Quality Characteristics of Rice-Based Ice Creams with Different Amylose Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ice Cream Manufacturing
2.3. Characteristics of Processed Rice
2.3.1. Amylose Content
2.3.2. Crude Protein Content
2.3.3. Pasting Properties
2.4. Physicochemical Properties of Rice Ice Cream
2.4.1. Total Solids, Total Sugars, pH, Viscosity, and Hardness
2.4.2. Overrun and Drip-Through Rate
2.4.3. Color
2.5. Sensory Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Processed Rice
3.2. Physicochemical Properties of Processed Rice Ice Cream
3.3. Correlation between Processed Rice and Rice Ice Cream Quality Characteristics
3.4. Sensory Evaluation of Rice Ice Cream
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paul, J.C.J.N. Methane’s sinks and sources. Nature 1991, 350, 380–381. [Google Scholar]
- Reay, D.; Smith, P.; Van Amstel, A. Methane sources and the global methane budget. In Methane and Climate Change; Earthscan Ltd.: Washington, DC, USA, 2010; pp. 1–13. [Google Scholar]
- Charoenthaikij, P.; Chaovanalikit, A.; Uan-On, T.; Waimaleongora-ek, P. Quality of different rice cultivars and factors influencing consumer willingness-to-purchase rice. Int. J. Food Sci. 2021, 56, 2452–2461. [Google Scholar] [CrossRef]
- Bergman, C.J.; Delgado, J.T.; McClung, A.M.; Fjellstrom, R.G. An improved method for using a microsatellite in the rice waxy gene to determine amylose class. Cereal Chem. 2001, 78, 257–260. [Google Scholar] [CrossRef]
- Jeong, J.M.; Jeung, J.U.; Lee, S.B.; Kim, M.K.; Kim, B.K.; Sohn, J.K. Physicochemical properties of rice endosperm with different amylose contents. Korean J. Crop Sci. 2013, 58, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Van Hung, P.; Maeda, T.; Morita, N. Waxy and high-amylose wheat starches and flours—Characteristics, functionality and application. Trends Food Sci. Technol. 2006, 17, 448–456. [Google Scholar] [CrossRef]
- Juliano, B.O. A simplified assay for milled-rice amylose. Cereal Sci. Today 1971, 12, 334–360. [Google Scholar]
- Preiss, J. Biology and molecular biology of starch synthesis and its regulation. Oxford Sur. Plant Mol. Cell. Biol. 1991, 7, 59–114. [Google Scholar]
- Smith, A.M.; Denyer, K.; Martin, C. The synthesis of the starch granule. Annu. Rev. Plant Biol. 1997, 48, 67–87. [Google Scholar] [CrossRef]
- Sato, H.; Suzuki, Y.; Sakai, M.; Imbe, T. Molecular characterization of Wx-mq, a novel mutant gene for low-amylose content in endosperm of rice (Oryza sativa L.). Breed. Sci. 2002, 52, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Zeng, D.; Yan, M.; Wang, Y.; Liu, X.; Qian, Q.; Li, J. Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.). Plant Mol. Biol. 2007, 65, 501–509. [Google Scholar] [CrossRef]
- Kiswara, G.; Lee, J.-H.; Hur, Y.-J.; Cho, J.-H.; Lee, J.-Y.; Kim, S.-Y.; Sohn, Y.-B.; Song, Y.-C.; Nam, M.-H.; Yun, B.-W. Genetic analysis and molecular mapping of low amylose gene du12(t) in rice (Oryza sativa L.). Theor. Appl. Genet. 2014, 127, 51–57. [Google Scholar] [CrossRef]
