Presence of Foodborne Bacteria in Wild Boar and Wild Boar Meat—A Literature Survey for the Period 2012–2022
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Overview of Biological Hazards in Wild Boar and Their Impact on Food Safety and Security
3.2. Occurrence and Prevalence of Selected Zoonotic Bacteria in Wild Boar
3.2.1. Brucella
Prevalence/Frequency | Species | Matrix | Country | Comment | Ref. |
---|---|---|---|---|---|
15.6% (15/96) | B. spp. | Sera | Italy (Tuscany) | serology | [28] |
5.74% (16/287) | B. spp. | Sera | Italy (Tuscany) | RBT, CFT | [29] |
5.1% (22/434) 13.5% (58/434) | B. spp. | Sera | Italy (Campania) | RBT ELISA | [30] |
0.53% (2/374) | B. spp. | Sera | Italy (Tuscany) | RBT, CFT | [31] |
6.2% (35/570) | B. spp. | Sera | Italy (Sardinina) | ELISA | [32] |
15% (19/126) | B. suis | Sera | Italy (Central) | serology | [33] |
59.3% (121/204) | B. spp. | Sera | Spain (Extremadura) | ELISA | [34] |
9.4% (45/480) | B. suis biovar 2 | Sera | Serbia | RBT, ELISA | [35] |
1.3% (42/3230) | B. spp. | Sera | Croatia | RBT; CFT; ELISA | [36] |
6.4% (131/2057) | B. spp. | Sera | Netherlands | ELISA | [37] |
0% (0/286) | B. suis | Blood | Sweden | ELISA | [38] |
9% (8/87) | B. spp. | Blood | Finland | RBT, ELISA; visceral organs from 5 seropos. animals available, in 4 of which B. suis biovar 2 was detected | [39] |
13.3% (139/1044) | B. suis | Sera | Latvia | RBT, CFT, ELISA, data corrected for O9-cross-reactivity | [17] |
0% (0/100) | B. spp. | Sera | South Africa | Warthog | [40] |
12.5% (1/8) | B. spp. | Sera | Kenya | Warthog; Antibody-ELISA | [41] |
0% (0/86) | B. spp. | Sera | Brazil | Agglutination, 2MET | [42] |
0% (0/61) | B. spp. | Sera | Brazil (Santa Catarina) | [43] | |
0.49% (1/205) | B. spp. | Blood | Brazil | Feral pigs; serology (BAPA, FPT) | [44] |
0% (0/15) | B. spp. | Blood | Colombia | Feral pigs | [45] |
2.2% (1/46) | B. spp. | Blood | Guam | Feral pigs; FPT | [46] |
0.7% (2/282) | B. abortus | Sera | USA (Oklahoma) | BAPA, RIV, FPT | [47] |
2.95% (7/238) | B. suis | Sera | Australia (NSW) | RBT, CFT | [48] |
9.6% (8/83) | B. suis | Blood | Australia (Queensland) | RBT, CFT | [49] |
0% (0/303) | B. spp. | Sera | Finland | RBT | [50] |
54.9% (641/1168) | B. spp. | Sera | Belgium | ELISA | [51] |
Prevalence/Frequency | Species | Matrix | Country | Comment | Ref. |
---|---|---|---|---|---|
12.5% (1/8) | B. spp. | Sera | Kenya | Warthog; PCR | [41] |
1.4% (4/287) 1.7% (5/287) 2.2% 0% (0/287) | B. suis biovar 2 | Lymph nodes epididymides fetuses pooled livers, spleens | Italy (Tuscany) | DNA | [29] |
0.83% (2/240) | B. spp. | Inner organs | Denmark | culture | [52] |
3.8% (7/180) 10.5% (19/180) | B. spp. | Tonsils | Netherlands | culture PCR; confirmed as B. suis biovar 2 | [37] |
22% (19/87) | B. suis | Feces | USA (Georgia) | Feral pigs, PCR | [53] |
1.3% (5/389) | B. suis biovar 2 | Retropharyngeal lymph nodes | Italy | culture | [54] |
3.7% (7/188) | B. suis biovar 2 | Reproductive organs | Spain (Extremadura) | culture, PCR | [34] |
0% (0/238) | B. spp. | Blood | Australia (NSW) | culture | [48] |
3.2.2. Campylobacter
Prevalence/Frequency | Species | Matrix | Country | Comment | Ref. |
---|---|---|---|---|---|
51.8% (29/56) | Campylobacter spp. | Feces | Italy | [63] | |
50% (38/76) 40.8% (31/76) | Campylobacter spp. C. lanienae | Feces | Italy | Campylobacter spp. with levels up to 10³ CFU/g was detected in 39.5% animals | [66] |
66% (188/287) | Campylobacter spp. | Feces | Spain | One isolate was identified as C. jejuni | [57] |
60.8% (79/130) 46.2% (60/130) 16.9% (22/130) 0.8% (1/130) 0% (0/130) | Campylobacter spp. C. lanienae C. coli C. hyointestinalis C. jejuni | Feces | Spain | 4% WB had both C. lanienae and C. coli, and 1% had both C. lanienae and C. hyointestinalis. All the isolates were resistant to at least one antimicrobial agent considered | [59] |
38.9% (49/126) 69.4% (34/49) 16.3% (8/49) 4.1% (2/49) | Campylobacter spp. C. lanienae C. coli C. jejuni | Feces | Spain | [58] | |
19.51% (8/41) 4.88% (2/41) 0% (0/41) | Campylobacter spp. C. coli C. jejuni | Feces | Spain | [61] | |
43.8% (53/121) 25.6% (31/121) 17.4% (21/121) 0.8% (1/121) | Campylobacter spp. C. lanienae C. hyointestinalis C. jejuni | Feces | Japan | Five (16%) and 6 (29%) isolates of C. lanienae and C. hyointestinalis, respectively, were resistant to enrofloxacin | [67] |
22.1% (71/321) | C. hyointestinalis | Feces | Japan | [60] | |
12.5% (31/248) 9.7% (25/248) 1.2% (3/248) 0.8% (2/248) | Campylobacter spp. C. hyointestinalis C. lanienae C. coli | Feces | Japan | [56] | |
3.5% (13/370) 1.6% (6/370) | C. coli C. jejuni | Feces | USA | C. coli was significantly more frequent in female feral pigs | [68] |
0% (0/87) | C. jejuni | Feces | USA | [53] | |
16.7% (5/30) | Campylobacter spp. | Carcass | Italy | [63] | |
11.1% (4/36) | Campylobacter spp. | Carcass | Italy | [62] | |
0% (0/28) | Campylobacter spp. | Meat | Italy | [64] |
3.2.3. Coxiella burnetii—Q-Fever
3.2.4. Listeria monocytogenes
Prevalence/Frequency | Species | Matrix | Country | Comment | Ref. |
---|---|---|---|---|---|
0. 35% (1/287) | L. monocytogenes | Rectal swabs | Italy | L.m. serogroup IVb, serovar 4b; resistant to cefoxitin, cefotaxime and nalidixic acid | [85] |
68.5% (37/54) 35.3% (18/51) 26.7% (8/30) 0% (0/30) | Listeria spp. L. monocytogenes Listeria spp. L. monocytogenes | tonsils tonsils Carcass Carcass | Italy | prevalence influenced by animal age and environmental temperature | [63] |
48% (63/130) | L. monocytogenes | Spleen and kidneys | Finland | [39] | |
24.5% (12/49) | L. monocytogenes | Liver or tonsils or feces or intestinal lymph nodes, caecum content | Germany | Positive in at least one of the different matrices studied | [81] |
14.3% (7/49) | L. monocytogenes | Tonsils | Germany | [81] | |
2% (1/49) | L. monocytogenes | Liver and intestinal lymph nodes and caecum content and feces | Germany | The same animal resulted positive for L.m. in all the matrices analyzed | [81] |
51.8% (14/27) 40.7% (11/27) 0% (0/27) | Listeria spp. L. monocytogenes L. monocytogenes | Tonsils Tonsils Feces | Spain | [82] | |
37.3% (28/75) 0% (0/75) | Listeria spp. L. monocytogenes | Feces | Japan | [67] | |
0% (0/72) | L. monocytogenes | Carcass | Italy | [86] | |
65% (24/37) 24% (9/37) 32% (12/37) 8% (3/37) | Listeria spp. L. monocytogenes L. innocua L. welshimeri | Game meat cured sausages | Italy | L.m. < 10 cfu/g | [84] |
0% (0/40) | L. monocytogenes | Wild boar salami | Italy | [83] |
3.2.5. Mycobacterium tuberculosis Complex
Prevalence/Frequency | Species | Country | Area | Comment | Ref. |
---|---|---|---|---|---|
16.7% (5/30) | MTC | Malaysia | Selangor | Sampling in 2019–2020 Test used: bovine purified protein derivative (bPPD)-based indirect in-house ELISA | [127] |
17% (326/1902) | MTC | Spain | Basque Country | Sampling in 2010–2016 Test used: in house validated enzyme-linked immunosorbent assay (ELISA) | [143] |
10.6% (46/434) | MTC | Italy | Campania Region | Sampling in 2012–2017 Test Used: Indirect ELISA INgezim Tuberculosis DR kit based on recombinant M. bovis protein (MPB83) | [92] |
2.4% (16/278) | MTC | Portugal | Several Counties | Sampling in 2006–2013 Test used: bPPD-based indirect in-house ELISA | [95] |
49.0% (49/100) | M. bovis | South Africa | uMhkuze Nature Reserve in Kwa-Zulu Natal, Marloth Park on the southern border of Kruger National Park in Mpumalanga | Sampling in 2013–2015 Test used: Indirect PPD ELISA and TB ELISA-VK® | [96] |
87.7% (36/41) | MTC | Spain | Montes de Toledo and Doñana National Park | Sampling in 2011–2013 Test used: bPPD-based indirect in-house ELISA Prevalence was obtained adding the number of animals with lesions at necroscopy to the number of positive serological samples | [132] |
0.0003% (1/2735) | MTC | USA | National survey | Sampling in 2007–2015 Test used: bPPD-based indirect ELISA | [137] |
2.4% (18/743) | MTC | Switzerland | Geneva, Mittelland, Jura, Thurgau, Tessin | Sampling in 2008–2013 Test used: bPPD-based indirect in-house ELISA | [109] |
5.9% (123/2080) | MTC | France | 58 Departments | Sampling in 2000–2004/2009–2010 Test used: bPPD-based indirect ELISA | [144] |
2.1% (22/1057) | MTC | Spain | Asturias and Galicia | Sampling in 2010–2012 Test used: bPPD-based indirect ELISA | [111] |
67.7% (87/130) | MTC | Spain | Andalusia | Sampling in 2006–2010 Test used: MPB83-ELISA | [115] |
Prevalence/Frequency | Species | Country | Area | Comment | Ref. |
---|---|---|---|---|---|
37.7% (29/77) | M. bovis | Brasil | Rio Grande do Sul | Sampling in 2013–2019 Test used: DNA extraction from lungs, lymph nodes, liver, spleen and kidney followed by PCR | [91] |
1.1% (10/894) | MTC | Spain | Basque County | Sampling in 2010–2019 Test used: isolation from lymph nodes followed by real time PCR and spoligotyping of the isolates Positive cultures were detected only form head lymph nodes | [89] |
2.8% (5/176) | MTC (mainly M. microti) | Switzerland | Canton of Ticino | Sampling in 2017–2018 Test used: isolation from lymph nodes + direct PCR followed by MALDI-TOF MS identification High prevalence of N-MTC identification (57.4%) | [119] |
38.2% (21/55) | M. caprae | Poland | Bieszczady Mountains region | Sampling in 2011–2017 Test used: isolation form lymph nodes followed by PCR and spoligotyping of the isolates | [116] |
76.7% (946/1235) | Mycobacterium spp. | Spain | Doñana National Park | Sampling in 2006–2018 Test used: Visual inspection for TBLL | [133] |
1.6% (8/495) Culture 4.4% (17/386) PCR | M. bovis | France | Aquitaine, Côte d’Or and Corsica | Sampling 2014–2016 Test used: isolation or direct PCR form lymph nodes followed by spoligotyping of the isolates | [94] |
47.1% (16/34) | M. bovis | South Africa | Greater Kruger National Park | Sampling in 2015 Test used: Intradermal Tuberculin Test (ITT) on captured warthog. Lymph nodes bacterial culture followed by PCR identification | [97] |
2.4% (180/7634) | M. bovis | France | National scale (11 at-risk areas) | Sampling in 2011–2017 Test used: Lymph nodes bacterial culture followed by PCR identification Detected in 7 of the 11 at-risk areas | [98] |
37.0% (25/67) | M. bovis | South Africa | uMhkuze Nature Reserve in Kwa-Zulu Natal, Marloth Park on the southern border of Kruger National Park in Mpumalanga | Sampling in 2013–2015 Test used: Lymph nodes bacterial culture followed by PCR identification | [96] |
6.8% (19/280) | Mycobacterium spp. | Italy | Sicily | Sampling in 2004–2014 Test used: Visual inspection for TBLL. Tissue samples with TBLs were cultures followed by PCR identification. M. bovis was isolated from one sample | [100] |
16.2% (647/3963) | Mycobacterium spp. | Portugal | Idanha-a-Nova | Sampling in 2006–2016 Test used: Visual inspection for tuberculosis-like lesions (TBLL). Considered positive when at least in one organ or lymph node showed TBLs | [129] |
4.3% (329/7729) | MTC | Spain | Castilla y León | Sampling in 2011–2015 Test used: Lymph nodes bacterial culture followed by PCR identification | [134] |
2.5% (3/118) | M. bovis | South Korea | Gyeonggi Province | Sampling in 2011–2015 Test used: Lymph nodes and lung bacterial culture followed by PCR identification | [102] |
38.3% (16/41) | M. bovis | Portugal | Castelo Branco | Sampling in 2009–2013 Test used: first screening by visual inspection for TBLL (41/192 had lesions). Tissue samples with TBLs were cultures followed by PCR identification. | [105] |
18.2% (8/44) | Mycobacterium spp. | Slovenia | Different areas | Sampling in 2010–2013 Test used: Lymph nodes and liver bacterial culture followed by PCR identification. No MTC were isolated | [130] |
