Physicochemical Attributes, Aroma Profile, and Sensory Quality of Organic Crimson Crisp Apples after Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Storage Techniques
2.1.1. Plant Material
2.1.2. Storage Techniques
2.2. Analysis of Fruit Quality Attributes
2.2.1. Analysis of Fruit Weight, Total Soluble Solids, Fruit Firmness and Juice Content as Well as Browning
2.2.2. Titratable Acidity (TA)
2.2.3. Starch Degradation
2.3. Analysis of the Fruit Volatiles
2.3.1. Sample Preparation for the Analysis of Primary Aroma Compounds
2.3.2. Sample Preparation for the Analysis of Secondary Aroma Compounds
2.3.3. Analysis of the Apple Volatiles by HS-SPME-GC-MS
2.4. Sensory Analysis
2.4.1. Panel Training and Selection
2.4.2. Sample Preparation for Sensory Evaluation
2.4.3. Sensory Evaluation the Stored Apples Using Open-Ended Questioning (OEQ)
2.5. Statistical Data Treatment
3. Results and Discussion
3.1. Quality Attributes of Stored Apples
3.2. Volatilome of Apples after Storage
3.3. Sensory Analysis of Stored Crimson Crisp Apples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spence, C. Multisensory flavor perception. Cell 2015, 161, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Altisent, R.; Echeverría, G.; Graell, J.; López, L.; Lara, I. Lipoxygenase activity is involved in the regeneration of volatile ester-synthesizing capacity after ultra-low oxygen storage of ‘Fuji’ apple. J. Agric. Food Chem. 2009, 57, 4305–4312. [Google Scholar] [CrossRef]
- Song, J.; Bangerth, F. Fatty acids as precursors for aroma volatile biosynthesis in pre-climacteric and climacteric apple fruit. Postharvest Biol. Technol. 2003, 30, 113–121. [Google Scholar] [CrossRef]
- Echeverría, G.; Graell, J.; López, M.; Lara, I. Volatile production, quality and aroma-related enzyme activities during maturation of ‘Fuji’ apples. Postharvest Biol. Technol. 2004, 31, 217–227. [Google Scholar] [CrossRef]
- Mehinagic, E.; Royer, G.; Symoneaux, R.; Jourjon, F.; Prost, C. Characterization of odor-active volatiles in apples: Influence of cultivars and maturity stage. J. Agric. Food Chem. 2006, 54, 2678–2687. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.; Hewett, E.W. Factors affecting apple aroma/flavour volatile concentration: A Review. New Zealand J. Crop Hortic. Sci. 2000, 28, 155–173. [Google Scholar] [CrossRef]
- Moran, R.E.; DeEll, J.R.; Murr, D.P. Effects of Preconditioning and Fruit Maturity on the Occurrence of Soft Scald and Soggy Breakdown in ‘Honeycrisp’ Apples. HortSci 2010, 45, 1719–1722. [Google Scholar] [CrossRef]
- Watkins, C.B.; Nock, J.F.; Weis, S.A.; Jayanty, S.; Beaudry, R.M. Storage temperature, diphenylamine, and pre-storage delay effects on soft scald, soggy breakdown and bitter pit of ‘Honeycrisp’ apples. Postharvest Biol. Technol. 2004, 32, 213–221. [Google Scholar] [CrossRef]
- Bangerth, F.K.; Song, J.; Streif, J. Physiological Impacts of Fruit Ripening and Storage Conditions on Aroma Volatile Formation in Apple and Strawberry Fruit: A Review. HortSci 2012, 47, 4–10. [Google Scholar] [CrossRef]
- Knee, M. Ripening of apples during storage. II. Respiratory metabolism and ethylene synthesis in Golden Delicious apples during the climacteric, and under conditions simulating commercial storage practice. J. Sci. Food Agr. 1971, 22, 368–371. [Google Scholar] [CrossRef]
- Ke, D.; Rodriguez-Sinobas, L.; Kader, A.A. Physiology and Prediction of Fruit Tolerance to Low-oxygen Atmospheres. JASHS 1991, 116, 253–260. [Google Scholar] [CrossRef]
- DeLong, J.M.; Prange, R.K.; Leyte, J.C.; Harrison, P.A. A New Technology That Determines Low-oxygen Thresholds in Controlled-atmosphere-stored Apples. Hortte 2004, 14, 262–266. [Google Scholar] [CrossRef]
- Zanella, A. Control of apple superficial scald and ripening—A comparison between 1-methylcyclopropene and diphenylamine postharvest treatments, initial low oxygen stress and ultra low oxygen storage. Postharvest Biol. Technol. 2003, 27, 69–78. [Google Scholar] [CrossRef]
- Al Shoffe, Y.; Nock, J.F.; Zhang, Y.; Watkins, C.B. Physiological disorder development of ‘Honeycrisp’ apples after pre- and post-harvest 1-methycyclopropene (1-MCP) treatments. Postharvest Biol. Technol. 2021, 182, 111703. [Google Scholar] [CrossRef]