- Sano, Y. Differential regulation of waxy gene expression in rice endosperm. Theor. Appl. Genet. 1984, 68, 467–473. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zheng, F.Q.; Shen, G.Z.; Gao, J.P.; Snustad, D.P.; Li, M.G.; Zhang, J.L.; Hong, M.M. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J. 1995, 7, 613–622. [Google Scholar] [CrossRef]
- Adeva, C.C.; Lee, H.-S.; Kim, S.-H.; Jeon, Y.-A.; Shim, K.-C.; Luong, N.H.; Kang, J.-W.; Kim, C.-S.; Cho, J.-H.; Ahn, S.-N. Two complementary genes, SBE3 and GBSS1 contribute to high amylose content in japonica cultivar Dodamssal. Plant Breed. Biotech. 2020, 8, 354–367. [Google Scholar] [CrossRef]
- Shin, D.S.; Choi, Y.J.; Sim, E.Y.; Oh, S.K.; Kim, S.J.; Lee, S.K.; Woo, K.S.; Kim, H.J.; Park, H.Y. Comparison of the hydration, gelatinization and saccharification properties of processing type rice for beverage development. Korean J. Food Nutr. 2016, 29, 618–627. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.J.; Chun, A.R.; Sim, E.Y.; Park, H.Y.; Kwak, J.E.; Kim, M.J.; Lee, C.K. Effect of kneading and fermentation conditions on the quality of gluten-free rice bread. Korean J. Food Sci. Technol. 2020, 52, 510–515. [Google Scholar]
- Sim, E.Y.; Lee, J.Y.; Cho, J.H.; Yoon, M.R.; Kwak, J.E.; Kim, N.G.; Jeon, Y.H.; Lee, C.K.; Lee, J.S.; Hong, H.C. Quality characteristics of porridge made from different korean rice varieties including high yield tongil-type rice. Korean J. Food Preserv. 2018, 25, 651–658. [Google Scholar] [CrossRef]
- Cho, J.H.; Lee, J.H.; Park, N.B.; Son, Y.B.; Oh, S.H.; Han, S.I.; Song, Y.C.; Seo, W.D.; Park, D.S.; Nam, M.H.; et al. ‘Saemimyeon’, a tongil-type medium-late maturing rice variety with high amylose content used for rice noodle preparation. Korean J. Breed. Sci. 2018, 50, 522–528. [Google Scholar] [CrossRef] [Green Version]
- Rhee, S.J.; Lee, J.E.; Kim, M.R. Sensory characteristics of commercial rice cookies and snacks in market. Korean J. Food Preserv. 2013, 20, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Goff, H.D. Colloidal aspects of ice cream—A review. Int. Dairy J. 1997, 7, 363–373. [Google Scholar] [CrossRef]
- dos Santos Cruxen, C.E.; Jessica Fernanda, H.; Giovana Paula, Z.; Ângela Maria, F.; Cesar Valmor, R.; Fabio Clasen, C. Probiotic butiá (Butia odorata) ice cream: Development, characterization, stability of bioactive compounds, and viability of Bifidobacterium lactis during storage. LWT-Food Sci. Technol. 2017, 75, 379–385. [Google Scholar] [CrossRef]
- Bahramparvar, M.; Mazaheri Tehrani, M. Application and functions of stabilizers in ice cream. Food Rev. Int. 2011, 27, 389–407. [Google Scholar] [CrossRef]
- Goraya, R.K.; Bajwa, U. Enhancing the functional properties and nutritional quality of ice cream with processed amla (Indian gooseberry). J. Food Sci. Technol. 2015, 52, 7861–7871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utpott, M.; Ramos de Araujo, R.; Galarza Vargas, C.; Nunes Paiva, A.R.; Tischer, B.; de Oliveira Rios, A.; Hickmann Flôres, S. Characterization and application of red pitaya (Hylocereus polyrhizus) peel powder as a fat replacer in ice cream. J. Food Process. Preserv. 2020, 44, e14420. [Google Scholar] [CrossRef]
