 0.34 ± 0.01 bc |
Purple Q | 2.7 ± 0.4 cb | 2.3 ± 0.4 cb | 3.7 ± 0.5 d | 7.7 ± 0.7 e | 0.35 ± 0.05 dc | 3.9 ± 0.4 de | 0.38 ± 0.09 b | 10.6 ± 1.7 ab | 11.2 ± 0.9 d | 0.35 ± 0.1 ab |
Mollar | 3.6 ± 0.1 a | 2.1 ± 0.1 c | 3.9 ± 0.4 cd | 9.8 ± 0.5 d | 0.50 ± 0.02 b | 4.4 ± 0.3 b | 0.17 ± 0.03 a | 7.3 ± 0.6 c | 14.0 ± 0.6 c | 0.37 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorente-Mento, J.M.; Carrión-Antolí, A.; Guillén, F.; Serrano, M.; Valero, D.; Martínez-Romero, D. Relationship among Sugars, Organic Acids, Mineral Composition, and Chilling Injury Sensitivity on Six Pomegranate Cultivars Stored at 2 °C. Foods 2023, 12, 1364. https://doi.org/10.3390/foods12071364
Lorente-Mento JM, Carrión-Antolí A, Guillén F, Serrano M, Valero D, Martínez-Romero D. Relationship among Sugars, Organic Acids, Mineral Composition, and Chilling Injury Sensitivity on Six Pomegranate Cultivars Stored at 2 °C. Foods. 2023; 12(7):1364. https://doi.org/10.3390/foods12071364
Chicago/Turabian StyleLorente-Mento, José Manuel, Alberto Carrión-Antolí, Fabián Guillén, María Serrano, Daniel Valero, and Domingo Martínez-Romero. 2023. "Relationship among Sugars, Organic Acids, Mineral Composition, and Chilling Injury Sensitivity on Six Pomegranate Cultivars Stored at 2 °C" Foods 12, no. 7: 1364. https://doi.org/10.3390/foods12071364
APA StyleLorente-Mento, J. M., Carrión-Antolí, A., Guillén, F., Serrano, M., Valero, D., & Martínez-Romero, D. (2023). Relationship among Sugars, Organic Acids, Mineral Composition, and Chilling Injury Sensitivity on Six Pomegranate Cultivars Stored at 2 °C. Foods, 12(7), 1364. https://doi.org/10.3390/foods12071364