Storability and Linear Regression Models of Pericarp Browning and Decay in Fifty Litchi (Litchi chinensis Sonn.) Cultivars at Room Temperature Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Treatment
2.2. Appearance Indicators
2.3. Quality Indicators
2.4. Physiological Indicator
2.5. Statistical Analysis
3. Results
3.1. The Change in Pericarp Browning and Apparent Indicators of Harvested Litchi Fruit
3.2. The Change in Quality Indicators of Harvested Litchi Fruit
3.3. The Change in Physiological Indicators of Harvested Litchi Fruit
3.4. Correlation Analysis of Indicators at Room Temperature Storage
3.5. Principal Component Analysis and Cluster Analysis
3.6. Stepwise Multiple Regression Analysis
4. Discussions
4.1. Differences in Storability in Litchi Varieties
4.2. Impact Factors for Pericarp Browning
4.3. Evaluation Model for Pericarp Browning
4.4. The Application of the Linear Regression Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Quantick, P.C. Effects of Chitosan Coating on Enzymatic Browning and Decay during Postharvest Storage of Litchi (Litchi Chinensis Sonn.) Fruit. Postharvest Biol. Technol. 1997, 12, 195–202. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Wang, Y.; Song, L.; Liu, H.; Lichter, A.; Kerdchoechuen, O.; Joyce, D.C.; Shi, J.; Jiang, Y.M.; Wang, Y.; et al. Postharvest Characteristics and Handling of Litchi Fruit—An Overview. Aust. J. Exp. Agric. 2006, 46, 1541–1556. [Google Scholar] [CrossRef]
- Ahmed, W.; Azmat, R.; Khojah, E.; Ahmed, R.; Qayyum, A.; Shah, A.N.; Abbas, A.; Moin, S.; Samra, B.N. The Development of a Green Innovative Bioactive Film for Industrial Application as a New Emerging Technology to Protect the Quality of Fruits. Molecules 2022, 27, 486. [Google Scholar] [CrossRef] [PubMed]
- Somboonkaew, N.; Terry, L.A. Influence of Temperature and Packaging on Physiological and Chemical Profiles of Imported Litchi Fruit. Food Res. Int. 2011, 44, 1962–1969. [Google Scholar] [CrossRef]
- Kumar, V.; Purbey, S.K.; Anal, A.K.D. Losses in Litchi at Various Stages of Supply Chain and Changes in Fruit Quality Parameters. Crop Prot. 2016, 79, 97–104. [Google Scholar] [CrossRef]
- Sun, J.; Li, C.; Nagendra Prasad, K.; You, X.; Li, L.; Liao, F.; Peng, H.; He, X.; Li, Z.; Zhang, Y. Membrane Deterioration, Enzymatic Browning and Oxidative Stress in Fresh Fruits of Three Litchi Cultivars during Six-Day Storage. Sci. Hortic. 2012, 148, 97–103. [Google Scholar] [CrossRef]
- Barman, K.; Siddiqui, M.W.; Patel, V.B.; Prasad, M. Nitric Oxide Reduces Pericarp Browning and Preserves Bioactive Antioxidants in Litchi. Sci. Hortic. 2014, 171, 71–77. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Shang, J.; Zhu, Z.; Li, Y.; Wu, X.; Zha, D. Study on Browning Mechanism of Fresh-Cut Eggplant (Solanum Melongena L.) Based on Metabolomics, Enzymatic Assays and Gene Expression. Sci. Rep. 2021, 11, 6937. [Google Scholar] [CrossRef]