13.5% (36/267) | M. caprae | Hungary | South-Western Hungary | Sampling in 2008–2013 Test used: bacterial culture followed by PCR identification. | [117] |
33.9% (18/58) | M. bovis | Spain | Sevilla province | Sampling in 2012–2013 Test used: Lymph nodes bacterial culture followed by PCR identification and spoligotyping. The study was performed on wild boar piglets | [108] |
0% (0/9) | M. bovis | Brasil | Pantanal area | Test used: bacterial culture of unspecified feral pigs´ tissues followed by PCR identification | [145] |
25.2% (61/242) PCR 21.5% (52/242) RPFL | MTC | Italy | Lombardia Region | Sampling in 2002–2003 Test used: Lymph nodes histology, bacterial culture, PCR, RFLP M. microti in 52 samples and M. bovis in 2 samples by RFLS | [123] |
8.5% (51/602) PCR 5.8% (35/602) RFPL | M. microti | Italy | Lombardia Region | Sampling in 2006 Test used: Lymph nodes histology, bacterial culture, direct PCR, direct RFLP | [123] |
7.5% (23/307) Culture 64.2% (197/307) PCR 55.0% (169/307) RFPL | M. microti | Italy | Lombardia Region | Sampling in 2007–2011 (only wild boar with TBLL) Test used: Lymph nodes histology, bacterial culture, direct PCR, direct RFLP | [123] |
59% (1512/2562) | Mycobacterium spp. | Spain | Ciudad Real province | Sampling in 2008–2012 Test used: Visual inspection for TBLL in lymph nodes and organs. Generalised TBLs were detected in 51% of the subjects | [146] |
2.59% (33/1275) | MTC | Spain | Asturias and Galicia | Sampling in 2008–2012 Test used: lymph nodes and organs culture followed by PCR identification and spoligotyping of the isolates Number of M. bovis isolates = 19 and M. caprae isolates = 14 | [111] |
3.64% (6/165) | MTC | Switzerland and Liechtenstein | Geneva, Thurgovia, Saint Gall, Grisons, Tessin, Liechtenstein | Sampling in 2009–2011 Test used: lymph nodes and tonsil culture followed by PCR identification and spoligotyping of the isolates | [124] |
37.3% (293/785) | M. bovis | New Zealand | Different areas | Sampling in 1997–2007 Test used: Lymph nodes culture followed by PCR identification | [114] |
88.9% (16/18) | M. bovis | Spain | Andalusia | Sampling in 2006–2010 Test used: Culture of pool homogenate of lymph nodes and lungs followed by PCR and spoligotyping of the isolates | [115] |
13.3% (2/15) | M. bovis | Italy | Test used: Culture and PCR of swab samples on muscle surface of wild boar without TBLL | [142] | |
8.7 R0 | Mycobacterium spp. | Spain and Portugal | 29 sites | Metadata analyses from 2010–2019. Test used: gross pathology and culture Reproduction number (R0) defined considering prevalence in the host species, MTC excretion in infected host species, abundance of the host species, transmission rate to host species | [138] |
3.2.6. Salmonella
3.2.7. Staphylococcus aureus
3.2.8. Verotoxinogenic/Shigatoxinogenic E. coli
Prevalence/Frequency | Species | Matrix | Country | Comment | Ref. |
---|---|---|---|---|---|
14% (8/56) | STEC (stx2) | Feces | Portugal | Culture and PCR, WGS | [200] |
6.9% (37/536) | STEC | Feces | Germany | Culture, PCR | [167] |
1.9% (9/474) | STEC O157 | Feces | Japan | Culture, PCR | [201] |
6.5% (13/200) | STEC | Feces | Italy (Tuscany) | Culture, PCR | [202] |
1.2% (3/248) | STEC | Feces | Japan | Culture, PCR | [56] |
28.3% (43/152) | STEC | Feces | Poland | Culture, PCR; includes STEC and AE-STEC | [203] |
4.8% (1/21) | STEC | Feces | Portugal | Culture, PCR | [204] |
3.33% (3/90) | STEC | Feces | Spain | Culture, PCR | [205] |
3.4% (4/117) | E. coli O157 | Feces | Spain | Culture | [206] |
0% (0/88) | E. coli O157:H7 | Tonsils, lymph nodes, feces | Finland | Culture, PCR | [172] |
0% (0/121) | STEC O157, O26 | Feces | Japan | Culture, PCR | [67] |
0% (0/301) | STEC O157 | Feces | Spain | Culture, PCR | [57] |
3.2.9. Yersinia
Prevalence/Frequency | Country | Area | Matrix | Comment | Ref. |
---|---|---|---|---|---|
0% (0/107) | Italy | Valle d’Aosta Region | Feces | Sampling in 2015–2018 Test used: PCR | [214] |
85.7% (12/36) | Italy | Campania Region | Carcass | Sampling in 2019 Test used: bacterial isolation and SYBR green PCR-assay for ystA and ystB genes. 12 animals carried ystB gene, and 3 animals both ystA and ystB genes | [62] |
64.3% (9/36) | Tonsils | ||||
71.4% (10//36) | Muscle | ||||
0.01% (1/110) | Tunisia | Ariana, Bizerte, Manouba, Nabeul and Siliana | Feces | Sampling in 2018–2020 Test used: bacterial isolation and biochemical identification | [215] |
0% (0/64) | Italy | Parma and Bologna province | Carcass and Mesenteric lymph nodes | Sampling in 2020 Test used: bacterial isolation and biochemical identification | [165] |
2.6% (126/4890) | Italy | Liguria Region | Liver | Sampling in 2013–2018 Test used: bacterial isolation, Serotyping and Real Time PCR for virulence genes. Biotype 1A was the most isolated (92.9%), then biotype 1B (6.3%) and 2 (0.8%) | [216] |
18.8% (54/287) | Italy | Tuscany Region | Rectal swab | Sampling in 2018–2020 Test used: bacterial isolation, biochemical identification. and Real Time PCR for virulence Genes. Identification of gene ystA in 14 out of 54 isolates, inv in 13, ail in 12, ystB in 10 and virF in 8 | [85] |
56.4% (102/181) | Finland | 12 out of 19 regions | Blood | Sampling in 2016 Test used: seroprevalence ELISA test. | [39] |
16.9% (22/130) | Spleen and kidneys | Test used: Organs: real-time PCR based on SYBRGreen for ail gene | |||
6.2% (19/305) | Italy | Parma and Piacenza provinces | Feces | Sampling in 2017–2019 Test used: bacterial isolation, biochemical identification, and Real Time PCR for virulence Genes. All isolates belonged to biotype 1A | [217] |
3.3% (10/305) | Mesenteric lymph nodes | ||||
74.1% (40/54) | Japan | Not specified | Feces | Sampling in 2014–2016 Test used: bacterial isolation, biochemical identification. Prevalence is reported for Yersinia spp. 97.4% of the Y. enterocolitica isolates belonged to biotype 1A | [218] |
13.6% (3/22) | Italy | Campania region | Muscle | Sampling in 2017 Test used: bacterial isolation, biochemical identification, and Real Time PCR for virulence Genes. All isolates present only ystB gene | [178] |
6.7% (6/90) | Sweden | 13 counties in southern Sweden | Feces | Sampling in 2014–2016 Test used: bacterial isolation, and Real Time PCR for ail gene | [219] |
14.0% (19/136) | Tonsils | ||||
4.4% (4/90) | Mesenteric lymph nodes | ||||
25.3% (110/434) | Poland | 12 out of 16 Polish regions | Rectal swab | Sampling in 2013–2014 Test used: bacterial isolation, and multiplex PCR for ail, ystA and ystB genes. 92.5% of the isolates belong to biotype 1A | [220] |
0% (0/42) | Italy | Tuscany Region | Muscle | Sampling in 2013–2014 Test used: bacterial isolation, and biochemical identification | [181] |
65.9% (89/135) | Czech Republic | Moravian Regions | Blood | Sampling in 2013–2014 Test used: ELISA | [221] |
55.5% (11/20) | Poland | North-East Poland | Swab samples from tonsils area, peritoneum and perineum | Sampling in 2013 Test used: bacterial isolation, and biochemical identification biotyping, serotyping and molecular characterisation. 90.5% of the isolates belong to biotype 1A | [222] |
33.3% (24/72) | Spain | Basque Country | Tonsils | Sampling in 2001–2012 Test used: bacterial isolation, biochemical identification, and molecular characterization | [223] |
15.3% (17/111) | Germany | Lower saxony | Tonsils | Sampling in 2013–2014 Test used: bacterial isolation, MALDI-TOF identification, Real Time PCR for virulence Genes. 89.55% of the isolates belong to biotype 1A | [224] |
20.5% (18/88) | Sweden | Central Sweden | Feces and Ileocecal lymph nodes and tonsils | Sampling in 2010–2011 Test used: bacterial isolation, and multiplex PCR for ail gene | [219] |
27.3% (18/66) | Spain | Basque Country | Tonsils | Sampling in 2010–2012 Test used: bacterial isolation, and biochemical identification and direct real time PCR with new enrichment protocol | [225] |
0% (0/3) | Argentina | San Luis city | Tonsils and tongue | Sampling in 2008–2012 Test used: bacterial isolation and biochemical identification | [173] |
14.8% (34/230) | Italy | Viterbo Province | Muscle | Sampling in 2012–2013 Test used: bacterial isolation, and multiplex PCR for ail gene | [157] |
4.2% (3/72) | Italy | Upper Susa valley Piedmont Region | Carcass | Sampling in Test used: bacterial isolation, biochemical identification and molecular characterisation for inv, ail and yst genes. ail and yst genes were not detected | [86] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieber, C.; Ruf, T. Population Dynamics in Wild Boar Sus scrofa: Ecology, Elasticity of Growth Rate and Implications for the Management of Pulsed Resource Consumers: Population Dynamics in Wild Boar. J. Appl. Ecol. 2005, 42, 1203–1213. [Google Scholar] [CrossRef]
- Keuling, O.; Baubet, E.; Duscher, A.; Ebert, C.; Fischer, C.; Monaco, A.; Podgórski, T.; Prevot, C.; Ronnenberg, K.; Sodeikat, G.; et al. Mortality Rates of Wild Boar Sus scrofa L. in Central Europe. Eur. J. Wildl. Res. 2013, 59, 805–814. [Google Scholar] [CrossRef]
- Massei, G.; Kindberg, J.; Licoppe, A.; Gačić, D.; Šprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozoliņš, J.; et al. Wild Boar Populations up, Numbers of Hunters down? A Review of Trends and Implications for Europe: Wild Boar and Hunter Trends in Europe. Pest. Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Johann, F.; Handschuh, M.; Linderoth, P.; Dormann, C.F.; Arnold, J. Adaptation of Wild Boar (Sus scrofa) Activity in a Human-Dominated Landscape. BMC Ecol. 2020, 20, 4. [Google Scholar] [CrossRef]
- Sáenz-de-Santa-María, A.; Tellería, J.L. Wildlife-Vehicle Collisions in Spain. Eur. J. Wildl. Res. 2015, 61, 399–406. [Google Scholar] [CrossRef]
- Jori, F.; Massei, G.; Licoppe, A.; Ruiz-Fons, F.; Linden, A.; Václavek, P.; Chenais, E.; Rosell, C. Management of Wild Boar Populations in the European Union before and during the ASF Crisis. In Understanding and Combatting African Swine Fever; Iacolina, L., Penrith, M.-L., Bellini, S., Chenais, E., Jori, F., Montoya, M., Ståhl, K., Gavier-Widén, D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2021; pp. 197–228. [Google Scholar]
- Bacigalupo, S.A.; Dixon, L.K.; Gubbins, S.; Kucharski, A.J.; Drewe, J.A. Wild Boar Visits to Commercial Pig Farms in Southwest England: Implications for Disease Transmission. Eur. J. Wildl. Res. 2022, 68, 69. [Google Scholar] [CrossRef]
- Ruiz-Fons, F.; Segalés, J.; Gortázar, C. A Review of Viral Diseases of the European Wild Boar: Effects of Population Dynamics and Reservoir Rôle. Vet. J. 2008, 176, 158–169. [Google Scholar] [CrossRef]
- Meng, X.J.; Lindsay, D.S.; Sriranganathan, N. Wild Boars as Sources for Infectious Diseases in Livestock and Humans. Philos. Trans. R. Soc. B. 2009, 364, 2697–2707. [Google Scholar] [CrossRef]
- Brown, V.R.; Bowen, R.A.; Bosco-Lauth, A.M. Zoonotic Pathogens from Feral Swine That Pose a Significant Threat to Public Health. Transbound. Emerg. Dis. 2018, 65, 649–659. [Google Scholar] [CrossRef]
- Fredriksson-Ahomaa, M. Wild Boar: A Reservoir of Foodborne Zoonoses. Foodborne Pathog. Dis. 2019, 16, 153–165. [Google Scholar] [CrossRef]
- Gomes-Neves, E.; Abrantes, A.C.; Vieira-Pinto, M.; Müller, A. Wild Game Meat—A Microbiological Safety and Hygiene Challenge? Curr. Clin. Microbiol. Rep. 2021, 8, 31–39. [Google Scholar] [CrossRef]
- Directive 2003/99/EC of the European Parliament and of the Council of 17 November 2003 on the monitoring of zoonoses and zoonotic agents, amending Council Decision 90/424/EEC and repealing Council Directive 92/117/EEC. Off. J. Eur. Union 2003, L325, 31–40.