- Ghaderi, S.; Mazaheri Tehrani, M.; Hesarinejad, M.A. Qualitative analysis of the structural, thermal and rheological properties of a plant ice cream based on soy and sesame milks. Food Sci. Nutr. 2021, 9, 1289–1298. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, A.; Liu, L.; Kan, Z.; Wang, W. The relationship between water-holding capacities of soybean–whey mixed protein and ice crystal size for ice cream. J. Food Process Eng. 2021, 44, e13723. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, N.; Wu, J.; Yin, B. Chapter 11—Rice Bran Protein: Extraction, Nutraceutical Properties, and Potential Applications. In Rice Bran and Rice Bran Oil; Cheong, L.-Z., Xu, X., Eds.; AOCS Press: Urbana, IL, USA, 2019; pp. 271–293. [Google Scholar]
- Fiol, C.; Prado, D.; Romero, C.; Laburu, N.; Mora, M.; Alava, J.I. Introduction of a new family of ice creams. Int. J. Gastron. Food Sci. 2017, 7, 5–10. [Google Scholar] [CrossRef]
- El-Said, M.M.; El-Messery, T.M.; Salama, H.H. Functional properties and in vitro bio-accessibility attributes of light ice cream incorporated with purple rice bran. Int. J. Dairy Sci. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Lee, M.H.; Lee, M.K.; Ryu, S.I.; Kim, B.H.; Kim, Y.J.; Jeon, J.E.; Lee, S.H. Quality characteristics of ice creams added with fermented black rice bran powder. Culi. Sci. Hosp. Res. 2018, 24, 55–61. [Google Scholar]
- Song, Y.C.; Cho, J.H.; Lee, J.H.; Kwak, D.Y.; Park, N.B.; Yeo, U.S.; Kim, C.S.; Jeon, M.G.; Lee, J.Y.; Lee, G.H.; et al. A glutinous rice variety with multiple disease resistance ‘Baegokchal’. Korean J. Breed. Sci. 2013, 45, 31–37. [Google Scholar] [CrossRef]
- Oh, Y.J.; Park, T.I.; Park, H.H.; Han, O.K.; Song, T.H.; Park, J.C.; Kim, Y.K.; Park, J.H.; Kang, H.J.; Kang, C.S.; et al. Growth characteristics and forage productivity of new forage barley variety, ‘Miho’. J. Korean Grassl. Forage Sci. 2016, 36, 370–375. [Google Scholar] [CrossRef]
- Jeong, B.G.; Choi, K.S.; Chun, J.Y. Physicochemical properties of Saeilmi (Oryza sativa Linne) germinated with different steeping and germination time. Korean J. Food Preserv. 2018, 25, 311–320. [Google Scholar] [CrossRef]
- Cho, J.H.; Song, Y.C.; Lee, J.H.; Lee, J.Y.; Son, Y.B.; Oh, S.H.; Han, S.I.; Kim, C.S.; Chung, K.H.; Park, D.S.; et al. ‘Dodamssal (Milyang261)’, Functional rice as a resistant starch with a high amylose content. Korean J. Breed. Sci. 2019, 51, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Kim, D.-G.; Lee, G.; Seo, J.; Choi, I.-Y.; Choi, B.-S.; Yang, T.-J.; Kim, K.S.; Lee, J.; Chin, J.H.; et al. Defining the genome structure of ‘Tongil’ rice, an important cultivar in the Korean “Green Revolution”. Rice 2014, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-S.; Choi, Y.-M.; Lee, Y.-Y.; Ma, K.-H.; Gwag, J.-G.; Lee, J.R.; Yoon, Y.-T.; Cho, Y.-G.; Lee, S.-Y. Selecting high amylose rice germplasm combined with NIR spectroscopy at the RDA genebank conserved. Plant Breed. Biotech. 2014, 2, 380–385. [Google Scholar] [CrossRef]
