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Abstract: The physicochemical properties of semi-dried Takifugu obscurus fillets in cold air drying
(CAD), hot air drying (HAD), and cold and hot air combined drying (CHACD) were analyzed based
on pH, water state, lipid oxidation, protein degradation, and microstructure, using a texture analyzer,
low-field nuclear magnetic resonance, thiobarbituric acid, frozen sections, sodium dodecyl sulfate
polyacrylamide gel electrophoresis, and differential scanning calorimetry. Water binding to the
samples was enhanced by all three drying methods, and the immobilized water content of CHACD
was between that of HAD and CAD. The pH of the semi-dried fillets was improved by CHACD.
When compared to HAD and CAD, CHACD improved the springiness and chewiness of the fillets,
especially cold air drying for 90 min (CAD-90), with values of 0.97 and 59.79 g, respectively. The
muscle fibers were arranged compactly and clearly in CAD-90, having higher muscle toughness.
CHACD reduced the drying time and degree of lipid oxidation compared to HAD and CAD. CAD
better preserved protein composition, whereas HAD and CHACD promoted actin production;
CHACD had a higher protein denaturation temperature (74.08–74.57 ◦C). CHACD results in better
physicochemical properties than HAD or CAD, including shortened drying time, reduced lipid
oxidation, enhanced protein stability, and denser tissue structure. These results provide a theoretical
basis for selecting the appropriate drying method for T. obscurus in industrial applications.

Keywords: Takifugu obscurus; drying; physicochemical properties; microstructure; protein degradation

1. Introduction

Pufferfish (Tetraodontidae), belonging to Tetraodontiformes, is famous worldwide for its
tetrodotoxin. Pufferfish abound in China with more than 40 species widely distributed
in the East China Sea, Bohai Sea, Yellow Sea, and Yangtze River. Takifugu obscurus and
Takifugu rubripes are the only two species of pufferfish that have been legally processed in
China since 2016 [1]. Pufferfish meat is low in fat and high in protein, mineral elements,
a variety of essential amino acids, and taurine, making it a fish with high nutritional
value that is popular with consumers in Japan, Korea, and China [2]. According to the
2022 China Fishery Statistical Yearbook, the total amount of farmed pufferfish reached
29,950 tons in 2021, and the overall production will continue to increase [3]. However, the
current processing capacity of pufferfish is higher than the supply, and pufferfish meat
is not easily stored, as it only has a shelf life of about 4 d when refrigerated at 4 ◦C [4].
Therefore, extending the shelf life of pufferfish is important for improving production. In
addition, the current processing method is too simple, as fish is mainly stored salt-dried
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and at low temperatures; this problem can be addressed by developing market-adapted
pufferfish products.

Drying is an essential step in the aquatic products processing because it can extend
shelf life, improve quality, and reduce storage and transportation costs by reducing the
internal moisture content, thus inhibiting the growth of microorganisms and enzyme
activity [5]. Traditional sun drying exhibits poor color, texture, and odor quality [6]. Hot
air drying (HAD) in the processing of aquatic products—although higher temperatures
can improve drying speed—involves the risk of destroying nutrients and physicochemical
properties during the drying process [7]. Cold air drying (CAD) technology is appropriate
for drying aquatic products with high protein content, as it can minimize the thermal
denaturation of proteins, lipid oxidation, color change, and loss of flavor substances;
however, the drying speed is slow [8]. Cold and hot air combined drying (CHACD) offers
the advantages of both CAD and HAD, and has thus become a more popular method.

Different drying methods have different impacts on the water status, microstructure,
lipid oxidation, and protein degradation of food products, leading to changes in their
physicochemical properties [9]. Through drying, water evaporates within the aquatic
product and the rate of lipid contact with oxygen increases [10]. During processing,
moderate oxidation produces a satisfactory flavor, but over-oxidation leads to undesirable
flavors [11], such as sourness and a disagreeable smell, and can even affect the health of
consumers. The heating temperatures during drying can also lead to different degrees
of denaturation of myofibrillar proteins, directly affecting their structure. Myofibrillar
proteins are important functional proteins in meat products [12], and their denaturation
results in coagulation and shrinkage, leading to significant changes in the texture of aquatic
products, including springiness and hardness [13]. With increased drying time, more
water evaporates from the surface of the material and muscle fibers contract, leading to
the hardening of the tissue while hindering the outward diffusion of water. At the same
time, the intermediates generated by lipid oxidation during drying cross-link with proteins
through the Maillard and free radical reactions, causing protein denaturation and therefore
a significant change in color after drying [14]. The selection of the appropriate drying
method is necessary for maintaining the physicochemical properties of food products.