- Trimmel, N.E.; Walzer, C. Infectious Wildlife Diseases in Austria-A Literature Review From 1980 Until 2017. Front. Vet. Sci. 2020, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, 7666. [Google Scholar] [CrossRef]
- Touloudi, A.; McGiven, J.; Cawthraw, S.; Valiakos, G.; Kostoulas, P.; Duncombe, L.; Gortázar, C.; Boadella, M.; Sofia, M.; Athanasakopoulou, Z.; et al. Development of a Multiplex Bead Assay to Detect Serological Responses to Brucella Species in Domestic Pigs and Wild Boar with the Potential to Overcome Cross-Reactivity with Yersinia enterocolitica O:9. Microorganisms 2022, 10, 1362. [Google Scholar] [CrossRef]
- Grantina-Ievina, L.; Avsejenko, J.; Cvetkova, S.; Krastina, D.; Streikisa, M.; Steingolde, Z.; Vevere, I.; Rodze, I. Seroprevalence of Brucella suis in eastern Latvian wild boars (Sus scrofa). Acta Vet. Scand. 2018, 60, 19. [Google Scholar] [CrossRef]
- Powers, H.R.; Nelson, J.R.; Alvarez, S.; Mendez, J.C. Neurobrucellosis associated with feral swine hunting in the southern United States. BMJ Case Rep. 2020, 13, 238216. [Google Scholar] [CrossRef]
- Landis, M.; Rogovskyy, A.S. The Brief Case: Brucella suis Infection in a Household of Dogs. J. Clin. Microbiol. 2022, 60, e00984-21. [Google Scholar] [CrossRef]
- Gowe, I.; Parsons, C.; Vickery, S.; Best, M.; Prechter, S.; Haskell, M.G.; Parsons, E. Venous thrombosis, peripheral aneurysm formation, and fever in a feral pig hunter with Brucellosis. IDCases 2022, 27, e01449. [Google Scholar] [CrossRef]
- Franco-Paredes, C.; Chastain, D.; Taylor, P.; Stocking, S.; Sellers, B. Boar hunting and brucellosis caused by Brucella suis. Travel Med. Infect. Dis. 2017, 16, 18–22. [Google Scholar] [CrossRef]
- Mailles, A.; Ogielska, M.; Kemiche, F.; Garin-Bastuji, B.; Brieu, N.; Burnusus, Z.; Creuwels, A.; Danjean, M.P.; Guiet, P.; Nasser, V.; et al. Brucella suis biovar 2 infection in humans in France: Emerging infection or better recognition? Epidemiol. Infect. 2017, 145, 2711–2716. [Google Scholar] [CrossRef] [PubMed]
- Munckhof, W.J.; Jennison, A.V.; Bates, J.R.; Gassiep, I. First report of probable neurobrucellosis in Australia. Med. J. Aust. 2013, 199, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Mor, S.M.; Wiethoelter, A.K.; Massey, P.D.; Robson, J.; Wilks, K.; Hutchinson, P. Pigs, pooches and pasteurisation: The changing face of brucellosis in Australia. Aust. J. Gen. Pract. 2018, 47, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Orr, B.; Malik, R.; Norris, J.; Westman, M. The Welfare of Pig-Hunting Dogs in Australia. Animals 2019, 9, 853. [Google Scholar] [CrossRef]
- Orr, B.; Westman, M.E.; Norris, J.M.; Repousis, S.; Ma, G.; Malik, R. Detection of Brucella spp. during a serosurvey of pig-hunting and regional pet dogs in eastern Australia. Aust. Vet. J. 2022, 100, 360–366. [Google Scholar] [CrossRef]
- Kneipp, C.C.; Sawford, K.; Wingett, K.; Malik, R.; Stevenson, M.A.; Mor, S.M.; Wiethoelter, A.K. Brucella suis Seroprevalence and Associated Risk Factors in Dogs in Eastern Australia, 2016 to 2019. Front. Vet. Sci. 2021, 8, 727641. [Google Scholar] [CrossRef]
- Fabbri, M.C.; Crovetti, A.; Tinacci, L.; Bertelloni, F.; Armani, A.; Mazzei, M.; Fratini, F.; Bozzi, R.; Cecchi, F. Identification of candidate genes associated with bacterial and viral infections in wild boars hunted in Tuscany (Italy). Sci. Rep. 2022, 12, 8145. [Google Scholar] [CrossRef]
- Cilia, G.; Fratini, F.; Turchi, B.; Ebani, V.V.; Turini, L.; Bilei, S.; Bossù, T.; De Marchis, M.L.; Cerri, D.; Bertelloni, F. Presence and Characterization of Zoonotic Bacterial Pathogens in Wild Boar Hunting Dogs (Canis Lupus Familiaris) in Tuscany (Italy). Animals 2021, 11, 1139. [Google Scholar] [CrossRef]
- Montagnaro, S.; D’ambrosi, F.; Petruccelli, A.; Ferrara, G.; D’alessio, N.; Iovane, V.; Veneziano, V.; Fioretti, A.; Pagnini, U. A serological survey of brucellosis in Eurasian wild boar (Sus scrofa) in Campania region, Italy. J. Wildl. Dis. 2020, 56, 424–428. [Google Scholar] [CrossRef]
- Bertelloni, F.; Mazzei, M.; Cilia, G.; Forzan, M.; Felicioli, A.; Sagona, S.; Bandecchi, P.; Turchi, B.; Cerri, D.; Fratini, F. Serological Survey on Bacterial and Viral Pathogens in Wild Boars Hunted in Tuscany. EcoHealth 2020, 17, 85–93. [Google Scholar] [CrossRef]
- Pilo, C.; Addis, G.; Deidda, M.; Tedde, M.T.; Liciardi, M. A serosurvey for brucellosis in wild boar (Sus scrofa) in Sardinia, Italy. J. Wildl. Dis. 2015, 51, 885–888. [Google Scholar] [CrossRef]
- Di Nicola, U.; Scacchia, M.; Marruchella, G. Pathological and serological findings in wild boars (Sus scrofa) from Gran Sasso and Monti della Laga National Park (Central Italy). Large Anim. Rev. 2015, 21, 167–171. [Google Scholar]
- Risco, D.; García, A.; Serrano, E.; Fernandez-Llario, P.; Benítez, J.M.; Martínez, R.; García, W.L.; de Mendoza, J.H. High-Density dependence but low impact on selected reproduction parameters of Brucella suis biovar 2 in wild boar hunting estates from south-western Spain. Transbound. Emerg. Dis. 2014, 61, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Zurovac Sapundzic, Z.; Zutic, J.; Stevic, N.; Milicevic, V.; Radojicic, M.; Stanojevic, S.; Radojicic, S. First Report of Brucella Seroprevalence in Wild Boar Population in Serbia. Vet. Sci. 2022, 9, 575. [Google Scholar] [CrossRef]
- Cvetnic, Ž.; Duvnjak, S.; Zdelar-Tuk, M.; Reil, I.; Mikulić, M.; Cvetnić, M.; Špičić, S. Swine brucellosis caused by Brucella suis biovar 2 in Croatia. Slov. Vet. Res. 2017, 54, 149–154. [Google Scholar] [CrossRef]
- van Tulden, P.; Gonzales, J.L.; Kroese, M.; Engelsma, M.; de Zwart, F.; Szot, D.; Bisselink, Y.; van Setten, M.; Koene, M.; Willemsen, P.; et al. Monitoring results of wild boar (Sus scrofa) in The Netherlands: Analyses of serological results and the first identification of Brucella suis biovar 2. Infect. Ecol. Epidemiol. 2020, 10, 1794668. [Google Scholar] [CrossRef] [PubMed]
- Malmsten, A.; Magnusson, U.; Ruiz-Fons, F.; González-Barrio, D.; Dalin, A.-M. A serologic survey of pathogens in wild boar (Sus scrofa) in Sweden. J. Wildl. Dis. 2018, 54, 229–237. [Google Scholar] [CrossRef]
- Fredriksson-Ahomaa, M.; London, L.; Skrzypczak, T.; Kantala, T.; Laamanen, I.; Biström, M.; Maunula, L.; Gadd, T. Foodborne Zoonoses Common in Hunted Wild Boars. EcoHealth 2020, 17, 512–522. [Google Scholar] [CrossRef]
- Neiffer, D.; Hewlett, J.; Buss, P.; Rossouw, L.; Hausler, G.; Deklerk-Lorist, L.-M.; Roos, E.; Olea-Popelka, F.; Lubisi, B.; Heath, L.; et al. Antibody Prevalence to African Swine Fever Virus, Mycobacterium bovis, Foot-and-Mouth Disease Virus, Rift Valley Fever Virus, Influenza A Virus, and Brucella and Leptospira spp. in Free-Ranging Warthog (Phacochoerus africanus) Populations in South Africa. J. Wildl. Dis. 2021, 57, 60–70. [Google Scholar] [CrossRef]
- Gakuya, F.; Akoko, J.; Wambua, L.; Nyamota, R.; Ronoh, B.; Lekolool, I.; Mwatondo, A.; Muturi, M.; Ouma, C.; Nthiwa, D.; et al. Evidence of co-exposure with Brucella spp., Coxiella burnetii, and Rift Valley fever virus among various species of wildlife in Kenya. PLoS Negl. Trop. Dis. 2022, 16, e0010596. [Google Scholar] [CrossRef]
- Kmetiuk, L.B.; Paulin, L.M.S.; Villalobos, E.M.C.; Lara, M.D.C.C.S.H.; Filho, I.R.B.; Pereira, M.S.; Bach, R.W.; Lipinski, L.C.; Fávero, G.M.; Dos Santos, A.P.; et al. Seroprevalence of anti-brucella spp. Antibodies in wild boars (Sus scrofa), hunting dogs, and hunters of Brazil. J. Wildl. Dis. 2021, 57, 974–976. [Google Scholar] [CrossRef] [PubMed]
- Severo, D.R.T.; Werlang, R.A.; Mori, A.P.; Baldi, K.R.A.; Mendes, R.E.; Surian, S.R.S.; Coldebella, A.; Kramer, B.; Trevisol, I.M.; Gomes, T.M.A.; et al. Health profile of free-range wild boar (Sus scrofa) subpopulations hunted in Santa Catarina State, Brazil. Transbound. Emerg. Dis. 2021, 68, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, N.P.; Schabib Peres, I.A.H.F.; Braz, P.H.; Juliano, R.S.; Mathias, L.A.; Pellegrin, A.O. Serological prevalence of Brucella spp. in feral pigs and sympatric cattle in the pantanal of mato grosso do sul, Brazil [Prevalência sorológica de Brucella spp. em porcos ferais e bovinos em simpatria no pantanal do mato grosso do sul, brasil]. Semin. Cienc. Agrar. 2018, 39, 2437–2442. [Google Scholar] [CrossRef]
- Montenegro, O.L.; Roncancio, N.; Soler-Tovar, D.; Cortés-Duque, J.; Contreras-Herrera, J.; Sabogal, S.; Acevedo, L.D.; Navas-Suárez, P.E. Serologic survey for selected viral and bacterial swine pathogens in colombian collared peccaries (Pecari tajacu) and feral pigs (Sus scrofa). J. Wildl. Dis. 2018, 54, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, C.A.; DeNicola, A.; Dubey, J.P.; Hill, D.E.; Berghaus, R.D.; Yabsley, M.J. Survey for selected pathogens in wild pigs (Sus scrofa) from Guam, Marianna Islands, USA. Vet. Microbiol. 2017, 205, 22–25. [Google Scholar] [CrossRef]
- Gaskamp, J.A.; Gee, K.L.; Campbell, T.A.; Silvy, N.J.; Webb, S.L. Pseudorabies virus and brucella abortus from an expanding wild pig (Sus scrofa) population in southern Oklahoma, USA. J. Wildl. Dis. 2016, 52, 383–386. [Google Scholar] [CrossRef]
- Ridoutt, C.; Lee, A.; Moloney, B.; Massey, P.; Charman, N.; Jordan, D. Detection of brucellosis and leptospirosis in feral pigs in New South Wales. Aust. Vet. J. 2014, 92, 343–347. [Google Scholar] [CrossRef]
- Pearson, H.E.; Toribio, J.-A.L.M.L.; Hernandez-Jover, M.; Marshall, D.; Lapidge, S.J. Pathogen presence in feral pigs and their movement around two commercial piggeries in Queensland, Australia. Vet. Rec. 2014, 174, 325. [Google Scholar] [CrossRef]
- Hälli, O.; Ala-Kurikka, E.; Nokireki, T.; Skrzypczak, T.; Raunio-Saarnisto, M.; Peltoniemi, O.A.T.; Heinonen, M. Prevalence of and risk factors associated with viral and bacterial pathogens in farmed European wild boar. Vet. J. 2012, 194, 98–101. [Google Scholar] [CrossRef]
- Grégoire, F.; Mousset, B.; Hanrez, D.; Michaux, C.; Walravens, K.; Linden, A. A serological and bacteriological survey of brucellosis in wild boar (Sus scrofa) in Belgium. BMC Vet. Res. 2012, 8, 80. [Google Scholar] [CrossRef]
- Petersen, H.H.; Takeuchi-Storm, N.; Enemark, H.L.; Nielsen, S.T.; Larsen, G.; Chriél, M. Surveillance of Important Bacterial and Parasitic Infections in Danish Wild Boars (Sus scrofa). Acta Vet. Scand. 2020, 62, 41. [Google Scholar] [CrossRef]
- Lama, J.K.; Bachoon, D.S. Detection of Brucella Suis, Campylobacter Jejuni, and Escherichia coli Strains in Feral Pig (Sus scrofa) Communities of Georgia. Vector-Borne Zoonotic Dis. 2018, 18, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Di Sabatino, D.; Garofolo, G.; Di Provvido, A.; Zilli, K.; Foschi, G.; Di Giannatale, E.; Ciuffetelli, M.; De Massis, F. Brucella suis biovar 2 multi locus sequence type ST16 in wild boars (Sus scrofa) from Abruzzi region, Italy. Introduction from Central-Eastern Europe? Infection, Genet. Evol. 2017, 55, 63–67. [Google Scholar] [CrossRef] [PubMed]
- WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/campylobacter (accessed on 1 March 2023).
- Tomino, Y.; Andoh, M.; Horiuchi, Y.; Shin, J.; Ai, R.; Nakamura, T.; Toda, M.; Yonemitsu, K.; Takano, A.; Shimoda, H.; et al. Surveillance of Shiga Toxin-Producing Escherichia coli and Campylobacter spp. in Wild Japanese Deer (Cervus nippon) and Boar (Sus scrofa). J. Vet. Med. Sci. 2020, 82, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Sánchez, S.; Sánchez, S.; Herrera-León, S.; Porrero, C.; Blanco, J.; Dahbi, G.; Blanco, J.E.; Mora, A.; Mateo, R.; Hanning, I.; et al. Prevalence of Shiga Toxin-Producing Escherichia coli, Salmonella spp. and Campylobacter spp. in Large Game Animals Intended for Consumption: Relationship with Management Practices and Livestock Influence. Vet. Microbiol. 2013, 163, 274–281. [Google Scholar] [CrossRef]
- Carbonero, A.; Paniagua, J.; Torralbo, A.; Arenas-Montes, A.; Borge, C.; García-Bocanegra, I. Campylobacter Infection in Wild Artiodactyl Species from Southern Spain: Occurrence, Risk Factors and Antimicrobial Susceptibility. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 115–121. [Google Scholar] [CrossRef]
- Castillo-Contreras, R.; Marín, M.; López-Olvera, J.R.; Ayats, T.; Fernandez Aguilar, X.; Lavín, S.; Mentaberre, G.; Cerdà-Cuéllar, M. Zoonotic Campylobacter Spp. and Salmonella Spp. Carried by Wild Boars in a Metropolitan Area: Occurrence, Antimicrobial Susceptibility and Public Health Relevance. Sci. Total Environ. 2022, 822, 153444. [Google Scholar] [CrossRef]
- Morita, S.; Sato, S.; Maruyama, S.; Miyagawa, A.; Nakamura, K.; Nakamura, M.; Asakura, H.; Sugiyama, H.; Takai, S.; Maeda, K.; et al. Prevalence and Whole-Genome Sequence Analysis of Campylobacter Spp. Strains Isolated from Wild Deer and Boar in Japan. Comp. Immunol. Microbiol. Infect. Dis. 2022, 82, 101766. [Google Scholar] [CrossRef]
- Navarro-Gonzalez, N.; Casas-Díaz, E.; Porrero, C.M.; Mateos, A.; Domínguez, L.; Lavín, S.; Serrano, E. Food-Borne Zoonotic Pathogens and Antimicrobial Resistance of Indicator Bacteria in Urban Wild Boars in Barcelona, Spain. Vet. Microbiol. 2013, 167, 686–689. [Google Scholar] [CrossRef]
- Peruzy, M.F.; Murru, N.; Smaldone, G.; Proroga, Y.T.R.; Cristiano, D.; Fioretti, A.; Anastasio, A. Hygiene Evaluation and Microbiological Hazards of Hunted Wild Boar Carcasses. Food Control 2022, 135, 108782. [Google Scholar] [CrossRef]
- Stella, S.; Tirloni, E.; Castelli, E.; Colombo, F.; Bernardi, C. Microbiological Evaluation of Carcasses of Wild Boar Hunted in a Hill Area of Northern Italy. J. Food Prot. 2018, 81, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Peruzy, M.F.; Cristiano, D.; Delibato, E.; D’Alessio, N.; Proroga, Y.T.R.; Capozza, R.L.; Rippa, A.; Murru, N. Presence of Enteric Bacterial Pathogens in Meat Samples of Wild Boar Hunted in Campania Region, Southern Italy. Ital. J. Food Saf. 2022, 11, 9967. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Off. J. Eur. Union 2005, L338, 1–26.