- Sanji, G.; Rukai, C. Factor and clustering analysis of economic characters in sugarcane(Saccharum spp.). J. Fujian Agric. For. Univ. 2006, 35, 113–116. [Google Scholar]
- Tudela, J.A.; Hernández, N.; Pérez-Vicente, A.; Gil, M.I. Comprehensive Evaluation of Different Storage Conditions for the Varietal Screening of Lettuce for Fresh-Cut Performance. Postharvest Biol. Technol. 2016, 120, 36–44. [Google Scholar] [CrossRef]
- Venus, V.; Asare-Kyei, D.K.; Tijskens, L.M.M.; Weir, M.J.C.; de Bie, C.A.J.M.; Ouedraogo, S.; Nieuwenhuis, W.; Wesselman, S.L.M.; Cappelli, G.A.; Smaling, E.M.A. Development and Validation of a Model to Estimate Postharvest Losses during Transport of Tomatoes in West Africa. Comput. Electron. Agric. 2013, 92, 32–47. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, L.; Luo, H.; Yu, Z. Establishment of a Statistical Model for Browning of Fresh-Cut Lotus Root during Storage. Postharvest Biol. Technol. 2014, 92, 164–171. [Google Scholar] [CrossRef]
- Burdon, J.; Connolly, P.; de Silva, N.; Lallu, N.; Dixon, J.; Pak, H. A Meta-Analysis Using a Logit Non-Linear Mixed Effects Model for ‘Hass’ Avocado Postharvest Performance Data. Postharvest Biol. Technol. 2013, 86, 134–140. [Google Scholar] [CrossRef]
- Menesatti, P.; Paglia, G.; Solaini, S.; Zanella, A.; Stainer, R.; Costa, C.; Cecchetti, M. PH—Postharvest Technology: Non-Linear Multiple Regression Models to Estimate the Drop Damage Index of Fruit. Biosyst. Eng. 2002, 83, 319–326. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Y.; Huo, H.; Xu, J.; Tian, L.; Dong, X.; Qi, D.; Liu, C. An Assessment of the Genetic Diversity of Pear (Pyrus L.) Germplasm Resources Based on the Fruit Phenotypic Traits. J. Integr. Agric. 2022, 21, 2275–2290. [Google Scholar] [CrossRef]
- Nambi, V.E.; Thangavel, K.; Jesudas, D.M. Scientific Classification of Ripening Period and Development of Colour Grade Chart for Indian Mangoes (Mangifera Indica L.) Using Multivariate Cluster Analysis. Sci. Hortic. 2015, 193, 90–98. [Google Scholar] [CrossRef]
- Zhang, Z.-W.; Yao, Q.-Q. Application of the Principle Component Analysis on Mango Storage Characteristic. Subtrop. Plant Sci. 2005, 34, 25. [Google Scholar]
- Kou, X.; Chai, L.; Yang, S.; He, Y.; Wu, C.E.; Liu, Y.; Zhou, J.; Xue, Z.; Wang, Z. Physiological and Metabolic Analysis of Winter Jujube after Postharvest Treatment with Calcium Chloride and a Composite Film. J. Sci. Food Agric. 2021, 101, 703–717. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Cheng, Q.W.; Chen, T.; Meng, L.L.; Sun, T.G.; Hu, B.; Yang, J.; Zhang, D.Y. Prediction of Banana Quality during Storage by Brown Area. Acta Aliment. 2022, 51, 542–551. [Google Scholar] [CrossRef]