Hence, this study aimed to comprehensively analyze the physicochemical properties of
semi-dried T. obscurus fillets by CAD, HAD, or CHACD. The effects of pH, water state, lipid
oxidation, protein degradation, and microstructure were analyzed using texture analyzer,
low-field nuclear magnetic resonance (LF-NMR), thiobarbituric acid (TBA), frozen sections,
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and differential
scanning calorimetry (DSC). The results obtained by these techniques provide a theoretical
basis for selecting the most appropriate drying method for pufferfish fillets.

2. Materials and Methods
2.1. Sample Preparation

Two-year-old farmed T. obscurus, with a weight of 430 ± 30 g and a length of 26 ± 1 cm,
was purchased from Fujian Tunzixian Aquatic Products Co., Ltd. (Zhangzhou, China).
Living pufferfish were humanely slaughtered, gutted, skinned, and headed according to
the guidelines issued by the Ministry of Agriculture of the P. R. of China (SC/T 3033–2016).
The dorsal meat was washed with tap water and cut into pieces (20 × 15 × 5 mm, weight
2.0 ± 0.1 g) for drying. The pieces had an initial moisture content of 80 ± 1%.

2.2. Drying Conditions

The parameters of the different drying methods were optimized based on previous
research [15], and the following methods were used to dry the fillets. HAD was performed
using a hot air oven (BGZ-240, Boxun, Shanghai, China) for 37.5 min at 70 ◦C, with a wind
speed of 1.5 m/s. CAD was operated using a cold air oven (HFD-2, Ouchen, Nanjing,
China) for 146 min at 20 ◦C, with a relative humidity of 41% and a wind speed of 3 m/s.
CHACD was performed using the above specified CAD and HAD parameters, with CAD
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performed for 30, 60, 90, and 120 min followed by HAD performed for 29, 28, 19, and
17 min. The final moisture content of all dried fillets was below 40 ± 1%.

2.3. Determination of pH

The pH was determined according to the method described by Fan et al. [16], with
slight modifications. Approximately 2 g of fillets were dispersed in 18 mL of distilled water
and homogenized using a T25 ULTRA-TURRAX® (IKA Werke GmbH & Co., KG, Staufen,
Germany). Using an Eppendorf 5810R high-speed freezing centrifuge (Eppendorf AG,
Hamburg, Germany), the sample was centrifuged at 10,621× g for 10 min at 4 ◦C. The
pH of the filtrate was measured using a digital pH meter (Mettler Toledo FE28, Shanghai,
China) and measured three times in parallel.

2.4. Determination of Texture

The samples were investigated using an A/MORS P/5S probe (5 mm diameter, TA-
XTplus, Stable Micro Systems, Godalming, UK), and a slight modification was made by
referring to Guo et al. [17]. Two consecutive cycles at 50% sample deformation were applied
at 1.5 mm/s test speed. Other parameters including pre-test speed, post-test speed and
trigger force, were set at 2 mm/s, 2 mm/s, and 5 g, respectively. TPA analysis results
were expressed in terms of hardness, chewiness, springiness, and resilience. Six parallel
measurements were performed for each sample group.

2.5. LF-NMR Analysis

The protocol for LF-NMR analysis was slightly modified from that reported by Wang
et al. [18]. A MesoMR LF-NMR analyzer (Shanghai Niumag Analytical Instrument, Shang-
hai, China) with a magnetic field strength of 0.5 T, corresponding to a spectrometer fre-
quency (SF) of 21 MHz, was employed. The samples were transferred to the center of
cylindrical glass tubes (25-mm radiofrequency coil) and equilibrated to 25 ◦C before detec-
tion. The transverse relaxation time (T2) was measured using a Carr–Purcell–Meiboom–Gill
pulse sequence (CPMG). Data were acquired from 8000 echoes (NECH) over 16 scans (NS).
The repetition time between scans was 3500 ms, and the 90 (P1) and 180 (P2) pulse times
were 5 and 10 µs, respectively. The echo time (TE) was 0.2 ms, the number of sampling
points (TD) was 320,026, the magnet frequency (SW) was 200 and regulate analog gain 1
(RG1) was 20 db. The MultiExp Inv analysis software Version 4.0 (Shanghai Niumag Analyt-
ical Instrument Co., Shanghai, China) based on the Simultaneous Iterative Reconstruction
technique (SIRT) was used to obtain the single-component relaxation time (T2W) and trans-
verse relaxation time (T2) distributions through mono-exponential or multi-exponential
fitting. The samples were analyzed six times each.