- Kerkhof, P.J.; Peruzy, M.F.; Murru, N.; Houf, K. Wild boars as reservoir for Campylobacter and Arcobacter. Vet. Microbiol. 2022, 270, 109462. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Goshima, T.; Mori, T.; Murakami, M.; Haruna, M.; Ito, K.; Yamada, Y. Prevalence and Antimicrobial Susceptibility of Foodborne Bacteria in Wild Boars (Sus scrofa) and Wild Deer (Cervus Nippon) in Japan. Foodborne Pathog. Dis. 2013, 10, 985–991. [Google Scholar] [CrossRef]
- Cummings, K.J.; Rodriguez-Rivera, L.D.; McNeely, I.; Suchodolski, J.S.; Mesenbrink, B.T.; Leland, B.R.; Bodenchuk, M.J. Fecal Shedding of Campylobacter Jejuni and Campylobacter Coli among Feral Pigs in Texas. Zoonoses Public Health 2018, 65, 215–217. [Google Scholar] [CrossRef]
- Zendoia, I.I.; Cevidanes, A.; Hurtado, A.; Vázquez, P.; Barral, M.; Barandika, J.F.; García-Pérez, A.L. Stable prevalence of Coxiella burnetii in wildlife after a decade of surveillance in northern Spain. Vet. Microbiol. 2022, 268, 109422. [Google Scholar] [CrossRef]
- Espí, A.; Del Cerro, A.; Oleaga, Á.; Rodríguez-Pérez, M.; López, C.M.; Hurtado, A.; Rodríguez-Martínez, L.D.; Barandika, J.F.; García-Pérez, A.L. One health approach: An overview of q fever in livestock, wildlife and humans in Asturias (northwestern spain). Animals 2021, 11, 1395. [Google Scholar] [CrossRef]
- Sgroi, G.; Iatta, R.; Lia, R.P.; Napoli, E.; Buono, F.; Bezerra-Santos, M.A.; Veneziano, V.; Otranto, D. Tick exposure and risk of tick-borne pathogens infection in hunters and hunting dogs: A citizen science approach. Transbound. Emerg. Dis. 2022, 69, e386–e393. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Fognani, G.; Mugnaini, L.; Bertelloni, F.; Rocchigiani, G.; Papini, R.A.; Stefani, F.; Mancianti, F. Molecular detection of vector-borne bacteria and protozoa in healthy hunting dogs from Central Italy. Asian Pac. J. Trop. Biomed. 2015, 5, 108–112. [Google Scholar] [CrossRef]
- Ebani, V.; Bertelloni, F.; Cecconi, G.; Sgorbini, M.; Cerri, D. Zoonotic tick-borne bacteria among wild boars (Sus scrofa) in Central Italy. Asian Pac. J. Trop. Dis. 2017, 7, 141–143. [Google Scholar] [CrossRef]
- Sgroi, G.; Iatta, R.; Lia, R.P.; D’Alessio, N.; Manoj, R.R.S.; Veneziano, V.; Otranto, D. Spotted fever group rickettsiae in Dermacentor marginatus from wild boars in Italy. Transbound. Emerg. Dis. 2021, 68, 2111–2120. [Google Scholar] [CrossRef] [PubMed]
- Del Cerro, A.; Oleaga, A.; Somoano, A.; Barandika, J.F.; García-Pérez, A.L.; Espí, A. Molecular identification of tick-borne pathogens (Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Coxiella burnetii and piroplasms) in questing and feeding hard ticks from North-Western Spain. Ticks Tick-Borne Dis. 2022, 13, 101961. [Google Scholar] [CrossRef]
- Castillo-Contreras, R.; Magen, L.; Birtles, R.; Varela-Castro, L.; Hall, J.L.; Conejero, C.; Aguilar, X.F.; Colom-Cadena, A.; Lavín, S.; Mentaberre, G.; et al. Ticks on wild boar in the metropolitan area of Barcelona (Spain) are infected with spotted fever group rickettsiae. Transbound. Emerg. Dis. 2022, 69, e82–e95. [Google Scholar] [CrossRef] [PubMed]
- Santana, M.D.S.; Hoppe, E.G.L.; Carraro, P.E.; Calchi, A.C.; de Oliveira, L.B.; do Amaral, R.B.; Mongruel, A.C.B.; Machado, D.M.R.; Burger, K.P.; Barros-Batestti, D.M.; et al. Molecular detection of vector-borne agents in wild boars (Sus scrofa) and associated ticks from Brazil, with evidence of putative new genotypes of Ehrlichia, Anaplasma, and haemoplasmas. Transbound. Emerg. Dis. 2022, 69, e2808–e2831. [Google Scholar] [CrossRef] [PubMed]
- Sumrandee, C.; Baimai, V.; Trinachartvanit, W.; Ahantarig, A. Molecular detection of Rickettsia, Anaplasma, Coxiella and Francisella bacteria in ticks collected from Artiodactyla in Thailand. Ticks Tick-Borne Dis. 2016, 7, 678–689. [Google Scholar] [CrossRef]
- Orr, B.; Malik, R.; Westman, M.E.; Norris, J.M. Seroprevalence of Coxiella burnetii in pig-hunting dogs from north Queensland, Australia. Aust. Vet. J. 2022, 100, 230–235. [Google Scholar] [CrossRef]
- WOAH. Available online: https://www.woah.org/app/uploads/2022/02/listeria-monocytogenes-infection-with.pdf (accessed on 1 March 2023).
- Weindl, L.; Frank, E.; Ullrich, U.; Heurich, M.; Kleta, S.; Ellerbroek, L.; Gareis, M. Listeria Monocytogenes in Different Specimens from Healthy Red Deer and Wild Boars. Foodborne Pathog. Dis. 2016, 13, 391–397. [Google Scholar] [CrossRef]
- Palacios-Gorba, C.; Moura, A.; Leclercq, A.; Gómez-Martín, Á.; Gomis, J.; Jiménez-Trigos, E.; Mocé, M.L.; Lecuit, M.; Quereda, J.J. Listeria spp. Isolated from Tonsils of Wild Deer and Boars: Genomic Characterization. Appl. Environ. Microbiol. 2021, 87, e02651-20. [Google Scholar] [CrossRef]
- Roila, R.; Branciari, R.; Primavilla, S.; Miraglia, D.; Vercillo, F.; Ranucci, D. Microbial, Physicochemical and Sensory Characteristics of Salami Produced from Wild Boar (Sus scrofa). Slovak J. Food Sci. 2021, 15, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Lucchini, R.; Armani, M.; Novelli, E.; Rodas, S.; Masiero, A.; Minenna, J.; Bacchin, C.; Drigo, I.; Piovesana, A.; Favretti, M.; et al. Listeria monocytogenes in game meat cured sausages. In Trends in Game Meat Hygiene: From Forest to Fork; Paulsen, P., Bauer, A., Smulders, F.J.M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2014; pp. 167–174. [Google Scholar]
- Cilia, G.; Turchi, B.; Fratini, F.; Bilei, S.; Bossù, T.; De Marchis, M.L.; Cerri, D.; Pacini, M.I.; Bertelloni, F. Prevalence, Virulence and Antimicrobial Susceptibility of Salmonella Spp., Yersinia Enterocolitica and Listeria Monocytogenes in European Wild Boar (Sus scrofa) Hunted in Tuscany (Central Italy). Pathogens 2021, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Avagnina, A.; Nucera, D.; Grassi, M.A.; Ferroglio, E.; Dalmasso, A.; Civera, T. The Microbiological Conditions of Carcasses from Large Game Animals in Italy. Meat Sci. 2012, 91, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Kanabalan, R.D.; Lee, L.J.; Lee, T.Y.; Chong, P.P.; Hassan, L.; Ismail, R.; Chin, V.K. Human Tuberculosis and Mycobacterium Tuberculosis Complex: A Review on Genetic Diversity, Pathogenesis and Omics Approaches in Host Biomarkers Discovery. Microbiol. Res. 2021, 246, 126674. [Google Scholar] [CrossRef] [PubMed]
- Prodinger, W.M.; Indra, A.; Koksalan, O.K.; Kilicaslan, Z.; Richter, E. Mycobacterium Caprae Infection in Humans. Expert Rev. Anti-Infect. Ther. 2014, 12, 1501–1513. [Google Scholar] [CrossRef]
- Varela-Castro, L.; Gerrikagoitia, X.; Alvarez, V.; Geijo, M.V.; Barral, M.; Sevilla, I.A. A Long-Term Survey on Mycobacterium Tuberculosis Complex in Wild Animals from a Bovine Tuberculosis Low Prevalence Area. Eur. J. Wildl. Res. 2021, 67, 43. [Google Scholar] [CrossRef]
- Reis, A.C.; Ramos, B.; Pereira, A.C.; Cunha, M.V. The Hard Numbers of Tuberculosis Epidemiology in Wildlife: A Meta-Regression and Systematic Review. Transbound. Emerg. Dis. 2021, 68, 3257–3276. [Google Scholar] [CrossRef]
- Lopes, B.C.; Vidaletti, M.R.; Loiko, M.R.; da Andrade, J.S.; Maciel, A.L.G.; Doyle, R.L.; Bertagnolli, A.C.; Rodrigues, R.O.; Driemeier, D.; Mayer, F.Q. Investigation of Mycobacterium Bovis and Metastrongylus Sp. Co-Infection and Its Relationship to Tuberculosis Lesions’ Occurrence in Wild Boars. Comp. Immunol. Microbiol. Infect. Dis. 2021, 77, 101674. [Google Scholar] [CrossRef]
- Iovane, V.; Ferrara, G.; Petruccelli, A.; Veneziano, V.; D’Alessio, N.; Ciarcia, R.; Fioretti, A.; Pagnini, U.; Montagnaro, S. Prevalence of Serum Antibodies against the Mycobacterium Tuberculosis Complex in Wild Boar in Campania Region, Italy. Eur. J. Wildl. Res. 2020, 66, 20. [Google Scholar] [CrossRef]
- Jamin, C.; Rivière, J. Assessment of Bovine Tuberculosis Surveillance Effectiveness in French Wildlife: An Operational Approach. Prev. Vet. Med. 2020, 175, 104881. [Google Scholar] [CrossRef]
- Richomme, C.; Courcoul, A.; Moyen, J.-L.; Reveillaud, É.; Maestrini, O.; de Cruz, K.; Drapeau, A.; Boschiroli, M.L. Tuberculosis in the Wild Boar: Frequentist and Bayesian Estimations of Diagnostic Test Parameters When Mycobacterium Bovis Is Present in Wild Boars but at Low Prevalence. PLoS ONE 2019, 14, e0222661. [Google Scholar] [CrossRef]
- Santos, N.; Nunes, T.; Fonseca, C.; Vieira-Pinto, M.; Almeida, V.; Gortázar, C.; Correia-Neves, M. Spatial Analysis of Wildlife Tuberculosis Based on a Serologic Survey Using Dried Blood Spots, Portugal. Emerg. Infect. Dis. 2018, 24, 2169–2175. [Google Scholar] [CrossRef]
- Roos, E.O.; Olea-Popelka, F.; Buss, P.; Hausler, G.A.; Warren, R.; Van Helden, P.D.; Parsons, S.D.C.; De Klerk-Lorist, L.-M.; Miller, M.A. Measuring antigen-specific responses in Mycobacterium bovis-infected warthogs (Phacochoerus africanus) using the intradermal tuberculin test. BMC Vet. Res. 2018, 14, 360. [Google Scholar] [CrossRef] [PubMed]
- Roos, E.O.; Olea-Popelka, F.; Buss, P.; de Klerk-Lorist, L.-M.; Cooper, D.; van Helden, P.D.; Parsons, S.D.C.; Miller, M.A. Seroprevalence of Mycobacterium bovis infection in warthogs (Phacochoerus africanus) in bovine tuberculosis-endemic regions of South Africa. Transbound. Emerg. Dis. 2018, 65, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Réveillaud, É.; Desvaux, S.; Boschiroli, M.-L.; Hars, J.; Faure, É.; Fediaevsky, A.; Cavalerie, L.; Chevalier, F.; Jabert, P.; Poliak, S.; et al. Infection of Wildlife by Mycobacterium Bovis in France Assessment Through a National Surveillance System, Sylvatub. Front. Vet. Sci. 2018, 5, 262. [Google Scholar] [CrossRef]
- Maciel, A.L.G.; Loiko, M.R.; Bueno, T.S.; Moreira, J.G.; Coppola, M.; Dalla Costa, E.R.; Schmid, K.B.; Rodrigues, R.O.; Cibulski, S.P.; Bertagnolli, A.C.; et al. Tuberculosis in Southern Brazilian Wild Boars (Sus scrofa): First Epidemiological Findings. Transbound. Emerg. Dis. 2018, 65, 518–526. [Google Scholar] [CrossRef]
- Amato, B.; Di Marco Lo Presti, V.; Gerace, E.; Capucchio, M.T.; Vitale, M.; Zanghì, P.; Pacciarini, M.L.; Marianelli, C.; Boniotti, M.B. Molecular Epidemiology of Mycobacterium Tuberculosis Complex Strains Isolated from Livestock and Wild Animals in Italy Suggests the Need for a Different Eradication Strategy for Bovine Tuberculosis. Transbound. Emerg. Dis. 2018, 65, e416–e424. [Google Scholar] [CrossRef]
- Madeira, S.; Manteigas, A.; Ribeiro, R.; Otte, J.; Fonseca, A.P.; Caetano, P.; Abernethy, D.; Boinas, F. Factors That Influence Mycobacterium Bovis Infection in Red Deer and Wild Boar in an Epidemiological Risk Area for Tuberculosis of Game Species in Portugal. Transbound. Emerg. Dis. 2017, 64, 793–804. [Google Scholar] [CrossRef]
- Jang, Y.; Ryoo, S.; Lee, H.; Kim, N.; Lee, H.; Park, S.; Song, W.; Kim, J.-T.; Lee, H.S.; Myung Kim, J. Isolation of Mycobacterium Bovis from Free-Ranging Wildlife in South Korea. J. Wildl. Dis. 2017, 53, 181–185. [Google Scholar] [CrossRef]