- Guo, X.; Luo, T.; Han, D.; Zhu, D.; Jiang, Z.; Wu, Z. Integrated Transcriptomics, Proteomics, and Metabolomics Analysis Reveals the Mechanism of Litchi Pulp Deterioration during Long-Term Cold Storage. Postharvest Biol. Technol. 2023, 195, 112140. [Google Scholar] [CrossRef]
- Nanglia, S.; Mahajan, B.V.C.; Singh, N.; Kapoor, S.; Bhullar, K.S.; Kaur, S.; Kumar, V. Combined Effect of Acids and Shellac Coating on Pericarp Browning, Enzymatic Activities, and Biochemical Attributes of Litchi Fruit during Storage. J. Food Process. Preserv. 2022, 46, e16535. [Google Scholar] [CrossRef]
- Shilpa; Mahajan, B.V.C.; Singh, N.P.; Bhullar, K.S.; Kaur, S. Forced Air Cooling Delays Pericarp Browning and Maintains Post-Harvest Quality of Litchi Fruit during Cold Storage. Acta Physiol. Plant. 2022, 44, 66. [Google Scholar] [CrossRef]
- Yun, Z.; Gao, H.; Chen, X.; Chen, Z.; Zhang, Z.; Li, T.; Qu, H.; Jiang, Y. Effects of Hydrogen Water Treatment on Antioxidant System of Litchi Fruit during the Pericarp Browning. Food Chem. 2021, 336, 127618. [Google Scholar] [CrossRef] [PubMed]
- Deshi, V.; Homa, F.; Ghatak, A.; Aftab, M.A.; Mir, H.; Ozturk, B.; Siddiqui, M.W. Exogenous Methyl Jasmonate Modulates Antioxidant Activities and Delays Pericarp Browning in Litchi. Physiol. Mol. Biol. Plants 2022, 28, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, R.; Jiang, Z.; Cheng, Z.; Li, W.; Shao, Y. Combined Effect of Debaryomyces hansenii and Bacillus atrophaeus on the Physicochemical Attributes, Defense-Related Enzyme Activity, and Transcriptomic Profile of Stored Litchi Fruit. Biol. Control 2022, 172, 104975. [Google Scholar] [CrossRef]
- Jiang, Y.-M.; Chen, F. A Study on Polyamine Change and Browning of Fruit during Cold Storage of Litchi (Litchi Chinensis Sonn.). Postharvest Biol. Technol. 1995, 5, 245–250. [Google Scholar] [CrossRef]
- Deng, M.; Deng, Y.; Dong, L.; Ma, Y.; Liu, L.; Huang, F.; Wei, Z.; Zhang, Y.; Zhang, M.; Zhang, R. Effect of Storage Conditions on Phenolic Profiles and Antioxidant Activity of Litchi Pericarp. Mol. J. Synth. Chem. Nat. Prod. Chem. 2018, 23, 2276. [Google Scholar] [CrossRef]
- Zhou, A.-A.; Li, R.-Y.; Mo, F.-X.; Ding, Y.; Li, R.-T.; Guo, X.; Hu, K.; Li, M. Natural Product Citronellal Can Significantly Disturb Chitin Synthesis and Cell Wall Integrity in Magnaporthe oryzae. J. Fungi 2022, 8, 1310. [Google Scholar] [CrossRef]
- Fang, F.; Zhang, X.; Luo, H.; Zhou, J.; Gong, Y.; Li, W.; Shi, Z.; He, Q.; Wu, Q.; Li, L.; et al. An Intracellular Laccase Is Responsible for the Epicatechin Mediated Anthocyanin Degradation in Litchi Fruit Pericarp. Plant Physiol. 2015, 169, 2391–2408. [Google Scholar] [CrossRef]
- Ali, S.; Sattar Khan, A.; Ullah Malik, A.; Anwar, R.; Akbar Anjum, M.; Nawaz, A.; Shafique, M.; Naz, S. Combined Application of Ascorbic and Oxalic Acids Delays Postharvest Browning of Litchi Fruits under Controlled Atmosphere Conditions. Food Chem. 2021, 350, 129277. [Google Scholar] [CrossRef]