2.6. Determination of Thiobarbituric Acid Value

The thiobarbituric acid (TBA) value was measured according to the method described
by Wang et al. [19] with slight modifications. Three grams of minced fillet samples were
homogenized in 30 mL of ice cooling 7.5% trichloroacetic acid solution containing 0.1%
ethylene diamine tetraacetic acid (EDTA) at 15,000× g for 1 min. After filtering the ho-
mogenate, 5 mL of 0.02 M thiobarbituric acid was added to 5 mL of filtrate and mixed.
The mixture was maintained in a boiling water bath for 40 min. After the solution had
cooled, the absorbance of the upper layer was determined at 532 nm using a VICTOR
NivoTM multimode plate reader (PerkinElmer Inc., Waltham, MA, USA). A standard curve
was obtained using 1, 1, 3, 3-tetraethoxypropane and the results were expressed as mg of
malonaldehyde (MDA)/kg. Each sample group was measured in triplicate.

2.7. Determination of Microstructure

The frozen sections were measured according to Sigurgisladottir et al. [20], with slight
modifications. All samples were collected from the same location on each fillet, and the
geometric centers of the fillets were cut into 5 × 5 × 5 mm pieces. The samples were



Foods 2023, 12, 1649 4 of 14

embedded in plastic tubes containing O.C.T. compound (SAKURA Tissue Tek®, Torrance,
CA, USA) and frozen in liquid nitrogen. Freezing occurred in approximately 40 s below
−80 ◦C, and samples were then stored at −80 ◦C until sectioning. The specimens were
sectioned (10 µm), frozen at −25 ◦C in a freezing microtome (Leica CM1950, Shanghai,
China) for vertical cuts, and then placed on glass slides. After hematoxylin–eosin (HE)
staining, the microstructures of the samples were examined using a fluorescent inverted
microscope (DMi8, Leica Microsystems, Shanghai, China) using a 20× objective lens.

2.8. Protein Component Analysis

The method described by Yu et al. [21] was slightly modified. Briefly, semi-dried fillets
of minced samples (5 g) were homogenized with 25 mL of Tris-HCI (20 mmol/L, pH 7.5)
using a T25 ULTRA-TURRAX® (IKA Werke GmbH & Co. KG, Staufen, Germany). The
homogenate was centrifuged at 10,621× g for 10 min at 4 ◦C using an Eppendorf 5810R
high-speed freezing centrifuge (Eppendorf AG, Hamburg, Germany). The precipitate was
then re-homogenized and centrifuged again under the same conditions. The combined
supernatants were treated with 10 mL of 50% trichloroacetic acid solution (TCA), left for
2 h, and then centrifuged at 10,621× g for 15 min. After centrifugation, the supernatant
fractions were non-protein nitrogen (NPN) and precipitated as water-soluble protein (WSP).
The precipitate obtained after the first centrifugation was added to 40 mL of 0.6 mol/L
NaCl Tris-HCl buffer (20 mmol/L, pH 7.5), homogenized for 1 min, stirred for 1 h, and
centrifuged at 10,621× g for 15 min at 4 ◦C. The supernatant was repeated twice for salt-
soluble protein (SSP), and the residue was used as insoluble protein (ISP). The nitrogen
contents of the different components were determined using the Kjeldahl method. Each
group of samples was measured thrice in parallel. All the above operations were performed
at 4 ◦C, and the solutions pre-cooled before use.