- Watkins, C.B.; Nock, J.F.; Whitaker, B.D. Responses of early, mid and late season apple cultivars to postharvest application of 1-methylcyclopropene (1-MCP) under air and controlled atmosphere storage conditions. Postharvest Biol. Technol. 2000, 19, 17–32. [Google Scholar] [CrossRef]
- Sisler, E.C.; Serek, M. Compounds Interacting with the Ethylene Receptor in Plants. Plant Biol. 2003, 5, 473–480. [Google Scholar] [CrossRef]
- Defilippi, B.G.; Dandekar, A.M.; Kader, A.A. Impact of suppression of ethylene action or biosynthesis on flavor metabolites in apple (Malus domestica Borkh) fruits. J. Agric. Food Chem. 2004, 52, 5694–5701. [Google Scholar] [CrossRef] [PubMed]
- Tatsuki, M.; Hayama, H.; Nakamura, Y. Apple ethylene receptor protein concentrations are affected by ethylene, and differ in cultivars that have different storage life. Planta 2009, 230, 407–417. [Google Scholar] [CrossRef]
- Argenta, L.; Fan, X.; Mattheis, J. Delaying establishment of controlled atmosphere or CO2 exposure reduces ‘Fuji’ apple CO2 injury without excessive fruit quality loss. Postharvest Biol. Technol. 2000, 20, 221–229. [Google Scholar] [CrossRef]
- Argenta, L.C.; do Amarante, Cassandro Vidal Talamini; de Freitas, S. T.; Brancher, T.L.; Nesi, C.N.; Mattheis, J.P. Fruit quality of ‘Gala’ and ‘Fuji’ apples cultivated under different environmental conditions. Sci. Hortic. 2022, 303, 111195. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, C.; Wang, C.; Golding, J.B.; Ru, L. Comparative transcriptome reveals molecular mechanism in apple genotypes differing in CO2 tolerance in CA storage. Postharvest Biol. Technol. 2022, 185, 111807. [Google Scholar] [CrossRef]
- Cocci, E.; Sacchetti, G.; Rocculi, P.; Dalla Rosa, M. Response of Pink Lady® apples to post-harvest application of 1-methylcyclopropene as a function of applied dose, maturity at harvest, storage time and controlled atmosphere storage. J. Sci. Food Agric. 2014, 94, 2691–2698. [Google Scholar] [CrossRef] [PubMed]
- Mattheis, J.P.; Rudell, D.R.; Hanrahan, I. Impacts of 1-Methylcyclopropene and Controlled Atmosphere Established during Conditioning on Development of Bitter Pit in ‘Honeycrisp’ Apples. HortSci 2017, 52, 132–137. [Google Scholar] [CrossRef]
- Gago, C.M.; Guerreiro, A.C.; Miguel, G.; Panagopoulos, T.; Sánchez, C.; Antunes, M.D. Effect of harvest date and 1-MCP (SmartFresh™) treatment on ‘Golden Delicious’ apple cold storage physiological disorders. Postharvest Biol. Technol. 2015, 110, 77–85. [Google Scholar] [CrossRef]
- Mir, M.A.; Beigh, M.A.; Fouzia Shafi. Effect of 1-MCP on quality attributes of Red Delicious apples under non-refrigerated and refrigerated conditions of storage. Res. Crops 2013, 14, 522–529. [Google Scholar]
- Bai, J.; Baldwin, E.A.; Goodner, K.L.; Mattheis, J.P.; Brecht, J.K. Response of Four Apple Cultivars to 1-Methylcyclopropene Treatment and Controlled Atmosphere Storage. HortSci 2005, 40, 1534–1538. [Google Scholar] [CrossRef]
- Thewes, F.R.; Brackmann, A.; Anese, R.d.O.; Ludwig, V.; Schultz, E.E.; dos Santos, L.F.; Wendt, L.M. Effect of dynamic controlled atmosphere monitored by respiratory quotient and 1-methylcyclopropene on the metabolism and quality of ‘Galaxy’ apple harvested at three maturity stages. Food Chem. 2017, 222, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Kvikliene, N.; Kviklys, D.; Viškelis, P. Change in fruit quality during ripening and storage in the apple cultivar (Auksis). J. Fruit Ornam. Plant Res. 2006, 14, 195–202. [Google Scholar]
- DeEll, J.R.; Lum, G.B.; Ehsani-Moghaddam, B. Effects of multiple 1-methylcyclopropene treatments on apple fruit quality and disorders in controlled atmosphere storage. Postharvest Biol. Technol. 2016, 111, 93–98. [Google Scholar] [CrossRef]
- García-Gómez, B.E.; Salazar, J.A.; Nicolás-Almansa, M.; Razi, M.; Rubio, M.; Ruiz, D.; Martínez-Gómez, P. Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective. Int. J. Mol. Sci. 2020, 22, 333. [Google Scholar] [CrossRef]