- Wang, T.; Hu, M.; Yuan, D.; Yun, Z.; Gao, Z.; Su, Z.; Zhang, Z. Melatonin Alleviates Pericarp Browning in Litchi Fruit by Regulating Membrane Lipid and Energy Metabolisms. Postharvest Biol. Technol. 2020, 160, 111066. [Google Scholar] [CrossRef]
- Su, Z.; Hu, M.; Gao, Z.; Li, M.; Yun, Z.; Pan, Y.; Zhang, Z.; Jiang, Y. Apple Polyphenols Delay Senescence and Maintain Edible Quality in Litchi Fruit during Storage. Postharvest Biol. Technol. 2019, 157, 110976. [Google Scholar] [CrossRef]
- Ali, S.; Sattar Khan, A.; Ullah Malik, A.; Anjum, M.A.; Nawaz, A.; Shoaib Shah, H.M. Modified Atmosphere Packaging Delays Enzymatic Browning and Maintains Quality of Harvested Litchi Fruit during Low Temperature Storage. Sci. Hortic. 2019, 254, 14–20. [Google Scholar] [CrossRef]
- Mendy, T.K.; Misran, A.; Mahmud, T.M.M.; Ismail, S.I. Application of Aloe Vera Coating Delays Ripening and Extend the Shelf Life of Papaya Fruit. Sci. Hortic. 2019, 246, 769–776. [Google Scholar] [CrossRef]
- Khaliq, G.; Ramzan, M.; Baloch, A.H. Effect of Aloe Vera Gel Coating Enriched with Fagonia Indica Plant Extract on Physicochemical and Antioxidant Activity of Sapodilla Fruit during Postharvest Storage. Food Chem. 2019, 286, 346–353. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, X.; Geng, R.; Lu, Q.; Rao, R.; Tan, X.; Yang, X.; Liu, W. Increased Level of A2,6-Sialylated Glycans on HaCaT Cells Induced by Titanium Dioxide Nanoparticles under UV Radiation. Nanomaterials 2018, 8, 253. [Google Scholar] [CrossRef]
- Blokhina, O. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: A Review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef]
- Sun, S.-J.; Guo, S.-Q.; Yang, X.; Bao, Y.-M.; Tang, H.-J.; Sun, H.; Huang, J.; Zhang, H.-S. Functional Analysis of a Novel Cys2/His2-Type Zinc Finger Protein Involved in Salt Tolerance in Rice. J. Exp. Bot. 2010, 61, 2807–2818. [Google Scholar] [CrossRef]
- Duan, X.; Liu, T.; Zhang, D.; Su, X.; Lin, H.; Jiang, Y. Effect of Pure Oxygen Atmosphere on Antioxidant Enzyme and Antioxidant Activity of Harvested Litchi Fruit during Storage. Food Res. Int. 2011, 44, 1905–1911. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, X.; Wang, J.; Huang, C. Activated Release of Chlorine Dioxide Gas from Polyvinyl Alcohol Microcapsule (Ethylcellulose/Sodium-Chlorite) Hybrid Films for Active Packaging of Litchi during Postharvest Storage. Postharvest Biol. Technol. 2023, 196, 112173. [Google Scholar] [CrossRef]
- Lonergan, G.; Baker, W.L. Comparative Study of Substrates of Fungal Laccase. Lett. Appl. Microbiol. 1995, 21, 31–33. [Google Scholar] [CrossRef]
- Jiang, Y.; Duan, X.; Joyce, D.; Zhang, Z.; Li, J. Advances in Understanding of Enzymatic Browning in Harvested Litchi Fruit. Food Chem. 2004, 88, 443–446. [Google Scholar] [CrossRef]