2.9. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis Analysis

Extraction was performed following the method used by Setyabrata et al. [22], with
a few modifications. Protein extraction was performed by homogenizing 0.1 g of fillet
samples in 20 mL of whole protein extraction buffer (ratio of RIPA buffer (high) to PMSF
was 100:1). The protein concentration of each sample was adjusted to 1 mg/mL using
extraction buffer. Prior to sample loading, each sample was mixed well with its respective
sample buffer. The samples were heated at 100 ◦C for 5 min in a loading buffer, cooled
to 25 ◦C, and then 10 µL of sample solution was loaded into each well. The gels were
prepared using 12% separating gel and 5% stacking gel. The gels were run on a Bio-Rad®

Criterion cell system (Bio-Rad® Laboratories, Hercules, CA, USA) equipped with a DYY-6C
electrophoresis apparatus (Beijing Liuyi Biotechnology Co., Ltd., Beijing, China) using
200 V constant voltage for 50–60 min. After running the gel, it was stained with 0.25%
Coomassie brilliant blue R-250 (Bio-Rad, Richmond, CA, USA) and destained in a solution
containing 5% ethanol and 10% acetic acid to visualize the gel. Gel visualization and image
export were performed using an EPSON perfection V700 photo (Seiko Epson Co., Nagano,
Japan). The protein bands were identified based on the determined molecular weight in
parallel with the relative mobility of the protein bands to the dual-color pre-stained protein
standard (10–250 kDa, EpiZyme, Shanghai, China).

2.10. Determination of Denaturation Temperature

Thermal transition properties were determined using differential scanning calorimetry
(DSC; DSC 3, Mettler-Toledo International Trading Co., Ltd., Zurich, Switzerland). The
method was performed according to Shang et al. [23]. After accurate weighing, 16–17 mg of
each semi-dried sample was placed in a DSC aluminum pan, the added mass was recorded
(accurate to 0.0001 g), and the pan was hermetically sealed. The initial temperature was
set to 20 ◦C and the constant temperature time was 10 min. Then scanned from 20 to
100 ◦C, with a following temperature rise rate was of 5 ◦C/min at a nitrogen flow rate of
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100 mL/min, and a reaction gas flow rate of 50 mL/min. A hermetically sealed empty pan
was used as a reference. Three replicates were performed for each sample.

2.11. Statistical Analysis

One-way analysis of variance (ANOVA) followed by LSD and Duncan’s test were used
to check for significant differences (p < 0.05) using SPSS Statistics 26 (SPSS Inc., Chicago, IL,
USA). All experiments were performed three times, except for TBA and LF-NMR analyses,
which were conducted in six replicates. Data are expressed as the mean ± standard
deviation (SD) (n = 3). The data were plotted using OriginPro2018 (OriginLab Corp.,
Northampton, MA, USA). DSC data were analyzed using STARe Evaluation Software
Version 16.20 (Mettler-Toledo International Trading Co., Ltd., Zurich, Switzerland) to create
temperature plots.

3. Results and Discussion
3.1. Fillet pH

The pH is an important index for evaluating the quality of meat. Figure 1 shows the
changes in the pH of pufferfish fillets under different drying methods. The pH of all fillets
from all three treatments was weakly acidic, with that of fillets treated with HAD and CAD
measuring 6.07 and 6.12, respectively, whereas that of CHACD-treated fillets was increased
to 6.15–6.27. A strongly acidic environment leads to protein denaturation and decreases the
water-holding capacity of muscle. Acidity is an important factor in flabby meat quality, and
an increase in pH within a certain range results in improved meat quality [24]. However,
increases in pH may be due to microbial production of nitrogenous substances and the
production of substances, such as peptides and amines, by protein degradation during the
drying process [25].
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Figure 1. Changes in pH of semi-dried pufferfish fillets under different drying methods. Values
with different superscripts are significantly different (p < 0.05). F, fresh undried fillets; HAD, hot air
drying; CAD, cold air drying; CAD-30, cold air drying for 30 min; CAD-60, cold air drying for 60 min;
CAD-90, cold air drying for 90 min; CAD-120, cold air drying for 120 min.