- Che’Amat, A.; Armenteros, J.A.; González-Barrio, D.; Lima, J.F.; Díez-Delgado, I.; Barasona, J.A.; Romero, B.; Lyashchenko, K.P.; Ortiz, J.A.; Gortázar, C. Is Targeted Removal a Suitable Means for Tuberculosis Control in Wild Boar? Prev. Vet. Med. 2016, 135, 132–135. [Google Scholar] [CrossRef]
- García-Jiménez, W.L.; Cortés, M.; Benítez-Medina, J.M.; Hurtado, I.; Martínez, R.; García-Sánchez, A.; Risco, D.; Cerrato, R.; Sanz, C.; Hermoso-de-Mendoza, M.; et al. Spoligotype Diversity and 5-Year Trends of Bovine Tuberculosis in Extremadura, Southern Spain. Trop. Anim. Health Prod. 2016, 48, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.C.; Figueira, L.; Martins, M.H.; Pinto, M.L.; Matos, M.; Coelho, A.C. New Insights into Mycobacterium Bovis Prevalence in Wild Mammals in Portugal. Transbound. Emerg. Dis. 2016, 63, e313–e322. [Google Scholar] [CrossRef]
- El Mrini, M.; Kichou, F.; Kadiri, A.; Berrada, J.; Bouslikhane, M.; Cordonnier, N.; Romero, B.; Gortázar, C. Animal Tuberculosis Due to Mycobacterium Bovis in Eurasian Wild Boar from Morocco. Eur. J. Wildl. Res. 2016, 62, 479–482. [Google Scholar] [CrossRef]
- Miller, M.; Buss, P.; de Klerk-Lorist, L.-M.; Hofmeyr, J.; Hausler, G.; Lyashchenko, K.; Lane, E.P.; Botha, L.; Parsons, S.; van Helden, P. Application of Rapid Serologic Tests for Detection of Mycobacterium Bovis Infection in Free-Ranging Warthogs (Phacochoerus Africanus)—Implications for Antemortem Disease Screening. J. Wildl. Dis. 2015, 52, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Che’ Amat, A.; González-Barrio, D.; Ortiz, J.A.; Díez-Delgado, I.; Boadella, M.; Barasona, J.A.; Bezos, J.; Romero, B.; Armenteros, J.A.; Lyashchenko, K.P.; et al. Testing Eurasian Wild Boar Piglets for Serum Antibodies against Mycobacterium Bovis. Prev. Vet. Med. 2015, 121, 93–98. [Google Scholar] [CrossRef]
- Beerli, O.; Blatter, S.; Boadella, M.; Schöning, J.; Schmitt, S.; Ryser-Degiorgis, M.-P. Towards Harmonised Procedures in Wildlife Epidemiological Investigations: A Serosurvey of Infection with Mycobacterium Bovis and Closely Related Agents in Wild Boar (Sus scrofa) in Switzerland. Vet. J. 2015, 203, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Broughan, J.M.; Downs, S.H.; Crawshaw, T.R.; Upton, P.A.; Brewer, J.; Clifton-Hadley, R.S. Mycobacterium Bovis Infections in Domesticated Non-Bovine Mammalian Species. Part 1: Review of Epidemiology and Laboratory Submissions in Great Britain 2004–2010. Vet. J. 2013, 198, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Mendoza, M.; Marreros, N.; Boadella, M.; Gortázar, C.; Menéndez, S.; de Juan, L.; Bezos, J.; Romero, B.; Copano, M.F.; Amado, J.; et al. Wild boar tuberculosis in Iberian Atlantic Spain: A different picture from Mediterranean habitats. BMC Vet. Res. 2013, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Boadella, M.; Vicente, J.; Ruiz-Fons, F.; de la Fuente, J.; Gortázar, C. Effects of Culling Eurasian Wild Boar on the Prevalence of Mycobacterium Bovis and Aujeszky’s Disease Virus. Prev. Vet. Med. 2012, 107, 214–221. [Google Scholar] [CrossRef]
- Zanella, G.; Bar-Hen, A.; Boschiroli, M.-L.; Hars, J.; Moutou, F.; Garin-Bastuji, B.; Durand, B. Modelling Transmission of Bovine Tuberculosis in Red Deer and Wild Boar in Normandy, France. Zoonoses Public Health 2012, 59, 170–178. [Google Scholar] [CrossRef]
- Nugent, G.; Whitford, J.; Yockney, I.J.; Cross, M.L. Reduced Spillover Transmission of Mycobacterium Bovis to Feral Pigs (Sus scofa) Following Population Control of Brushtail Possums (Trichosurus Vulpecula). Epidemiol. Infect. 2012, 140, 1036–1047. [Google Scholar] [CrossRef]
- García-Bocanegra, I.; de Val, B.P.; Arenas-Montes, A.; Paniagua, J.; Boadella, M.; Gortázar, C.; Arenas, A. Seroprevalence and Risk Factors Associated to Mycobacterium Bovis in Wild Artiodactyl Species from Southern Spain, 2006–2010. PLoS ONE 2012, 7, e34908. [Google Scholar] [CrossRef] [PubMed]
- Orłowska, B.; Krajewska-Wędzina, M.; Augustynowicz-Kopeć, E.; Kozińska, M.; Brzezińska, S.; Zabost, A.; Didkowska, A.; Welz, M.; Kaczor, S.; Żmuda, P.; et al. Epidemiological Characterization of Mycobacterium Caprae Strains Isolated from Wildlife in the Bieszczady Mountains, on the Border of Southeast Poland. BMC Vet. Res. 2020, 16, 362. [Google Scholar] [CrossRef] [PubMed]
- Csivincsik, Á.; Rónai, Z.; Nagy, G.; Svéda, G.; Halász, T. Surveillance of Mycobacterium Caprae Infection in a Wild Boar (Sus scrofa) Population in Southwestern Hungary. Vet. Arh. 2016, 86, 767–775. [Google Scholar]
- Tagliapietra, V.; Boniotti, M.B.; Mangeli, A.; Karaman, I.; Alborali, G.; Chiari, M.; D’Incau, M.; Zanoni, M.; Rizzoli, A.; Pacciarini, M.L. Mycobacterium Microti at the Environment and Wildlife Interface. Microorganisms 2021, 9, 2084. [Google Scholar] [CrossRef] [PubMed]
- Ghielmetti, G.; Hilbe, M.; Friedel, U.; Menegatti, C.; Bacciarini, L.; Stephan, R.; Bloemberg, G. Mycobacterial Infections in Wild Boars (Sus scrofa) from Southern Switzerland: Diagnostic Improvements, Epidemiological Situation and Zoonotic Potential. Transbound. Emerg. Dis. 2021, 68, 573–586. [Google Scholar] [CrossRef] [PubMed]
- De Val, B.; Sanz, A.; Soler, M.; Allepuz, A.; Michelet, L.; Boschiroli, M.L.; Vidal, E. Mycobacterium Microti Infection in Free-Ranging Wild Boar, Spain, 2017–2019. Emerg. Infect. Dis. 2019, 25, 2152–2154. [Google Scholar] [CrossRef]
- Bona, M.C.; Mignone, W.; Ballardini, M.; Dondo, A.; Mignone, G.; Ru, G. Tuberculosis in wild boar (Sus scrofa) in the Western Liguria Region. Épidémiologie Et St. Anim. 2018, 74, 151–158. [Google Scholar]
- Chiari, M.; Ferrari, N.; Giardiello, D.; Avisani, D.; Pacciarini, M.L.; Alborali, L.; Zanoni, M.; Boniotti, M.B. Spatiotemporal and Ecological Patterns of Mycobacterium Microti Infection in Wild Boar (Sus scrofa). Transbound. Emerg. Dis. 2016, 63, e381–e388. [Google Scholar] [CrossRef]
- Boniotti, M.B.; Gaffuri, A.; Gelmetti, D.; Tagliabue, S.; Chiari, M.; Mangeli, A.; Spisani, M.; Nassuato, C.; Gibelli, L.; Sacchi, C.; et al. Detection and molecular characterization of Mycobacterium microti isolates in wild boar from northern Italy. J. Clin. Microbiol. 2014, 52, 2834–2843. [Google Scholar] [CrossRef]
- Schöning, J.M.; Cerny, N.; Prohaska, S.; Wittenbrink, M.M.; Smith, N.H.; Bloemberg, G.; Pewsner, M.; Schiller, I.; Origgi, F.C.; Ryser-Degiorgis, M.-P. Surveillance of Bovine Tuberculosis and Risk Estimation of a Future Reservoir Formation in Wildlife in Switzerland and Liechtenstein. PLoS ONE 2013, 8, e54253. [Google Scholar] [CrossRef]
- Natarajan, A.; Beena, P.M.; Devnikar, A.V.; Mali, S. A Systemic Review on Tuberculosis. Indian J. Tuberc. 2020, 67, 295–311. [Google Scholar] [CrossRef] [PubMed]
- Torres-Gonzalez, P.; Cervera-Hernandez, M.E.; Martinez-Gamboa, A.; Garcia-Garcia, L.; Cruz-Hervert, L.P.; Bobadilla-del Valle, M.; Ponce-de Leon, A.; Sifuentes-Osornio, J. Human Tuberculosis Caused by Mycobacterium Bovis: A Retrospective Comparison with Mycobacterium Tuberculosis in a Mexican Tertiary Care Centre, 2000–2015. BMC Infect. Dis. 2016, 16, 657. [Google Scholar] [CrossRef] [PubMed]
- Lekko, Y.M.; Che-Amat, A.; Ooi, P.T.; Omar, S.; Ramanoon, S.Z.; Mazlan, M.; Jesse, F.F.A.; Jasni, S.; Ariff Abdul-Razak, M.F. Mycobacterium Tuberculosis and Avium Complex Investigation among Malaysian Free-Ranging Wild Boar and Wild Macaques at Wildlife-Livestock-Human Interface. Animals 2021, 11, 3252. [Google Scholar] [CrossRef] [PubMed]
- Mentaberre, G.; Romero, B.; de Juan, L.; Navarro-González, N.; Velarde, R.; Mateos, A.; Marco, I.; Olivé-Boix, X.; Domínguez, L.; Lavín, S.; et al. Long-Term Assessment of Wild Boar Harvesting and Cattle Removal for Bovine Tuberculosis Control in Free Ranging Populations. PLoS ONE 2014, 9, e88824. [Google Scholar] [CrossRef]
- Aranha, J.; Abrantes, A.C.; Gonçalves, R.; Miranda, R.; Serejo, J.; Vieira-Pinto, M. GIS as an Epidemiological Tool to Monitor the Spatial–Temporal Distribution of Tuberculosis in Large Game in a High-Risk Area in Portugal. Animals 2021, 11, 2374. [Google Scholar] [CrossRef]
- Pate, M.; Zajc, U.; Kušar, D.; Žele, D.; Vengušt, G.; Pirš, T.; Ocepek, M. Mycobacterium spp. in Wild Game in Slovenia. Vet. J. 2016, 208, 93–95. [Google Scholar] [CrossRef]
- García-Jiménez, W.L.; Benítez-Medina, J.M.; Martínez, R.; Carranza, J.; Cerrato, R.; García-Sánchez, A.; Risco, D.; Moreno, J.C.; Sequeda, M.; Gómez, L.; et al. Non-Tuberculous Mycobacteria in Wild Boar (Sus scrofa) from Southern Spain: Epidemiological, Clinical and Diagnostic Concerns. Transbound. Emerg. Dis. 2015, 62, 72–80. [Google Scholar] [CrossRef]
- Barasona, J.A.; Torres, M.J.; Aznar, J.; Gortázar, C.; Vicente, J. DNA Detection Reveals Mycobacterium Tuberculosis Complex Shedding Routes in Its Wildlife Reservoir the Eurasian Wild Boar. Transbound. Emerg. Dis. 2017, 64, 906–915. [Google Scholar] [CrossRef]
- Barroso, P.; Barasona, J.A.; Acevedo, P.; Palencia, P.; Carro, F.; Negro, J.J.; Torres, M.J.; Gortázar, C.; Soriguer, R.C.; Vicente, J. Long-Term Determinants of Tuberculosis in the Ungulate Host Community of Doñana National Park. Pathogens 2020, 9, 445. [Google Scholar] [CrossRef]
- Gortázar, C.; Fernández-Calle, L.M.; Collazos-Martínez, J.A.; Mínguez-González, O.; Acevedo, P. Animal Tuberculosis Maintenance at Low Abundance of Suitable Wildlife Reservoir Hosts: A Case Study in Northern Spain. Prev. Vet. Med. 2017, 146, 150–157. [Google Scholar] [CrossRef]
- Ramos, B.; Pereira, A.C.; Reis, A.C.; Cunha, M.V. Estimates of the global and continental burden of animal tuberculosis in key livestock species worldwide: A meta-analysis study. One Health 2020, 10, 100169. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.; Ferreira, A.S.; Amaro, A.; Albuquerque, T.; Botelho, A.; Couto, I.; Cunha, M.V.; Viveiros, M.; Inácio, J. Enhanced detection of tuberculous mycobacteria in animal tissues using a semi-nested probe-based real-time PCR. PLoS ONE 2013, 8, e81337. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.; Miller, R.S.; Anderson, T.D.; Pabilonia, K.L.; Lewis, J.R.; Mihalco, R.L.; Gortazar, C.; Gidlewski, T. Limited antibody evidence of exposure to Mycobacterium bovis in feral swine (Sus scrofa) in the USA. J. Wildl. Dis. 2017, 53, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.; Colino, E.F.; Arnal, M.C.; de Luco, D.F.; Sevilla, I.; Garrido, J.M.; Fonseca, E.; Valente, A.M.; Balseiro, A.; Queirós, J.; et al. Complementary Roles of Wild Boar and Red Deer to Animal Tuberculosis Maintenance in Multi-Host Communities. Epidemics 2022, 41, 100633. [Google Scholar] [CrossRef]
- Palmer, M.V. Mycobacterium bovis: Characteristics of wildlife reservoir hosts. Transb. Emerg. Dis. 2013, 60 (Suppl. 1), 1–13. [Google Scholar] [CrossRef]
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for Food of Animal Origin. Off. J. Eur. Union 2003, L139, 55.