- He, M.; Zhou, Y.; Zhu, H.; Jiang, Y.; Qu, H. Metabolome, Transcriptome and Physiological Analyses Provide Insight into the Color Transition of Litchi Pericarp. Postharvest Biol. Technol. 2022, 192, 112031. [Google Scholar] [CrossRef]
- Zou, J.; Li, P. Modelling of Litchi Shelf Life Based on the Entropy Weight Method. Food Packag. Shelf Life 2020, 25, 100509. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mahale, S.; Dhar, R.; Basak, S. Development of a Mixed Fruit Beverage and Pulsed Light Treatment Thereof to Obtain a Microbially Safe and Enzymatically Stable Product. Food Biosci. 2022, 45, 101508. [Google Scholar] [CrossRef]
Maturation Period | Litchi Accession |
---|---|
Early maturing | Bai Tang Ying, Jian Ye Li |
Middle maturing | Hei Ye, Yu Tan Mi Li, Huang Pi Li, Wu Cha Li |
Middle–late maturing | Xin Qiu Mi Li, Dong Long, Ping Pang Qiu, Chi Tang Li, Chui Li Huang Li, E Dan Li, E Dan Li 2 Hao, Hai Guo 4 Hao, Gui Yuan 1 Hao, Qiong Shan 11 Hao, Liu Li 2 Hao, Xiang Wan, Qiong Shan 31 Hao, An Duo Ji Dan, Cui Ye, Cheng Tuo, Dong Long Mi Li, Gui Wei |
Late maturing | Guang Yuan 1 Hao, Xue Huai Zi, Yan Zhi Hong, Hei Zhi, Jiao Pan Li, Ji Cui Rou, Ju Fen 1 Hao, Jia Yuan Mi Li, Yuan Duan Li, Qiong Gong 1 Hao, Chang Hong, Huai Zhi, Zhuang Yuan 1 Hao, Ren Shan Li, Qi Yue Shu, Sha Li, Shang Shu Huai, Bai Fen, Liu Li 1 Hao, Zhu Shan 4 Hao, Qiong Shan 15 Hao, Wu Jun 2 Hao, Yu Lin Li, Ji Gong 1 Hao, Jing Xing, Mu Pai 1 Hao |
Component | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Peel thickness | 0.74 | 0.15 | −0.035 | 0.13 | 0.43 |
L* value | 0.26 | −0.37 | −0.27 | 0.82 | −0.19 |
a* value | 0.43 | 0.38 | −0.64 | −0.14 | 0.12 |
Total soluble solids | 0.65 | 0.47 | 0.34 | 0.005 | −0.18 |
Ascorbic acid | 0.48 | −0.27 | 0.7 | −0.03 | −0.12 |
relative conductivity | −0.45 | 0.37 | 0.38 | 0.4 | 0.56 |
Laccase activity | −0.25 | 0.77 | 0.048 | 0.24 | −0.43 |
Eigen value | 1.72 | 1.32 | 1.22 | 0.92 | 0.78 |
variance (%) | 24.57 | 18.88 | 17.49 | 13.17 | 11.1 |
Accumulated variance (%) | 24.57 | 43.45 | 60.94 | 74.11 | 85.21 |
Litchi Accession | Browning Score | Rotting Score | Storage Stability Classification |
---|---|---|---|
Liu Li 2 Hao | 10.6 | 10.6 | 1 |
Wu Jun 2 Hao | 7.94 | 7.94 | 2 |
Shang Shu Huai | 7.91 | 7.91 | 2 |
Qiong Shan 31 Hao | 7.89 | 7.89 | 2 |
Zu Shan 4 Hao | 7.78 | 7.78 | 2 |
Jian Ye Li | 7.73 | 7.73 | 2 |
Jing Xing | 7.63 | 7.63 | 2 |
Hai Guo 4 Hao | 7.62 | 7.62 | 2 |
Xue Huai Zi | 7.58 | 7.58 | 2 |
Jia Yuan Mi Li | 7.55 | 7.55 | 2 |
Zhuang Yuan 1 Hao | 7.55 | 7.55 | 2 |
Cheng Tuo | 7.51 | 7.51 | 2 |
Huai Zhi | 7.48 | 7.48 | 2 |
Yuan Duan Li | 7.47 | 7.47 | 2 |
Xin Qiu Mi Li | 7.4 | 7.4 | 3 |
Gui Yuan 1 Hao | 7.39 | 7.39 | 3 |
Bai Tang Ying | 7.33 | 7.33 | 3 |
Qiong Shan 11 Hao | 7.31 | 7.31 | 3 |
Wu Cha Li | 7.31 | 7.31 | 3 |
Hei Zhi | 7.29 | 7.29 | 3 |