- Oh, S.J.; Lee, M.C.; Choi, Y.M.; Lee, S.K.; Oh, M.W.; Ali, A.; Chae, B.S.; Hyun, D.Y. Development of near-infrared reflectance spectroscopy (NIRS) model for amylose and crude protein contents analysis in rice germplasm. Korean J. Plant Res. 2017, 30, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Voronin, G.L.; Roberts, R.; Felix, T.L.; Coupland, J.N.; Harte, F.M. Effect of high-pressure-jet processing on the physiochemical properties of low-fat ice cream mix. J. Dairy Sci. 2020, 103, 6003–6014. [Google Scholar] [CrossRef]
- Akbari, M.; Eskandari, M.H.; Niakosari, M.; Bedeltavana, A. The effect of inulin on the physicochemical properties and sensory attributes of low-fat ice cream. Int. Dairy J. 2016, 57, 52–55. [Google Scholar] [CrossRef]
- Bolliger, S.; Goff, H.; Tharp, B. Correlation between colloidal properties of ice cream mix and ice cream. Int. Dairy J. 2000, 10, 303–309. [Google Scholar] [CrossRef]
- Vital, A.C.P.; Santos, N.W.; Matumoto-Pintro, P.T.; da Silva Scapim, M.R.; Madrona, G.S. Ice cream supplemented with grape juice residue as a source of antioxidants. Int. J. Dairy Technol. 2018, 71, 183–189. [Google Scholar] [CrossRef]
- Cho, J.S.; Lee, H.J.; Park, J.H.; Sung, J.H.; Choi, J.Y.; Moon, K.D. Image analysis to evaluate the browning degree of banana (Musa spp.) peel. Food Chem. 2016, 194, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.S.; Kim, D.H.; Youn, K.S.; Lee, J.B.; Moon, K.D. Optimization of roasting conditions according to antioxidant activity and sensory quality of coffee brews. Food Sci. Biotechnol. 2013, 22, 23–29. [Google Scholar] [CrossRef]
- Son, J.R.; Kim, J.H.; Lee, J.I.; Youn, Y.H.; Kim, J.K.; Hwang, H.G.; Moon, H.P. Trend and further research of rice quality evaluation. Korean J. Crop Sci. 2002, 47, 33–54. [Google Scholar]
- Oh, S.; Chae, B.; Lee, M.C.; Choi, Y.M.; Lee, S.; Ko, H.C.; Rauf, M.; Hyun, D.Y. Statistical treatment on amylose and protein contents in rice variety germplasm based on the data obtained from analysis of near-infrared reflectance spectroscopy (NIRS). Korean J. Plant Res. 2018, 31, 498–514. [Google Scholar]
- Zhang, W.; Bi, J.; Chen, L.; Zheng, L.; Ji, S.; Xia, Y.; Xie, K.; Zhao, Z.; Wang, Y.; Liu, L.; et al. QTL mapping for crude protein and protein fraction contents in rice (Oryza sativa L.). J. Cereal Sci. 2008, 48, 539–547. [Google Scholar] [CrossRef]
- Nisov, A.; Ercili-Cura, D.; Nordlund, E. Limited hydrolysis of rice endosperm protein for improved techno-functional properties. Food Chem. 2020, 302, 125274. [Google Scholar] [CrossRef]
- Park, J.; Oh, S.K.; Chung, H.J.; Park, H.J. Structural and physicochemical properties of native starches and non-digestible starch residues from Korean rice cultivars with different amylose contents. Food Hydrocoll. 2020, 102, 105544. [Google Scholar] [CrossRef]