- Reis, A.C.; Tenreiro, R.; Albuquerque, T.; Botelho, A.; Cunha, M.V. Long-term molecular surveillance provides clues on a cattle origin for Mycobacterium bovis in Portugal. Sci. Rep. 2020, 10, 20856. [Google Scholar] [CrossRef] [PubMed]
- Clausi, M.T.; Ciambrone, L.; Zanoni, M.; Costanzo, N.; Pacciarini, M.; Casalinuovo, F. Evaluation of the Presence and Viability of Mycobacterium bovis in Wild Boar Meat and Meat-Based Preparations. Foods 2021, 10, 2410. [Google Scholar] [CrossRef]
- Varela-Castro, L.; Alvarez, V.; Sevilla, I.A.; Barral, M. Risk factors associated to a high Mycobacterium tuberculosis complex seroprevalence in wild boar (Sus scrofa) from a low bovine tuberculosis prevalence area. PLoS ONE 2020, 15, e0231559. [Google Scholar] [CrossRef]
- Richomme, C.; Boadella, M.; Courcoul, A.; Durand, B.; Drapeau, A.; Corde, Y.; Hars, J.; Payne, A.; Fediaevsky, A.; Boschiroli, M.L. Exposure of Wild Boar to Mycobacterium Tuberculosis Complex in France since 2000 Is Consistent with the Distribution of Bovine Tuberculosis Outbreaks in Cattle. PLoS ONE 2013, 8, e77842. [Google Scholar] [CrossRef]
- Albertti, L.A.G.; Souza-Filho, A.F.; Fonseca-Júnior, A.A.; Freitas, M.E.; de Oliveira-Pellegrin, A.; Zimmermann, N.P.; Tomás, W.M.; Péres, I.A.H.F.S.; Fontana, I.; Osório, A.L.A.R. Mycobacteria Species in Wild Mammals of the Pantanal of Central South America. Eur. J. Wildl. Res. 2015, 61, 163–166. [Google Scholar] [CrossRef]
- Vicente, J.; Barasona, J.A.; Acevedo, P.; Ruiz-Fons, J.F.; Boadella, M.; Diez-Delgado, I.; Beltran-Beck, B.; González-Barrio, D.; Queirós, J.; Montoro, V.; et al. Temporal trend of tuberculosis in wild ungulates from Mediterranean Spain. Transb. Emerg. Dis. 2013, 60, 92–103. [Google Scholar] [CrossRef]
- WOAH. Available online: https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.09.08_SALMONELLOSIS.pdf (accessed on 1 March 2023).
- WOAH. Available online: https://www.woah.org/app/uploads/2021/05/salmonella-enterica-all-serovarsinfection-with.pdf (accessed on 1 March 2023).
- Grimont, P.A.; Weill, F.X. Antigenic formulae of the Salmonella serovars. WHO Collab. Cent. Ref. Res. Salmonella 2007, 9, 1–166. [Google Scholar]
- European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, 6971. [Google Scholar] [CrossRef]
- Torres, R.T.; Fernandes, J.; Carvalho, J.; Cunha, M.V.; Caetano, T.; Mendo, S.; Serrano, E.; Fonseca, C. Wild Boar as a Reservoir of Antimicrobial Resistance. Sci. Total Environ. 2020, 717, 135001. [Google Scholar] [CrossRef]
- Shinoda, S.; Mizuno, T.; Miyoshi, S. General Review on Hog Cholera (Classical Swine Fever), African Swine Fever, and Salmonella Enterica Serovar Choleraesuis Infection. J. Disaster Res. 2019, 14, 1105–1114. [Google Scholar] [CrossRef]
- Greig, J.; Rajić, A.; Young, I.; Mascarenhas, M.; Waddell, L.; LeJeune, J. A Scoping Review of the Role of Wildlife in the Transmission of Bacterial Pathogens and Antimicrobial Resistance to the Food Chain. Zoonoses Public Health 2015, 62, 269–284. [Google Scholar] [CrossRef]
- Billinis, C. Wildlife Diseases That Pose a Risk to Small Ruminants and Their Farmers. Small Rum. Res. 2013, 110, 67–70. [Google Scholar] [CrossRef]
- Paulsen, P.; Smulders, F.J.M.; Hilbert, F. Salmonella in Meat from Hunted Game: A Central European Perspective. Food Res. Int. 2012, 45, 609–616. [Google Scholar] [CrossRef]
- Cano-Manuel, F.J.; López-Olvera, J.; Fandos, P.; Soriguer, R.C.; Pérez, J.M.; Granados, J.E. Long-Term Monitoring of 10 Selected Pathogens in Wild Boar (Sus scrofa) in Sierra Nevada National Park, Southern Spain. Vet. Microbiol. 2014, 174, 148–154. [Google Scholar] [CrossRef]
- Flores Rodas, E.M.; Bogdanova, T.; Bossù, T.; Pecchi, S.; Tomassetti, F.; De Santis, P.; Tolli, R.; Condoleo, R.; Greco, S.; Brozzi, A.; et al. Microbiological Assessment of Freshly-Shot Wild Boars Meat in Lazio Region, Viterbo Territory: A Preliminary Study. Ital. J. Food Saf. 2014, 3, 1711. [Google Scholar] [CrossRef]
- Touloudi, A.; Valiakos, G.; Athanasiou, L.V.; Birtsas, P.; Giannakopoulos, A.; Papaspyropoulos, K.; Kalaitzis, C.; Sokos, C.; Tsokana, C.N.; Spyrou, V.; et al. A Serosurvey for Selected Pathogens in Greek European Wild Boar. Vet. Rec. Open 2015, 2, e000077. [Google Scholar] [CrossRef]
- McGregor, G.F.; Gottschalk, M.; Godson, D.L.; Wilkins, W.; Bollinger, T.K. Disease Risks Associated with Free-Ranging Wild Boar in Saskatchewan. Can. Vet. J. 2015, 56, 839–844. [Google Scholar] [PubMed]
- Bassi, A.M.G.; Steiner, J.C.; Stephan, R.; Nüesch-Inderbinen, M. Seroprevalence of Toxoplasma Gondii and Salmonella in Hunted Wild Boars from Two Different Regions in Switzerland. Animals 2021, 11, 2227. [Google Scholar] [CrossRef] [PubMed]
- Ortega, N.; Fanelli, A.; Serrano, A.; Martínez-Carrasco, C.; Escribano, F.; Tizzani, P.; Candela, M.G. Salmonella Seroprevalence in Wild Boar from Southeast Spain Depends on Host Population Density. Res. Vet. Sci. 2020, 132, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Zottola, T.; Montagnaro, S.; Magnapera, C.; Sasso, S.; De Martino, L.; Bragagnolo, A.; D’Amici, L.; Condoleo, R.; Pisanelli, G.; Iovane, G.; et al. Prevalence and Antimicrobial Susceptibility of Salmonella in European Wild Boar (Sus scrofa); Latium Region—Italy. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 161–168. [Google Scholar] [CrossRef]
- Petrović, J.; Mirčeta, J.; Babić, J.; Malešević, M.; Blagojević, B.; Radulović, J.P.; Antić, D. Salmonella in Wild Boars (Sus scrofa): Characterization and Epidemiology. Acta Vet. 2022, 72, 184–194. [Google Scholar] [CrossRef]
- Piras, F.; Spanu, V.; Siddi, G.; Gymoese, P.; Spanu, C.; Cibin, V.; Schjørring, S.; De Santis, E.P.L.; Scarano, C. Whole-Genome Sequencing Analysis of Highly Prevalent Salmonella Serovars in Wild Boars from a National Park in Sardinia. Food Control 2021, 130, 108247. [Google Scholar] [CrossRef]
- Bonardi, S.; Tansini, C.; Cacchioli, A.; Soliani, L.; Poli, L.; Lamperti, L.; Corradi, M.; Gilioli, S. Enterobacteriaceae and Salmonella Contamination of Wild Boar (Sus scrofa) Carcasses: Comparison between Different Sampling Strategies. Eur. J. Wildl. Res. 2021, 67, 88. [Google Scholar] [CrossRef]
- Razzuoli, E.; Listorti, V.; Martini, I.; Migone, L.; Decastelli, L.; Mignone, W.; Berio, E.; Battistini, R.; Ercolini, C.; Serracca, L.; et al. Prevalence and Antimicrobial Resistances of Salmonella Spp. Isolated from Wild Boars in Liguria Region, Italy. Pathogens 2021, 10, 568. [Google Scholar] [CrossRef]
- Plaza-Rodríguez, C.; Alt, K.; Grobbel, M.; Hammerl, J.A.; Irrgang, A.; Szabo, I.; Stingl, K.; Schuh, E.; Wiehle, L.; Pfefferkorn, B.; et al. Wildlife as Sentinels of Antimicrobial Resistance in Germany? Front. Vet. Sci. 2021, 7, 627821. [Google Scholar] [CrossRef] [PubMed]
- Bonardi, S.; Bolzoni, L.; Zanoni, R.G.; Morganti, M.; Corradi, M.; Gilioli, S.; Pongolini, S. Limited Exchange of Salmonella Among Domestic Pigs and Wild Boars in Italy. EcoHealth 2019, 16, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Gil Molino, M.; García Sánchez, A.; Risco Pérez, D.; Gonçalves Blanco, P.; Quesada Molina, A.; Rey Pérez, J.; Martín Cano, F.E.; Cerrato Horrillo, R.; Hermoso-de-Mendoza Salcedo, J.; Fernández Llario, P. Prevalence of Salmonella Spp. in Tonsils, Mandibular Lymph Nodes and Faeces of Wild Boar from Spain and Genetic Relationship between Isolates. Transbound. Emerg. Dis. 2019, 66, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Cummings, K.J.; Rodriguez-Rivera, L.D.; Grigar, M.K.; Rankin, S.C.; Mesenbrink, B.T.; Leland, B.R.; Bodenchuk, M.J. Prevalence and Characterization of Salmonella Isolated from Feral Pigs Throughout Texas. Zoonoses Public Health 2016, 63, 436–441. [Google Scholar] [CrossRef]
- Dias, D.; Torres, R.T.; Kronvall, G.; Fonseca, C.; Mendo, S.; Caetano, T. Assessment of Antibiotic Resistance of Escherichia coli Isolates and Screening of Salmonella Spp. in Wild Ungulates from Portugal. Res. Microbiol. 2015, 166, 584–593. [Google Scholar] [CrossRef]
- Sannö, A.; Aspán, A.; Hestvik, G.; Jacobson, M. Presence of Salmonella Spp., Yersinia Enterocolitica, Yersinia Pseudotuberculosis and Escherichia coli O157:H7 in Wild Boars. Epidemiol. Infect. 2014, 142, 2542–2547. [Google Scholar] [CrossRef]
- Favier, G.I.; Lucero Estrada, C.; Cortiñas, T.I.; Escudero, M.E. Detection and Characterization of Shiga Toxin Producing Escherichia coli, Salmonella spp., and Yersinia Strains from Human, Animal, and Food Samples in San Luis, Argentina. Int. J. Microbiol. 2014, 2014, 284649. [Google Scholar] [CrossRef]
- Chiari, M.; Zanoni, M.; Tagliabue, S.; Lavazza, A.; Alborali, L.G. Salmonella Serotypes in Wild Boars (Sus scrofa) Hunted in Northern Italy. Acta Vet. Scand. 2013, 55, 42. [Google Scholar] [CrossRef]
- Navarro-Gonzalez, N.; Mentaberre, G.; Porrero, C.M.; Serrano, E.; Mateos, A.; López-Martín, J.M.; Lavín, S.; Domínguez, L. Effect of Cattle on Salmonella Carriage, Diversity and Antimicrobial Resistance in Free-Ranging Wild Boar (Sus scrofa) in Northeastern Spain. PLoS ONE 2012, 7, e51614. [Google Scholar] [CrossRef]
- Ranucci, D.; Roila, R.; Onofri, A.; Cambiotti, F.; Primavilla, S.; Miraglia, D.; Andoni, E.; Di Cerbo, A.; Branciari, R. Improving Hunted Wild Boar Carcass Hygiene: Roles of Different Factors Involved in the Harvest Phase. Foods 2021, 10, 1548. [Google Scholar] [CrossRef]
- Orsoni, F.; Romeo, C.; Ferrari, N.; Bardasi, L.; Merialdi, G.; Barbani, R. Factors Affecting the Microbiological Load of Italian Hunted Wild Boar Meat (Sus scrofa). Meat Sci. 2020, 160, 107967. [Google Scholar] [CrossRef] [PubMed]
- Peruzy, M.F.; Murru, N.; Yu, Z.; Kerkhof, P.-J.; Neola, B.; Joossens, M.; Proroga, Y.T.R.; Houf, K. Assessment of Microbial Communities on Freshly Killed Wild Boar Meat by MALDI-TOF MS and 16S RRNA Amplicon Sequencing. Int. J. Food Microbiol. 2019, 301, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Asakura, H.; Kawase, J.; Ikeda, T.; Honda, M.; Sasaki, Y.; Uema, M.; Kabeya, H.; Sugiyama, H.; Igimi, S.; Takai, S. Microbiological Quality Assessment of Game Meats at Retail in Japan. J. Food Prot. 2017, 80, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Mirceta, J.; Petrovic, J.; Malesevic, M.; Blagojevic, B.; Antic, D. Assessment of Microbial Carcass Contamination of Hunted Wild Boars. Eur. J. Wildl. Res. 2017, 63, 37. [Google Scholar] [CrossRef]
- Russo, C.; Balloni, S.; Altomonte, I.; Martini, M.; Nuvoloni, R.; Cecchi, F.; Pedonese, F.; Salari, F.; Sant’ana Da Silva, A.M.; Torracca, B.; et al. Fatty Acid and Microbiological Profile of the Meat (Longissimus Dorsi Muscle) of Wild Boar (Sus Scropha Scropha) Hunted in Tuscany. Ital. J. Anim. Sci. 2017, 16, 1–8. [Google Scholar] [CrossRef]
- Holmes, M.A.; Zadoks, R.N. Methicillin resistant S. aureus in human and bovine mastitis. J. Mammary Gland. Biol. Neoplasia 2011, 16, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus Aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Joint scientific report of ECDC, EFSA and EMEA on meticillin resistant Staphylococcus aureus (MRSA) in livestock, companion animals and food. EFSA Sci. Rep. 2009, 301, 1–10. [Google Scholar]
- Sousa, M.; Silva, N.; Manageiro, V.; Ramos, S.; Coelho, A.; Gonçalves, D.; Caniça, M.; Torres, C.; Igrejas, G.; Poeta, P. First Report on MRSA CC398 Recovered from Wild Boars in the North of Portugal. Are We Facing a Problem? Sci. Total Environ. 2017, 596–597, 26–31. [Google Scholar] [CrossRef]
- Porrero, M.C.; Mentaberre, G.; Sánchez, S.; Fernández-Llario, P.; Gómez-Barrero, S.; Navarro-Gonzalez, N.; Serrano, E.; Casas-Díaz, E.; Marco, I.; Fernández-Garayzabal, J.-F.; et al. Methicillin Resistant Staphylococcus Aureus (MRSA) Carriage in Different Free-Living Wild Animal Species in Spain. Vet. J. 2013, 198, 127–130. [Google Scholar] [CrossRef]