3.2. Fillet Texture

Texture is an important sensory attribute for consumer acceptance of aquatic products
and influences the choice of subsequent processing methods [26]. Variations in pufferfish
fillet textural properties, such as hardness, springiness, chewiness, and resilience under
different drying methods, are shown in Table 1. CAD and CHACD helped maintain the
hardness of the fillets, whereas HAD had the highest hardness (218.14 g) and chewiness
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(70.42 g). Hardening of tissue texture could be attributed to the rapid loss of surface water
at higher temperatures and the appearance of hardened layers on the surface, along with
increased protein denaturation and aggregation, contraction of myofibril and connective
tissues, and reduction of extracellular space, intracellular lumens, and channels [27]. Sim-
ilar results were reported by Vega-Gálvez et al. [28], where the hardness of giant squid
meat increased dramatically after drying under different high-temperature conditions.
Chewiness refers to the energy required to chew a solid to a swallowable state—the larger
the value of elasticity, the better the taste of the fish. Appropriate increases in springiness
and chewiness are beneficial for improving taste. Compared with HAD and CAD, CHACD
improved springiness and chewiness, in which CAD-90 resulted in higher springiness
and chewiness, with values of 0.97 and 59.79 g, respectively. The other three CHACD
groups all had some correlation with CAD. This result may be due to the fact that CAD was
performed first during CHACD, in that the connective tissue was less damaged, and the
muscle fibers gradually contracted and tightly connected while water evaporated and dried
to a certain extent before undergoing HAD, thus reducing the adverse effect of hardening
of the sample surface during high-temperature drying. However, the resilience of all three
drying methods was lower than that of the fresh samples, and there was no significant
difference (p > 0.05). Changes in fillet texture after drying can be attributed to protein
denaturation due to solute concentration, heat, and enzymatic denaturation [29].

Table 1. Texture characteristics of pufferfish fillets under different drying methods.

Drying Methods Hardness (g) Springiness Chewiness (g) Resilience

F 133.60 ± 23.55 b 0.91 ± 0.02 ab 53.57 ± 8.05 b 0.28 ± 0.03 a

HAD 218.14 ± 28.28 a 0.60 ± 0.04 c 70.42 ± 11.95 a 0.16 ± 0.01 c

CAD 93.96 ± 10.35 b 0.88 ± 0.07 b 56.62 ± 6.74 ab 0.20 ± 0.03 b

CAD-30 101.04 ± 22.89 b 0.87 ± 0.06 b 55.68 ± 10.53 ab 0.21 ± 0.02 b

CAD-60 105.54 ± 23.72 b 0.88 ± 0.05 b 59.57 ± 14.48 ab 0.19 ± 0.01 b

CAD-90 102.27 ± 11.70 b 0.97 ± 0.02 a 59.79 ± 6.26 ab 0.19 ± 0.02 b

CAD-120 90.48 ± 19.07 b 0.88 ± 0.10 b 49.88 ± 14.53 b 0.18 ± 0.01 bc

Data are expressed as the mean ± SD (n = 6). Values within a column with different superscripts are significantly
different (p < 0.05). F, fresh undried fillets; HAD, hot air drying; CAD, cold air drying; CAD-30, cold air drying for
30 min; CAD-60, cold air drying for 60 min; CAD-90, cold air drying for 90 min; CAD-120, cold air drying for 120 min.

3.3. LF-NMR of Fillets

The state and migration of water were further characterized using LF-NMR transverse
relaxation time (T2). The relaxation time T2 is related to the degree of binding of the sample
and hydrogen protons, and a higher binding of hydrogen protons indicates a lower mobility
of water in the sample, which is expressed as a decrease in relaxation time T2 [30]. Bound
water (T20 and T21) has a short relaxation time of 1–10 ms and represents water bound to
macromolecules; immobilized water (T22) in the range of 10–100 ms indicates the water
inside the myofibril and reticular tissues, which accounts for most of the total water content
of the samples; and free water (T23) with the longest relaxation time mainly occurs between
100 and 1000 ms [31].