Ping Pang Qiu | 7.29 | 7.29 | 3 |
Sha Li | 7.24 | 7.24 | 3 |
Cui Ye | 7.24 | 7.24 | 3 |
Qi Yue Shu | 7.21 | 7.21 | 3 |
Qiong Gong 1 Hao | 7.2 | 7.2 | 3 |
Bai Fen | 7.17 | 7.17 | 3 |
Gui Wei | 7.14 | 7.14 | 3 |
Ju Fen 1 Hao | 7.12 | 7.12 | 3 |
Yu Tuan Mi Li | 7.11 | 7.11 | 3 |
Hei Ye | 7.08 | 7.08 | 3 |
Chang Hong | 7.05 | 7.05 | 3 |
Huang Pi Li | 6.92 | 6.92 | 4 |
Guang Yuan 1 Hao | 6.9 | 6.9 | 4 |
Liu Li 1 Hao | 6.9 | 6.9 | 4 |
Chui Li Huang Li | 6.85 | 6.85 | 4 |
Qiong Shan 15 Hao | 6.84 | 6.84 | 4 |
Mu Pai 1 Hao | 6.84 | 6.84 | 4 |
Yu Lin Li | 6.83 | 6.83 | 4 |
Xiang Wan | 6.81 | 6.81 | 4 |
Chi Tang Li | 6.73 | 6.73 | 4 |
Ji Cui Rou | 6.71 | 6.71 | 4 |
E Dan Li | 6.63 | 6.63 | 4 |
Yan Zhi Hong | 6.56 | 6.56 | 4 |
Ji Gong 1 Hao | 6.54 | 6.54 | 4 |
Dong Long | 6.49 | 6.49 | 4 |
An Duo Ji Dan | 6.39 | 6.39 | 5 |
Ren Shan Li | 6.32 | 6.32 | 5 |
E Dan Li 2 Hao | 6.29 | 6.29 | 5 |
Jiao Pan Li | 6.16 | 6.16 | 5 |
Dong Long Mi Li | 6.03 | 6.03 | 5 |
Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
---|---|---|---|---|---|
B | Std. Error | Beta | |||
Constant | 5.184 | 0.460 | 11.269 | 0.000 | |
Relative leakage rate | 4.905 | 0.399 | 0.463 | 12.302 | 0.000 |
Total soluble solids | −0.280 | 0.028 | −0.415 | −9.923 | 0.000 |
Peel thickness | −0.924 | 0.211 | −0.176 | −4.386 | 0.000 |
Laccase activity | 3.250 | 0.694 | 0.182 | 4.681 | 0.000 |
L* value | −0.004 | 0.002 | −0.077 | −2.107 | 0.036 |
a* value | −0.026 | 0.010 | −0.099 | −2.534 | 0.012 |
Ascorbic acid | −2.244 | 1.041 | −0.087 | −2.156 | 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Fu, D.; Jiang, Y.; Liu, H.; Shi, F.; Wen, Y.; Cai, C.; Chen, J.; Ou, L.; Yan, Q. Storability and Linear Regression Models of Pericarp Browning and Decay in Fifty Litchi (Litchi chinensis Sonn.) Cultivars at Room Temperature Storage. Foods 2023, 12, 1725. https://doi.org/10.3390/foods12081725
Huang K, Fu D, Jiang Y, Liu H, Shi F, Wen Y, Cai C, Chen J, Ou L, Yan Q. Storability and Linear Regression Models of Pericarp Browning and Decay in Fifty Litchi (Litchi chinensis Sonn.) Cultivars at Room Temperature Storage. Foods. 2023; 12(8):1725. https://doi.org/10.3390/foods12081725
Chicago/Turabian StyleHuang, Kan, Danwen Fu, Yonghua Jiang, Hailun Liu, Fachao Shi, Yingjie Wen, Changhe Cai, Jiezhen Chen, Liangxi Ou, and Qian Yan. 2023. "Storability and Linear Regression Models of Pericarp Browning and Decay in Fifty Litchi (Litchi chinensis Sonn.) Cultivars at Room Temperature Storage" Foods 12, no. 8: 1725. https://doi.org/10.3390/foods12081725
APA StyleHuang, K., Fu, D., Jiang, Y., Liu, H., Shi, F., Wen, Y., Cai, C., Chen, J., Ou, L., & Yan, Q. (2023). Storability and Linear Regression Models of Pericarp Browning and Decay in Fifty Litchi (Litchi chinensis Sonn.) Cultivars at Room Temperature Storage. Foods, 12(8), 1725. https://doi.org/10.3390/foods12081725