- Hasjim, J.; Li, E.; Dhital, S. Milling of rice grains: Effects of starch/flour structures on gelatinization and pasting properties. Carbohydr. Polym. 2013, 92, 682–690. [Google Scholar] [CrossRef]
- Kim, J.M.; Shin, M.S. Effects of particle size distributions of rice flour on the quality of gluten-free rice cupcakes. LWT-Food Sci. Technol. 2014, 59, 526–532. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakamura, S.; Satoh, H.; Ohtsubo, K. Relationship between chain-length distributions of waxy rice amylopectins and physical properties of rice grains. J. Appl. Glycosci. 2006, 53, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Balet, S.; Guelpa, A.; Fox, G.; Manley, M. Rapid visco analyser (RVA) as a tool for measuring starch-related physiochemical properties in cereals: A Review. Food Anal. Methods 2019, 12, 2344–2360. [Google Scholar] [CrossRef]
- Huang, J.; Shang, Z.; Man, J.; Liu, Q.; Zhu, C.; Wei, C. Comparison of molecular structures and functional properties of high-amylose starches from rice transgenic line and commercial maize. Food Hydrocoll. 2015, 46, 172–179. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, P.; Sui, Z.; Bao, J. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chem. 2015, 172, 433–440. [Google Scholar] [CrossRef]
- Matveev, Y.I.; van Soest, J.J.G.; Nieman, C.; Wasserman, L.A.; Protserov, V.A.; Ezernitskaja, M.; Yuryev, V.P. The relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydr. Polym. 2001, 44, 151–160. [Google Scholar] [CrossRef]
- Erkaya, T.; Dağdemir, E.; Şengül, M. Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream. Food Res. Int. 2012, 45, 331–335. [Google Scholar] [CrossRef]
- Varavinit, S.; Shobsngob, S.; Varanyanond, W.; Chinachoti, P.; Naivikul, O. Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of Thai rice. Starch-Stärke 2003, 55, 410–415. [Google Scholar] [CrossRef]
- Park, I.-M.; Ibáñez, A.M.; Zhong, F.; Shoemaker, C.F. Gelatinization and pasting properties of waxy and non-waxy rice starches. Starch-Stärke 2007, 59, 388–396. [Google Scholar] [CrossRef]
- Biasutti, M.; Venir, E.; Marino, M.; Maifreni, M.; Innocente, N. Effects of high pressure homogenisation of ice cream mix on the physical and structural properties of ice cream. Int. Dairy J. 2013, 32, 40–45. [Google Scholar] [CrossRef]
- Thompson, K.R.; Chambers, D.H.; Chambers IV, E. Sensory characteristics of ice cream produced in the U.S.A and Italy. J. Sens. Stud. 2009, 24, 396–414. [Google Scholar] [CrossRef]
- Goff, H.D.; Hartel, R.W. Ice Cream, 7th ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Arbuckle, W.S. Ice Cream Service Handbook; AVI Publishing Co.: Westport, CT, USA, 1976. [Google Scholar]
- Meneses, R.; Silva, M.; Monteiro, M.; Rocha-Leão, M.; Conte-Junior, C. Effect of dairy by-products as milk replacers on quality attributes of ice cream. J. Dairy Sci. 2020, 103, 10022–10035. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, O.-W.; Kwak, H.S.; Kim, S.S.; Lee, H.-J. Prediction model of rice eating quality using physicochemical properties and sensory quality evaluation. J. Sens. Stud. 2017, 32, e12273. [Google Scholar] [CrossRef]