Figure 2A shows the relaxation time T2 curves of fresh pufferfish fillets obtained using
the three drying methods, which resulted in a left shift of the peak positions of T21 and
T22, a decrease in the peak area, and a shortening of the relaxation time T2. Across all three
drying methods, the T22 of the fillets decreased when compared to T21 and T23, especially
from 49.77 ms to 24.77 ms after HAD, indicating that the water binding to the sample
increased and the mobility of immobilized water gradually decreased. This is consistent
with the findings of Zhang et al. [32], in which the myofibril structure gradually shrank
during drying, displaying a tighter network structure and enhanced water absorption
capacity, resulting in a shorter T2 relaxation time. The relative percentages of water in the
three states can be seen in Figure 2B, and the content of immobilized water in the undried
fresh samples was higher, accounting for 95.09% of the total water content; the fillets
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mainly contained bound and immobilized water, and the content of immobilized water was
reduced in all four groups of CHACD, and between HAD and CAD. The increase in the
T21 peak area was mainly due to the conversion of immobilized water into free water and
its subsequent outward diffusion during the drying process. The T23 peak area increased
in all drying methods, with the highest after CAD-30 containing 1.14%, which may be due
to the destruction of the protein structure and the release of immobilized water from the
outer parts of myofibrils [33].
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Figure 2. Curve of T2 transverse relaxation time (A) and proportion of various peak areas (B) in
semi-dried pufferfish fillets. F, fresh undried fillets; HAD, hot air drying; CAD, cold air drying;
CAD-30, cold air drying for 30 min; CAD-60, cold air drying for 60 min; CAD-90, cold air drying for
90 min; CAD-120, cold air drying for 120 min.

3.4. Oxidation of Fillet Lipids

The TBA value corresponds with the content of malondialdehyde (MDA) produced
during lipid oxidation, which is a natural and final product of lipid peroxidation [34];
therefore, the degree of lipid oxidation in aquatic products can be expressed as TBA [14].
Figure 3 shows the variation in TBA values of semi-dried pufferfish fillets treated with
different drying methods. The three drying methods had some effect on the lipid oxidation
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of pufferfish fillets. CAD had the largest TBA value of 0.024 mg MDA/kg among the three
drying methods, indicating that the effect of CAD on the lipid oxidation of fillets was more
obvious, which may be due to the relatively longer exposure of fish fillets to air [35] and
increased oxidation of unsaturated fatty acids during dehydration [36]. Compared with
CAD, CHACD reduced the degree of lipid oxidation by reducing the drying time. The
degree of lipid oxidation in CHACD was similar to that in HAD (p < 0.05).
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Figure 3. Changes in thiobarbituric acid (TBA) values in semi-dried pufferfish fillets. Values with
different superscripts are significantly different (p < 0.05). HAD, hot air drying; CAD, cold air drying;
CAD-30, cold air drying for 30 min; CAD-60, cold air drying for 60 min; CAD-90, cold air drying for
90 min; CAD-120, cold air drying for 120 min.

3.5. Fillet Microstructure

The changes in fillet microstructure (vertical section) under different drying methods
are shown in Figure 4. The microstructure is closely related to the quality of the fillets
after drying and can indicate the degree of protein degradation [37]. As shown in Figure 4,
the muscle fibers of the undried fresh fish samples were intact and well defined. Using
different drying methods, the muscle fibers showed different degrees of shrinkage. After
HAD, the muscle fibers were firmer but showed fiber breakage and significant degradation.
This may be due to the higher temperature, which accelerates protein denaturation, and the
smaller size of myofibrils and collagen, resulting in a reduction in muscle fiber diameter
and length [27]. Fillet microstructure after CAD had smaller and well-defined muscle fiber
gaps, which may be due to the lower temperature and longer drying duration, which allows
sufficient time for muscle fiber contraction and reduced protease activity, thus mitigating
protein degradation [38]. In contrast, CHACD-treated fillets more and more resembled the
microstructure of CAD-treated fillets with increasing CAD treatment time, and the muscle
fibers changed from partially broken to intact, well-arranged, and well-defined. Among
them, the muscle fiber structure of CAD-90-treated fillets was the most arranged, compact,
well-defined, and complete in structure among the four CHACD groups, showing high
muscle toughness. This indicated that CAD-90 resulted in better texture properties, which
was consistent with the results of the texture analysis.
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Figure 4. Microstructure (vertical section) of semi-dried pufferfish fillets under different drying
methods. F, fresh undried fillets; HAD, hot air drying; CAD, cold air drying; CAD-30, cold air drying
for 30 min; CAD-60, cold air drying for 60 min; CAD-90, cold air drying for 90 min; CAD-120, cold
air drying for 120 min.