- Porrero, M.C.; Mentaberre, G.; Sánchez, S.; Fernández-Llario, P.; Casas-Díaz, E.; Mateos, A.; Vidal, D.; Lavín, S.; Fernández-Garayzábal, J.-F.; Domínguez, L. Carriage of Staphylococcus Aureus by Free-Living Wild Animals in Spain. Appl Environ. Microbiol. 2014, 80, 4865–4870. [Google Scholar] [CrossRef]
- Traversa, A.; Gariano, G.R.; Gallina, S.; Bianchi, D.M.; Orusa, R.; Domenis, L.; Cavallerio, P.; Fossati, L.; Serra, R.; Decastelli, L. Methicillin Resistance in Staphylococcus Aureus Strains Isolated from Food and Wild Animal Carcasses in Italy. Food Microbiol. 2015, 52, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Seinige, D.; Von Altrock, A.; Kehrenberg, C. Genetic Diversity and Antibiotic Susceptibility of Staphylococcus Aureus Isolates from Wild Boars. Comp. Immunol. Microbiol. Infect. Dis. 2017, 54, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Ramos, B.; Rosalino, L.M.; Palmeira, J.D.; Torres, R.T.; Cunha, M.V. Antimicrobial Resistance in Commensal Staphylococcus Aureus from Wild Ungulates Is Driven by Agricultural Land Cover and Livestock Farming. Environ. Pollut. 2022, 303, 119116. [Google Scholar] [CrossRef] [PubMed]
- Mama, O.M.; Ruiz-Ripa, L.; Fernández-Fernández, R.; González-Barrio, D.; Ruiz-Fons, J.F.; Torres, C. High Frequency of Coagulase-Positive Staphylococci Carriage in Healthy Wild Boar with Detection of MRSA of Lineage ST398-T011. FEMS Microbiol. Lett. 2019, 366, fny292. [Google Scholar] [CrossRef] [PubMed]
- Meemken, D.; Blaha, T.; Hotzel, H.; Strommenger, B.; Klein, G.; Ehricht, R.; Monecke, S.; Kehrenberg, C. Genotypic and Phenotypic Characterization of Staphylococcus Aureus Isolates from Wild Boars. Appl. Environ. Microbiol. 2013, 79, 1739–1742. [Google Scholar] [CrossRef]
- Rey Pérez, J.; Zálama Rosa, L.; García Sánchez, A.; Hermoso de Mendoza Salcedo, J.; Alonso Rodríguez, J.M.; Cerrato Horrillo, R.; Zurita, S.G.; Gil Molino, M. Multiple Antimicrobial Resistance in Methicillin-Resistant Staphylococcus Sciuri Group Isolates from Wild Ungulates in Spain. Antibiotics 2021, 10, 920. [Google Scholar] [CrossRef]
- Holtmann, A.R.; Meemken, D.; Müller, A.; Seinige, D.; Büttner, K.; Failing, K.; Kehrenberg, C. Wild Boars Carry Extended-Spectrum β-Lactamase- and AmpC-Producing Escherichia coli. Microorganisms 2021, 9, 367. [Google Scholar] [CrossRef]
- EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards); Koutsoumanis, K.; Allende, A.; Alvarez-Ordonez, A.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J. 2020, 18, e05967. [Google Scholar] [CrossRef]
- Perrat, A.; Branchu, P.; Decors, A.; Turci, S.; Bayon-Auboyer, M.-H.; Petit, G.; Grosbois, V.; Brugère, H.; Auvray, F.; Oswald, E. Wild Boars as Reservoir of Highly Virulent Clone of Hybrid Shiga Toxigenic and Enterotoxigenic Escherichia coli Responsible for Edema Disease, France. Emerg. Infect. Dis. 2022, 28, 382–393. [Google Scholar] [CrossRef]
- Topalcengiz, Z.; Danyluk, M.D. Assessment of Contamination Risk from Fecal Matter Presence on Fruit and Mulch in the tomato fields based on generic Escherichia coli population. Food Microbiol. 2022, 103, 103956. [Google Scholar] [CrossRef]
- Topalcengiz, Z.; Jeamsripong, S.; Spanninger, P.M.; Persad, A.K.; Wang, F.; Buchanan, R.L.; Lejeune, J.; Kniel, K.E.; Jay-Russell, M.T.; Danyluk, M.D. Survival of shiga toxin–producing Escherichia coli in various wild animal feces that may contaminate produce. J. Food Prot. 2020, 83, 1420–1429. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.M.; Bradley, P.M.; Shelley, D.; McCarthy, S.; Molina, M. Feral swine as sources of fecal contamination in recreational waters. Sci. Rep. 2021, 11, 4212. [Google Scholar] [CrossRef]
- Dias, D.; Costa, S.; Fonseca, C.; Baraúna, R.; Caetano, T.; Mendo, S. Pathogenicity of Shiga toxin-producing Escherichia coli (STEC) from wildlife: Should we care? Sci. Total Environ. 2022, 812, 152324. [Google Scholar] [CrossRef] [PubMed]
- Morita, S.; Sato, S.; Maruyama, S.; Nagasaka, M.; Murakami, K.; Inada, K.; Uchiumi, M.; Yokoyama, E.; Asakura, H.; Sugiyama, H.; et al. Whole-genome sequence analysis of shiga toxin-producing escherichia coli O157 strains isolated from wild deer and boar in Japan. J. Vet. Med. Sci. 2021, 83, 1860–1868. [Google Scholar] [CrossRef] [PubMed]
- Bertelloni, F.; Cilia, G.; Bogi, S.; Ebani, V.V.; Turini, L.; Nuvoloni, R.; Cerri, D.; Fratini, F.; Turchi, B. Pathotypes and antimicrobial susceptibility of Escherichia coli isolated from wild boar (Sus scrofa) in Tuscany. Animals 2020, 10, 744. [Google Scholar] [CrossRef]
- Szczerba-Turek, A.; Socha, P.; Bancerz-Kisiel, A.; Platt-Samoraj, A.; Lipczynska-Ilczuk, K.; Siemionek, J.; Kończyk, K.; Terech-Majewska, E.; Szweda, W. Pathogenic potential to humans of Shiga toxin-producing Escherichia coli isolated from wild boars in Poland. Int. J. Food Microbiol. 2019, 300, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.; Caetano, T.; Torres, R.T.; Fonseca, C.; Mendo, S. Shiga toxin-producing Escherichia coli in wild ungulates. Sci. Total Environ. 2019, 651, 203–209. [Google Scholar] [CrossRef]
- Alonso, C.A.; Mora, A.; Díaz, D.; Blanco, M.; González-Barrio, D.; Ruiz-Fons, F.; Simón, C.; Blanco, J.; Torres, C. Occurrence and characterization of stx and/or eae-positive Escherichia coli isolated from wildlife, including a typical EPEC strain from a wild boar. Vet. Microbiol. 2017, 207, 69–73. [Google Scholar] [CrossRef]
- Navarro-Gonzalez, N.; Porrero, M.C.; Mentaberre, G.; Serrano, E.; Mateos, A.; Cabal, A.; Domínguez, L.; Lavín, S. Escherichia coli O157:H7 in Wild Boars (Sus scrofa) and Iberian Ibex (Capra pyrenaica) Sharing Pastures with Free-Ranging Livestock in a Natural Environment in Spain. Vet. Q. 2015, 35, 102–106. [Google Scholar] [CrossRef]
- Díaz-Sánchez, S.; Sánchez, S.; Sánchez, M.; Herrera-León, S.; Hanning, I.; Vidal, D. Detection and characterization of Shiga toxin-producing Escherichia coli in game meat and ready-to-eat meat products. Int. J. Food Microbiol. 2012, 160, 179–182. [Google Scholar] [CrossRef]
- Rosner, B.M.; Werber, D.; Höhle, M.; Stark, K. Clinical Aspects and Self-Reported Symptoms of Sequelae of Yersinia Enterocolitica Infections in a Population-Based Study, Germany 2009–2010. BMC Infect. Dis. 2013, 13, 236. [Google Scholar] [CrossRef]
- Fonnes, S.; Rasmussen, T.; Brunchmann, A.; Holzknecht, B.J.; Rosenberg, J. Mesenteric Lymphadenitis and Terminal Ileitis Is Associated With Yersinia Infection: A Meta-Analysis. J. Surg. Res. 2022, 270, 12–21. [Google Scholar] [CrossRef]
- CDC. Yersinia Enterocolitica (Yersiniosis). Available online: www.cdc.gov/yersinia/index.html (accessed on 24 October 2016).
- Platt-Samoraj, A. Toxigenic Properties of Yersinia Enterocolitica Biotype 1A. Toxins 2022, 14, 118. [Google Scholar] [CrossRef] [PubMed]
- Fois, F.; Piras, F.; Torpdahl, M.; Mazza, R.; Ladu, D.; Consolati, S.G.; Spanu, C.; Scarano, C.; De Santis, E.P.L. Prevalence, Bioserotyping and Antibiotic Resistance of Pathogenic Yersinia Enterocolitica Detected in Pigs at Slaughter in Sardinia. Int. J. Food Microbiol. 2018, 283, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Argüello, H.; Estellé, J.; Leonard, F.C.; Crispie, F.; Cotter, P.D.; O’Sullivan, O.; Lynch, H.; Walia, K.; Duffy, G.; Lawlor, P.G.; et al. Influence of the Intestinal Microbiota on Colonization Resistance to Salmonella and the Shedding Pattern of Naturally Exposed Pigs. mSystems 2019, 4, e00021-19. [Google Scholar] [CrossRef] [PubMed]
- Carella, E.; Romano, A.; Domenis, L.; Robetto, S.; Spedicato, R.; Guidetti, C.; Pitti, M.; Orusa, R. Characterisation of Yersinia Enterocolitica Strains Isolated from Wildlife in the Northwestern Italian Alps. J. Vet. Res. 2022, 66, 141–149. [Google Scholar] [CrossRef]
- Selmi, R.; Tayh, G.; Srairi, S.; Mamlouk, A.; Ben Chehida, F.; Lahmar, S.; Bouslama, M.; Daaloul-Jedidi, M.; Messadi, L. Prevalence, Risk Factors and Emergence of Extended-Spectrum β-Lactamase Producing-, Carbapenem- and Colistin-Resistant Enterobacterales Isolated from Wild Boar (Sus scrofa) in Tunisia. Microb. Pathog. 2022, 163, 105385. [Google Scholar] [CrossRef]
- Modesto, P.; De Ciucis, C.G.; Vencia, W.; Pugliano, M.C.; Mignone, W.; Berio, E.; Masotti, C.; Ercolini, C.; Serracca, L.; Andreoli, T.; et al. Evidence of Antimicrobial Resistance and Presence of Pathogenicity Genes in Yersinia Enterocolitica Isolate from Wild Boars. Pathogens 2021, 10, 398. [Google Scholar] [CrossRef]
- Bonardi, S.; Brémont, S.; Vismarra, A.; Poli, I.; Diegoli, G.; Bolzoni, L.; Corradi, M.; Gilioli, S.; Le Guern, A.S. Is Yersinia Bercovieri Surpassing Yersinia Enterocolitica in Wild Boars (Sus scrofa)? EcoHealth 2020, 17, 388–392. [Google Scholar] [CrossRef]
- Takahashi, T.; Kabeya, H.; Sato, S.; Yamazaki, A.; Kamata, Y.; Taira, K.; Asakura, H.; Sugiyama, H.; Takai, S.; Maruyama, S. Prevalence of Yersinia among Wild Sika Deer (Cervus nippon) and Boars (Sus scrofa) in Japan. J. Wildl. Dis. 2020, 56, 270. [Google Scholar] [CrossRef] [PubMed]
- Sannö, A.; Rosendal, T.; Aspán, A.; Backhans, A.; Jacobson, M. Distribution of Enteropathogenic Yersinia spp. and Salmonella spp. in the Swedish Wild Boar Population, and Assessment of Risk Factors That May Affect Their Prevalence. Acta Vet. Scand. 2018, 60, 40. [Google Scholar] [CrossRef] [PubMed]
- Syczyło, K.; Platt-Samoraj, A.; Bancerz-Kisiel, A.; Szczerba-Turek, A.; Pajdak-Czaus, J.; Łabuć, S.; Procajło, Z.; Socha, P.; Chuzhebayeva, G.; Szweda, W. The Prevalence of Yersinia Enterocolitica in Game Animals in Poland. PLoS ONE 2018, 13, e0195136. [Google Scholar] [CrossRef] [PubMed]
- Lorencova, A.; Babak, V.; Lamka, J. Serological Prevalence of Enteropathogenic Yersinia Spp. in Pigs and Wild Boars from Different Production Systems in the Moravian Region, Czech Republic. Foodborne Pathog. Dis. 2016, 13, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Bancerz-Kisiel, A.; Socha, P.; Szweda, W. Detection and Characterisation of Yersinia Enterocolitica Strains in Cold-Stored Carcasses of Large Game Animals in Poland. Vet. J. 2016, 208, 102–103. [Google Scholar] [CrossRef]
- Arrausi-Subiza, M.; Gerrikagoitia, X.; Alvarez, V.; Ibabe, J.C.; Barral, M. Prevalence of Yersinia Enterocolitica and Yersinia Pseudotuberculosis in Wild Boars in the Basque Country, Northern Spain. Acta Vet. Scand. 2016, 58, 4. [Google Scholar] [CrossRef]
- Von Altrock, A.; Seinige, D.; Kehrenberg, C. Yersinia enterocolitica isolates from wild boars hunted in Lower Saxony, Germany. Appl. Environ. Microbiol. 2015, 81, 4835–4840. [Google Scholar] [CrossRef]
- Arrausi-Subiza, M.; Ibabe, J.C.; Atxaerandio, R.; Juste, R.A.; Barral, M. Evaluation of different enrichment methods for pathogenic Yersinia species detection by real time PCR. BMC Vet. Res. 2014, 10, 192. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2019/627 of 15 March 2019 laying Down Uniform Practical Arrangements for the Performance of Official Controls on Products of Animal Origin Intended for Human Consumption in Accordance with Regulation (EU) 2017/625 of the European Parliament and of the Council and amending Commission Regulation (EC) No 2074/2005 as Regards Official Controls. Off. J. Eur. Union 2004, L131, 51.
- Commission Notice on the Implementation of Food Safety Management Systems Covering Good Hygiene Practices and Procedures Based on the HACCP Principles, Including the Facilitation/Flexibility of the Implementation in Certain Food Businesses 2022/C 355/01—C/2022/5307. Off. J. Eur. Union 2002, C355, 1–58.
- Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the Hygiene of Foodstuffs. Off. J. Eur. Union 2004, L139, 1.
- Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 Laying Down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authority and Laying Down Procedures in Matters of Food Safety. Off. J. Eur. Union 2002, L131, 1–24.