- Lamberts, L.; De Bie, E.; Vandeputte, G.E.; Veraverbeke, W.S.; Derycke, V.; De Man, W.; Delcour, J.A. Effect of milling on colour and nutritional properties of rice. Food Chem. 2007, 100, 1496–1503. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, N.; Xu, Y.; Huang, J.; Yuan, M.a.; Wu, D.; Shu, X. Physicochemical properties of hydroxypropylated and cross-linked rice starches differential in amylose content. Int. J. Biol. Macromol. 2019, 128, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhou, B.; Cheng, L.; Huang, J.; Zou, P.; Zeng, Y.; Huang, S.; Chen, T.; Liu, C.; Wu, J. Pre-fermentation of rice flour for improving the cooking quality of extruded instant rice. Food Chem. 2022, 386, 132757. [Google Scholar] [CrossRef]
- Yoenyongbuddhagal, S.; Noomhorm, A. Effect of physicochemical properties of high-amylose Thai rice flours on vermicelli quality. Cereal Chem. 2002, 79, 481–485. [Google Scholar] [CrossRef]
- Chung, H.J.; Liu, Q.; Lee, L.; Wei, D. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocoll. 2011, 25, 968–975. [Google Scholar] [CrossRef]
- Ahmed, J.; Al-Jassar, S.; Thomas, L. A comparison in rheological, thermal, and structural properties between Indian Basmati and Egyptian Giza rice flour dispersions as influenced by particle size. Food Hydrocoll. 2015, 48, 72–83. [Google Scholar] [CrossRef]
- Li, F.; Guan, X.; Li, C. Effects of degree of milling on the starch digestibility of cooked rice during (in vitro) small intestine digestion. Int. J. Biol. Macromol. 2021, 188, 774–782. [Google Scholar] [CrossRef]
- Kraithong, S.; Lee, S.; Rawdkuen, S. Physicochemical and functional properties of Thai organic rice flour. J. Cereal Sci. 2018, 79, 259–266. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Silva, H.L.A.; Celeguini, R.M.S.; Santos, R.; Pastore, G.M.; Junior, C.A.C.; Freitas, M.Q.; Nogueira, L.C.; Silva, M.C.; Cruz, A.G. Effect of galactooligosaccharide addition on the physical, optical, and sensory acceptance of vanilla ice cream. Int. J. Dairy Sci. 2015, 98, 4266–4272. [Google Scholar] [CrossRef] [Green Version]
Variety | Amylose Content (%) | Crude Protein (%) | Pasting Properties | |||||
---|---|---|---|---|---|---|---|---|
Initial Pasting Temp. (°C) | Peak Vis. (cP) | Trough Vis. (cP) | Final Vis. (cP) | Breakdown vis. (cP) | Setback Vis. (cP) | |||
Baegokchal | 5.89 ± 0.04 e1 | 6.71 ± 0.02 b | 67.15 ± 0.52 e | 163.42 ± 1.80 d | 64.08 ± 0.44 e | 82.50 ± 0.80 e | 99.33 ± 1.72 c | 18.41 ± 0.55 e |
Miho | 12.40 ± 0.21 d | 6.69 ± 0.05 b | 69.12 ± 0.06 d | 295.42 ± 6.41 c | 100.25 ± 2.72 d | 150.50 ± 3.29 d | 195.16 ± 4.19 b | 50.25 ± 2.08 d |
Saeilmi | 17.40 ± 0.37 c | 6.44 ± 0.06 c | 73.47 ± 0.56 c | 374.89 ± 2.05 b | 169.56 ± 5.10 b | 277.86 ± 7.02 b | 205.33 ± 3.36 a | 108.30 ± 1.93 b |