3.6. Fillet Protein Composition

According to the difference in fish protein solubility, pufferfish proteins were divided
into WSP, SSP, ISP, and NPN. The changes in the protein composition of pufferfish fillets
subjected to different drying methods are summarized in Table 2. The WSP content in
fresh fillets was the highest, accounting for 58.09% of the total protein, followed by ISP,
accounting for 26.76%, whereas the content of SSP and NPN was lower. The NPN content
increased but varied less among the three drying methods. NPN is composed of free
amino acids, small peptides, and nucleic acids [39]. With the three drying methods, the
moisture content in the fillets was reduced, which helped to inhibit microbial and enzymatic
activities. However, drying degraded proteins with a large molecular mass to produce
free amino acids and peptides, thereby increasing the NPN content. When compared to
the fresh samples, the WSP content of the two drying methods decreased and was not
significantly different (p > 0.05), except for CAD, which could better maintain WSP. When
comparing the four CHACD groups, the WSP content tended to increase slightly with an
increase in CAD time. This may be due to a decrease in WSP solubility as a result of protein
concentration. For CAD, this may be due to a decrease in WSP solubility as a result of
protein concentration due to altered water loss at low temperatures. For HAD, this may be
due to WSP denaturation caused by high temperature, which leads to a decrease in WSP
solubility. However, CHACD combines the characteristics of both drying methods, leading
to a decrease in solubility [40]. When compared to the undried fresh samples, the SSP of
CAD significantly increased from 6.93 to 8.15 mgN/g. However, the SSP content of HAD
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and CHACD significantly decreased (p < 0.05), with the four CHACD groups increasing
with increasing CAD time. When comparing the three drying methods, ISP increased
significantly (p < 0.05), and the content in CHACD decreased with increasing CAD time,
with the largest increases in CAD-30 and CAD-60, with 19.32 and 18.69 mgN/g, respectively.
The significant increase in ISP in HAD and CHACD may be related to the aggregation of
WSP and SSP by thermal denaturation and the fact that protein fractions in fish fillets are
more unstable during HAD, leading to a significant increase in ISP content [21].

Table 2. Protein composition of pufferfish fillets under different drying methods (mgN/g).

Drying Methods NPN WSP SSP ISP

F 0.20 ± 0.01 c 27.33 ± 0.71 a 6.93 ± 0.40 b 12.59 ± 0.86 c

HAD 0.26 ± 0.01 a 19.37 ± 0.43 b 3.56 ± 0.32 e 15.57 ± 1.50 b

CAD 0.23 ± 0.01 b 26.80 ± 1.73 a 8.15 ± 0.14 a 15.53 ± 0.69 b

CAD-30 0.27 ± 0.01 a 18.63 ± 0.32 b 3.55 ± 0.04 e 19.32 ± 0.94 a

CAD-60 0.27 ± 0.01 a 19.60 ± 1.77 b 3.78 ± 0.11 de 18.69 ± 0.98 a

CAD-90 0.27 ± 0.01 a 20.30 ± 1.46 b 4.33 ± 0.33 d 17.60 ± 0.53 ab

CAD-120 0.26 ± 0.01 a 20.51 ± 0.39 b 5.39 ± 0.35 c 15.93 ± 0.39 b

Data are expressed as the mean ± SD (n = 6). Values within a column with different superscripts are significantly
different (p < 0.05). NPN, non-protein nitrogen; WSP, water-soluble protein; SSP, salt-soluble protein; ISP, insoluble
protein; F, fresh undried fillets; HAD, hot air drying; CAD, cold air drying; CAD-30, cold air drying for 30 min;
CAD-60, cold air drying for 60 min; CAD-90, cold air drying for 90 min; CAD-120, cold air drying for 120 min.

Proteins play a key role in determining the physical properties of meat products.
Han et al. [41] also found that heat induction caused a negative correlation between the
degree of pork myofibrillar protein aggregation and immobilized water content and showed
that protein aggregation tends to form network structures. This is consistent with the LF-
NMR and microstructure analysis, where the relative percentage of the immobilized water
content was lower in HAD than in CAD and CHACD, and the myofibrils were more tightly
arranged in the HAD and CHACD groups.