- Bandick, N.; Hensel, A. Zoonotic diseases and direct marketing of game meat: Aspects of consumer safety in Germany. In Game Meat Hygiene in Focus: Microbiology, Epidemiology, Risk Analysis and Quality Assurance; Paulsen, P., Bauer, A., Vodnansky, M., Winkelmayer, R., Smulders, F.J.M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 93–100. [Google Scholar]
- Winkelmayer, R.; Stangl, P.-V.; Paulsen, P. Assurance of food safety along the game meat production chain: Inspection of meat from wild game and education of official veterinarians and “trained persons” in Austria. In Game Meat Hygiene in Focus: Microbiology, Epidemiology, Risk Analysis and Quality Assurance; Paulsen, P., Bauer, A., Vodnansky, M., Winkelmayer, R., Smulders, F.J.M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 245–258. [Google Scholar]
- Citterio, C.V.; Bragagna, P.; Novelli, E.; Giaccone, V. Approaches to game hygine in the province Belluno (Italy): From training to meat microbiology. In Game Meat Hygiene in focus: Microbiology, Epidemiology, Risk Analysis and Quality Assurance; Paulsen, P., Bauer, A., Vodnansky, M., Winkelmayer, R., Smulders, F.J.M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 267–270. [Google Scholar]
Agent/Disease | Type | Zoonotic | EU Zoonoses Directive | OIE Listed | n, Period 2012–2022 | n, period 2012–2016 | n, period 2017–2022 | Average /Year, Period 2012–2016 | Average/Year, Period 2017–2022 | Ratio of Averages |
---|---|---|---|---|---|---|---|---|---|---|
African Swine Fever | V | n | y | 499 | 58 | 441 | 11.6 | 73.5 | 6.3 | |
Aujeszky’s Disease | V | n | y | 108 | 43 | 65 | 8.6 | 10.8 | 1.3 | |
CSF | V | n | y | 158 | 54 | 104 | 10.8 | 17.3 | 1.6 | |
Foot and Mouth Disease | V | n | y | 35 | 13 | 22 | 2.6 | 3.7 | 1.4 | |
Porcine Respiratory and Reproductive Syndrome | V | n | y | 62 | 27 | 35 | 5.4 | 5.8 | 1.1 | |
West Nile Fever | V | n | y | 17 | 4 | 13 | 0.8 | 2.2 | 2.7 | |
Hepatitis A | V | y | f | 0 | 0 | 0 | ||||
Influenza | V | y | f | 0 | 0 | 0 | ||||
Japan Encephalitis | V | y | y | 21 | 6 | 15 | 1.2 | 2.5 | 2.1 | |
Rabies | V | y | f | y | 19 | 6 | 13 | 1.2 | 2.2 | 1.8 |
Paratuberculosis | B | n | y | 9 | 7 | 2 | 1.4 | 0.3 | 0.2 | |
Bacillus anthracis | B | y | y | 3 | 2 | 1 | 0.4 | 0.2 | 0.4 | |
Borrelia | B | y | f | 30 | 9 | 21 | 1.8 | 3.5 | 1.9 | |
Brucella | B | y | m | y | 95 | 36 | 59 | 7.2 | 9.8 | 1.4 |
Campylobacter | B | y | m | 22 | 7 | 15 | 1.4 | 2.5 | 1.8 | |
Clostridium | B | y | f (C. botulinum) | 0 | 0 | 0 | ||||
Francisella | B | y | y | 12 | 6 | 6 | 1.2 | 1.0 | 0.8 | |
Leptospira | B | y | f | 55 | 17 | 36 | 3.4 | 6.0 | 1.8 | |
Listeria | B | y | m | 12 | 3 | 9 | 0.6 | 1.5 | 2.5 | |
Q-Fever | B | y | y | 23 | 7 | 16 | 1.4 | 2.7 | 1.9 | |
Salmonella | B | y | m | 80 | 25 | 55 | 5.0 | 9.2 | 1.8 | |
St. aureus | B | y | * | 27 | 10 | 17 | 2.0 | 2.8 | 1.4 | |
Tuberculosis | B | y | m (M. bovis), f (others) | 214 | 97 | 117 | 19.4 | 19.5 | 1.0 | |
Verotoxinogenic E. coli | B | y | m | 27 | 10 | 17 | 2.0 | 2.8 | 1.4 | |
Yersinia | B | y | f | 40 | 13 | 27 | 2.6 | 4.5 | 1.7 | |
Cryptosporidium | P | y | f | 18 | 5 | 13 | 1.0 | 2.2 | 2.2 | |
Cysticercus | P | y | f | y | 9 | 2 | 7 | 0.4 | 1.2 | 2.9 |
Echinococcus | P | y | m | y | 47 | 12 | 35 | 2.4 | 5.8 | 2.4 |
Toxoplasma | P | y | f | 90 | 35 | 55 | 7.0 | 9.2 | 1.3 | |
Trichinella | P | y | m | y | 167 | 67 | 100 | 13.4 | 16.7 | 1.2 |
Prevalence/Frequency | Matrix | Country | Comment | Ref. |
---|---|---|---|---|
0% (0/100) | Spleen | Italy (Central) | PCR | [73] |
0% (0/93) 0% (0/176) | Spleen Ticks | Italy | PCR | [74] |
5.1% (6/117) | Blood of dogs | Italy (Central) | PCR | [72] |
0.48% (2/411) | Ticks | Italy (South) | Ticks collected from hunters and dogs | [71] |
0% (0/40) feeding ticks 0% (0/489) questing ticks | Ticks | Spain (Northwest) | PCR | [75] |
5.5% (4/73) | Serum | Spain (Northwest) | antibodies | [70] |
1.9% (9/484) | Spleen | Spain (North) | PCR | [69] |
0% (0/2256) 0% (0/167) | Ticks Spleen | Spain | Near to Barcelona, a highly populated area | [76] |
0% (0/8) | Serum | Kenya | antibodies Serology (ELISA) | [41] |
0% (0/67) | Blood | Brazil | [77] | |
5% (4/79) | Ticks | Thailand | PCR | [78] |
18.3% (19/104) | Serum of dogs | Australia | Queensland | [79] |
Prevalence/Frequency | Species | Matrix | Country | Comment | Ref. |
---|---|---|---|---|---|
3.1% (13/425) 0.2% (1/425) | Salmonella spp. Salmonella spp. | Feces Mesenteric lymph nodes | Serbia | S. Enteritidis was the main serotype identified | [163] |
3.1% (4/130) | S. enterica | Feces | Spain | Serotype identified were monophasic S. Typhimurium, S. Bardo, S. Enteritidis | [59] |
35.6% (32/90) 17.8% (16/90) | Salmonella spp. Salmonella spp. | Feces Lymph nodes | Italy | 46.7% (42/90) animals were positive in feces or lymph nodes, of which 11.9% (5/42) were positive at the same time in both matrices. S. Abony, S. Newport, S. Agona, S. Derby, S. Hermannswerder, S. Saintpaul, S. Elomrane, S. salamae were identified | [164] |
7.8% (5/64) 4.7% (3/64) | Salmonella spp. Salmonella spp. | Mesenteric lymph nodes Carcass | Italy | Sampling from game-handling establishment, game collection point and slaughterhouse | [165] |
6% (260/4335) | Salmonella spp. | Liver | Italy | Sampling in 2013–2017. Isolated strains belonged to all six Salmonella enterica subspecies and the main serotype was S. Enteritidis | [166] |
4.18% (12/287) | Salmonella spp. | Liver or spleen or rectal swab | Italy | S. diarizonae, S. houtenae, S. Newport, S. Kottbus, S. London, S. Infantis, S. Rubislaw were identified. | [85] |
2.4% (13/552) | Salmonella spp. | Feces | Germany | S. Enteritidis, S. Typhimurium, S. Stanleyville, were identified | [167] |
5% (6/130) | Salmonella spp. | Spleen and kidney | Finland | [39] | |
0% (0/115) | Salmonella spp. | Feces | Denmark | [52] | |
15.9% (30/189) 3.2% (6/189) | Salmonella spp. Salmonella spp. | Mesenteric lymph nodes Feces | Italy | Three animals were positive in both samples | [168] |
18.69% (40/214) 5.06% (21/415) 2.98% (25/838) | Salmonella spp. Salmonella spp. Salmonella spp. | Tonsils Submandibular lymph nodes Feces | Spain | Sampling in 2010–2015 From 148 wild boars the 3 matrices were collected in the same animals and 27.02% (40/148) of them were positive to Salmonella spp. (31/148 tonsils, 12/148 lymph nodes, 2/148 feces) but none of them were positive in the three samples simultaneously | [169] |
7% (4/57) 3.5% (2/57) | S. enterica S. enterica | Feces Mesenteric lymph glands | Italy | S. Thompson and S. Braenderup were identified | [63] |
43.9% (194/442) | Salmonella spp. | Feces | USA | Sampling from 2013 to 2015. Main serovars identified were S. Montevideo, S. Newport and S. Give | [170] |
5% (1/21) | Salmonella spp. | Feces | Portugal | [171] | |
5.1% (9/175) 1.8% (1/56) 1.1% (1/88) | Salmonella spp. Salmonella spp. Salmonella spp. | Tonsils Ileocaecal lymph nodes Feces | Sweden | S. enterica and S. diarizonae were identified | [172] |
33.3% (1/3) 33.3% (1/3) | Salmonella spp. Salmonella spp. | Tonsils Tongue | Argentina | Tonsils carried both S. Gaminara and S. Newport, while only S. Gaminara were isolated from tongue | [173] |
5% 2/40 | S. enterica | Feces | Spain | Salmonella enterica serotype Anatum and Corvallis were isolated | [61] |
7.4% (9/121) | Salmonella spp. | Feces | Japan | S. enterica subsp. enterica serovar Agona (3), S. Narashino (2), S. Enteritidis (1), S. Havana (1), S. Infantis (1), and S. Thompson (1) were obtained | [67] |
0.3% (1/333) | Salmonella spp. | Feces | Spain | One animal was positive in both carcass and feces samples. S. Bardo, S. Montevideo, S. arizonae III (16:i,v:1,5,7) and S. Typhimurium were identified | [57] |
10.8% (54/499) | Salmonella spp. | Feces | Italy | S. enterica subsp. salamae II, S. enterica subsp. diarizonae III b, S. enterica subsp. houtenae IV and S. Fischerhuette were the most common isolated | [162] |
24.82% (326/1313) | Salmonella spp. | Feces | Italy | Sampling from 2007 to 2010 S. enterica subsp. enterica was the main serovar isolated (79.5%) | [174] |
15.4% (33/214) | Salmonella spp. | Feces | Spain | [175] |
Prevalence/Frequency | Species | Matrix | Country | Comment | Ref. |
---|---|---|---|---|---|
2.7% (1/36) 0% (0/36) | Salmonella spp. Salmonella spp. | Meat Carcass | Italy | [62] | |
35.7% (10/28) | Salmonella spp. | Meat | Italy | S. Veneziana, S. Kasenyi, S. Coeln, S. Manhattan, S. Thompson and S. Stanleyville were identified | [64] |
2.5% (3/121) | Salmonella spp. | Carcass | Italy | Two S. Stanleyville and one S. Typhimurium were identified | [176] |
1.1% (1/90) | Salmonella spp. | Carcass | Italy | [164] | |
0% (0/37) | Salmonella spp. | Meat | Italy | Meat cut sampled were fillet and legquarter | [177] |
31.82% (7/22) | Salmonella spp. | Meat | Italy | S. Stanleyville, monophasic S. Typhimurium, and S. Kasenyi were identified | [178] |
0% (0/30) | S. enterica | Carcass | Italy | [63] | |
0% (0/128) | Salmonella spp. | Meat | Japan | [179] | |
1.4% (3/210) 1.9% (4/210) | Salmonella spp. Salmonella spp. | Skin Carcass | Serbia | [180] | |
4.55% (1/22) | Salmonella spp. | Meat | Italy | Meat cut sampled was Longissimus dorsi muscle | [181] |
1.2% (4/333) | Salmonella spp. | Carcass | Spain | One animal was positive in both carcass and feces samples | [57] |
0% (0/72) | Salmonella spp. | Carcass | Italy | [86] |
Prevalence/Frequency | Species | Matrix | Country | Comment | Ref. |
---|---|---|---|---|---|
36.9% (41/111) | S. aureus | Nasal swab | Germany | MRSA were not detected | [189] |
33% (30/90) | S. aureus | Oral and nasal swab | Portugal | 7 isolates showed resistance to at least one of the antibiotics tested; 1 MRSA CC398 (spa-type t899) was identified | [185] |
32.2% (57/177) | S. aureus | Nasal swab | Portugal | Isolates were resistant to all antimicrobials tested, except of trimethoprim-sulfamethoxazole and vancomycin | [190] |
17.8% (66/371) 13.7% (51/371) 1.96% (1/51) | CoPS S. aureus MRSA | Nasal swab | Spain | 74.5% isolates were susceptible to all the antimicrobials analyzed, 19.6% were resistant to penicillin and 9.8% were resistant to streptomycin | [191] |
17.67% (126/713) | MSSA | Skin and/or nasal swabs | Spain | [187] | |
6.8% (8/117) | S. aureus | Nasal swabs | Germany | No antibiotic resistance was detected | [192] |
3.2% (23/697) | S. aureus | Lymph nodes | Italy | MRSA were not detected | [188] |
0.87% (5/577) | MRSA | Nasal swab | Germany | [167] | |
0.86% (7/817) | MRSA | Skin and nasal swabs | Spain | 8 isolates were identified from 7 positive animals: 3 from nasal swabs and 5 from skin swabs. One animal was MRSA positive for both skin and nasal swabs | [186] |
0% (0/90) | MRSA | Nasal swab | Spain | [193] | |
0% (0/439) | MRSA | Nasal swab | Germany | [194] | |
0% (0/244) | MRSA | Nasal swab | Denmark | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altissimi, C.; Noé-Nordberg, C.; Ranucci, D.; Paulsen, P. Presence of Foodborne Bacteria in Wild Boar and Wild Boar Meat—A Literature Survey for the Period 2012–2022. Foods 2023, 12, 1689. https://doi.org/10.3390/foods12081689
Altissimi C, Noé-Nordberg C, Ranucci D, Paulsen P. Presence of Foodborne Bacteria in Wild Boar and Wild Boar Meat—A Literature Survey for the Period 2012–2022. Foods. 2023; 12(8):1689. https://doi.org/10.3390/foods12081689
Chicago/Turabian StyleAltissimi, Caterina, Clara Noé-Nordberg, David Ranucci, and Peter Paulsen. 2023. "Presence of Foodborne Bacteria in Wild Boar and Wild Boar Meat—A Literature Survey for the Period 2012–2022" Foods 12, no. 8: 1689. https://doi.org/10.3390/foods12081689
APA StyleAltissimi, C., Noé-Nordberg, C., Ranucci, D., & Paulsen, P. (2023). Presence of Foodborne Bacteria in Wild Boar and Wild Boar Meat—A Literature Survey for the Period 2012–2022. Foods, 12(8), 1689. https://doi.org/10.3390/foods12081689