Saemimyeon | 25.78 ± 0.85 b | 6.86 ± 0.07 a | 80.28 ± 0.03 b | 403.11 ± 3.72 a | 204.89 ± 2.68 a | 386.41 ± 1.89 a | 198.22 ± 1.87 b | 181.53 ± 1.28 a |
Dodamssal | 40.39 ± 0.22 a | 6.90 ± 0.05 a | 84.12 ± 0.45 a | 147.03 ± 0.67 e | 114.14 ± 0.84 c | 181.75 ± 2.63 c | 32.89 ± 1.21 d | 67.61 ± 3.01 c |
Variety | Total Solids (%) | Total Sugars (°Bx) | pH | Viscosity (cP) | Hardness (Ncm−2) | Overrun (%) | Drip-Through Rate (g/min) |
---|---|---|---|---|---|---|---|
Baegokchal | 33.65 ± 0.07 a1 | 26.33 ± 0.58 a | 6.81 ± 0.01 a | 25,030 ± 1813 a | 4.27 ± 2.37 c | 46.99 ± 3.17 a | - |
Miho | 33.14 ± 0.02 b | 25.67 ± 0.58 b | 6.77 ± 0.01 b | 17,920 ± 1763 b | 27.87 ± 4.30 b | 27.77 ± 1.80 c | 0.89 ± 0.03 ab |
Saeilmi | 33.06 ± 0.01 c | 25.00 ± 0.00 c | 6.73 ± 0.01 c | 17,180 ± 711 b | 27.22 ± 0.61 b | 20.19 ± 2.26 d | 0.98 ± 0.01 a |
Saemimyeon | 33.10 ± 0.01 bc | 19.00 ± 0.00 d | 6.66 ± 0.01 d | 4030 ± 142 c | 49.88 ± 9.52 a | 17.95 ± 1.83 d | 0.75 ± 0.17 b |
Dodamssal | 33.07 ± 0.03 c | 19.00 ± 0.00 d | 6.67 ± 0.01 d | 2170 ± 154 c | 23.54 ± 0.61 b | 32.06 ± 1.11 b | 0.98 ± 0.00 a |
Variety | Color and Appearance | Taste | Texture | Chewy Texture | Aroma | Rice Flavor | Overall Acceptance |
---|---|---|---|---|---|---|---|
Baegokchal | 5.7 ± 0.7 a1 | 3.7 ± 1.2 a | 4.8 ± 1.2 ab | 6.2 ± 1.1 a | 5.2 ± 1.3 a | 5.3 ± 1.1 a | 4.1 ± 1.8 a |
Miho | 5.7 ± 1.1 a | 4.6 ± 1.3 a | 5.5 ± 0.8 a | 5.0 ± 0.0 b | 5.1 ± 1.6 a | 3.7 ± 1.4 b | 5.1 ± 0.6 a |
Saeilmi | 5.5 ± 1.3 a | 4.6 ± 1.5 a | 5.4 ± 1.1 a | 4.7 ± 0.9 b | 4.8 ± 1.7 a | 4.0 ± 1.2 ab | 5.1 ± 1.3 a |
Saemimyeon | 5.6 ± 1.1 a | 4.7 ± 1.4 a | 4.8 ± 1.3 ab | 3.2 ± 1.4 c | 4.7 ± 1.6 a | 4.8 ± 1.5 ab | 4.9 ± 1.7 a |
Dodamssal | 5.3 ± 1.3 a | 4.4 ± 1.3 a | 3.9 ± 1.8 b | 2.5 ± 1.1 c | 4.6 ± 1.8 a | 4.7 ± 1.8 ab | 4.5 ± 1.6 a |
F-value | 0.21 | 0.91 | 2.46 | 9.68 ***2 | 0.25 | 2.03 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seong, G.-U.; Kim, J.-Y.; Kim, J.-S.; Jeong, S.-U.; Cho, J.-H.; Lee, J.-Y.; Lee, S.-B.; Kabange, N.-R.; Park, D.-S.; Moon, K.-D.; et al. Quality Characteristics of Rice-Based Ice Creams with Different Amylose Contents. Foods 2023, 12, 1518. https://doi.org/10.3390/foods12071518
Seong G-U, Kim J-Y, Kim J-S, Jeong S-U, Cho J-H, Lee J-Y, Lee S-B, Kabange N-R, Park D-S, Moon K-D, et al. Quality Characteristics of Rice-Based Ice Creams with Different Amylose Contents. Foods. 2023; 12(7):1518. https://doi.org/10.3390/foods12071518
Chicago/Turabian StyleSeong, Gi-Un, Ji-Yoon Kim, Jung-Soo Kim, Sae-Ul Jeong, Jun-Hyeon Cho, Ji-Yoon Lee, Sais-Beul Lee, Nkulu-Rolly Kabange, Dong-Soo Park, Kwang-Deog Moon, and et al. 2023. "Quality Characteristics of Rice-Based Ice Creams with Different Amylose Contents" Foods 12, no. 7: 1518. https://doi.org/10.3390/foods12071518
APA StyleSeong, G. -U., Kim, J. -Y., Kim, J. -S., Jeong, S. -U., Cho, J. -H., Lee, J. -Y., Lee, S. -B., Kabange, N. -R., Park, D. -S., Moon, K. -D., & Kang, J. -W. (2023). Quality Characteristics of Rice-Based Ice Creams with Different Amylose Contents. Foods, 12(7), 1518. https://doi.org/10.3390/foods12071518