3.7. Degradation of Fillet Proteins

SDS-PAGE can be used to determine molecular weight and to analyze the number of
subunits in protein molecules [42]. We analyzed three common proteins: myosin heavy
chain (MHC, 200 kDa), myosin (100 kDa), and actin (45 kDa) [43]. Figure 5 shows the
changes in SDS-PAGE of fillets treated using different drying methods. The MHC and
myosin bands were clearly visible after CAD when compared to fresh samples, and the
actin band remained unaltered. In HAD and CHACD, the MHC band disappeared and
myosin remained unaltered, whereas the actin band became thicker and the color deepened
to be more clearly visible. CHACD showed an increase, then a decrease, and then an
increase in the actin band with the increase in CAD time, indicating that heating could
reduce the thermal stability of myosin and actin and accelerate protein degradation. Zheng
et al. [44] also found that actin bands disappeared more slowly than myosin bands during
heating of chicken meat myofibrillar proteins.

3.8. Thermal Stability of Fillet Proteins

Thermal stability is an important measure of protein stability in aquatic products.
In general, the treated fish had two heat absorption peaks near 50 and 75 ◦C for myosin
(TP1) and actin (TP2) [45], respectively, where myosin is the most unstable of the structural
proteins and completes the entire denaturation process between 40–60 ◦C [46]; actin is the
most thermally stable protein, starting to denature at 71 ◦C, endoscopically transitioning
between 78 ◦C, and denaturing completely when heated to approximately 83 ◦C [23].
Figure 6 shows the two peak values of endothermic transitions in samples treated with
different drying methods. The TP1 value after HAD (52.50 ◦C) was higher than that
after CAD, whereas all the CHACD myosins underwent different degrees of thermal
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denaturation. While the TP2 after HAD (73.94 ◦C) was higher than that after CAD (73.70 ◦C),
it was lower than that after all CHACD treatments (74.08–74.57 ◦C), except for CAD-60
(73.85 ◦C), indicating that CHACD could also effectively reduce the degradation of actin,
which was consistent with the results of SDS-PAGE. The enthalpy of denaturation (∆H)
of the samples treated with the three drying methods varied from 0.11–0.42 (peak I) and
0.21–0.29 (peak II), indicating that the increase in heating temperature was associated with
a decrease in ∆ [47].
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Figure 5. SDS-PAGE of myofibrillar proteins from semi-dried pufferfish fillets dried using different
methods. F, fresh, undried fillets; HAD, hot air drying; CAD, cold air drying; CAD-30, cold air drying
for 30 min; CAD-60, cold air drying for 60 min; CAD-90, cold air drying for 90 min; CAD-120, cold
air drying for 120 min.
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for 30 min; CAD-60, cold air drying for 60 min; CAD-90, cold air drying for 90 min; CAD-120, cold
air drying for 120 min.



Foods 2023, 12, 1649 12 of 14

4. Conclusions

We compared the effects of CAD, HAD, and CHACD on the physicochemical proper-
ties of T. obscurus, including the pH, water state, lipid oxidation, protein degradation, and
microstructure. All three drying methods enhanced the binding of water to the sample,
existing mainly in a bound or immobilized form that was converted into free water to
diffuse outward. The content of CHACD-immobilized water was between that of HAD and
CAD. The pH after HAD and CAD was low, whereas CHACD increased the pH to some
extent, but the fish treated with all three drying methods were weakly acidic. HAD-treated
fillets had the highest hardness and chewiness, but fiber breakage and degradation were
observed. When compared to HAD and CAD, CHACD improved the springiness and
chewiness of the fillets, among which CAD-90 resulted in higher springiness and chewiness
and showed higher muscle toughness among the four CHACD groups. All three drying
methods resulted in some degree of lipid oxidation. The TBA value of CAD was the highest
among the three drying methods, whereas CHACD reduced the drying time and decreased
the degree of lipid oxidation through combined drying. In terms of protein degradation,
CAD better maintained the protein composition, while HAD and CHACD promoted the
formation of actin, and CHACD had a higher protein denaturation temperature. We found
that CHACD combines the advantages of CAD and HAD with respect to effects on the
physicochemical characteristics of semi-dried pufferfish fillets, including shortened drying
time, reduced degree of lipid oxidation, enhanced protein stability, and denser tissue struc-
ture. This study provides a theoretical basis to improve research on and development of
the most suitable drying method for semi-dried T. obscurus in industrial applications.
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