- de Castro, E.; Barrett, D.M.; Jobling, J.; Mitcham, E.J. Biochemical factors associated with a CO2-induced flesh browning disorder of Pink Lady apples. Postharvest Biol. Technol. 2008, 48, 182–191. [Google Scholar] [CrossRef]
- Janick, J.; Goffreda, J.C.; Korban, S.S. ‘Co-op 39’ (CrimsonCrisp™) Apple. HortSci 2006, 41, 465–466. [Google Scholar] [CrossRef]
- Pontesegger, N.; Rühmer, T.; Siegmund, B. Physicochemical Attributes, Volatile Profile and Sensory Quality of Organic Crimson Crisp Apples during On-Tree Maturation. Foods 2023, 12, 1425. [Google Scholar] [CrossRef] [PubMed]
- Blankenship, S.M.; Dole, J.M. 1-Methylcyclopropene: A review. Postharvest Biol. Technol. 2003, 28, 1–25. [Google Scholar] [CrossRef]
- Aprea, E.; Corollaro, M.L.; Betta, E.; Endrizzi, I.; Demattè, M.L.; Biasioli, F.; Gasperi, F. Sensory and instrumental profiling of 18 apple cultivars to investigate the relation between perceived quality and odour and flavour. Food Res. Int. 2012, 49, 677–686. [Google Scholar] [CrossRef]
- Johnsen, L.G.; Skou, P.B.; Khakimov, B.; Bro, R. Gas chromatography—Mass spectrometry data processing made easy. J. Chromatogr. A 2017, 1503, 57–64. [Google Scholar] [CrossRef]
- Amigo, J.M.; Skov, T.; Bro, R.; Coello, J.; Maspoch, S. Solving GC-MS problems with PARAFAC2. TrAC Trends Anal. Chem. 2008, 27, 714–725. [Google Scholar] [CrossRef]
- Farkas, P.; Le Quere, J.L.; Maarse, H.; Kovac, M. The standard GC retention index library of flavour compounds. Dev. Food Sci. 1994, 35, 145–149. [Google Scholar]
- Elmore, J.S. Aroma extract analysis. In Flavour Development, Analysis and Perception in Food and Beverages; Parker, J.K., Elmore, J.S., Methven, L., Eds.; WP Woodhead Publ./Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9781782421030. [Google Scholar]
- Corollaro, M.L.; Endrizzi, I.; Bertolini, A.; Aprea, E.; Demattè, M.L.; Costa, F.; Biasioli, F.; Gasperi, F. Sensory profiling of apple: Methodological aspects, cultivar characterisation and postharvest changes. Postharvest Biol. Technol. 2013, 77, 111–120. [Google Scholar] [CrossRef]
- Piqueras-Fiszman, B. Open-ended questions in sensory testing practice. Rapid Sens. Profiling Tech. 2015, 247–267. [Google Scholar] [CrossRef]
- Lehner, T.B.; Siegmund, B. The impact of ventilation during postharvest ripening on the development of flavour compounds and sensory quality of mangoes (Mangifera indica L.) cv. Kent. Food Chem. 2020, 320, 126608. [Google Scholar] [CrossRef]
- Wurm, L. Erfolgreicher Obstbau: Ein Obstbauleitfaden unter besonderer Berücksichtigung qualitätsfördernder Maßnahmen; Österreichischer Agrarverlag: Wien, Austria, 2010; ISBN 978-3-7040-2381-0. [Google Scholar]
- Konopacka, D.; Plocharski, W.J. Effect of storage conditions on the relationship between apple firmness and texture acceptability. Postharvest Biol. Technol. 2004, 32, 205–211. [Google Scholar] [CrossRef]
- Kang, J.S.; Lee, D.S. A kinetic model for transpiration of fresh produce in a controlled atmosphere. J. Food Eng. 1998, 35, 65–73. [Google Scholar] [CrossRef]
- Ghafir, S.A.M. Murajei; Mohamed Fathi El-Nady. Physiological and anatomical comparison between four different apple cultivars under cold-storage conditions. AJPS 2009, 3, 133–138. [Google Scholar] [CrossRef]
- Jha, S.N.; Rai, D.R.; Shrama, R. Physico-chemical quality parameters and overall quality index of apple during storage. J. Food Sci. Technol. 2012, 49, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Ignat, T.; Lurie, S.; Nyasordzi, J.; Ostrovsky, V.; Egozi, H.; Hoffman, A.; Friedman, H.; Weksler, A.; Schmilovitch, Z. Forecast of Apple Internal Quality Indices at Harvest and During Storage by VIS-NIR Spectroscopy. Food Bioprocess Technol. 2014, 7, 2951–2961. [Google Scholar] [CrossRef]
- Johnston, J.W.; Hewett, E.W.; Hertog, M.L.A.T.M. Postharvest softening of apple (Malus domestica) fruit: A review. New Zealand J. Crop Hortic. Sci. 2002, 30, 145–160. [Google Scholar] [CrossRef]
- Palmer, J.W.; Harker, F.R.; Tustin, D.S.; Johnston, J. Fruit dry matter concentration: A new quality metric for apples. J. Sci. Food Agric. 2010, 90, 2586–2594. [Google Scholar] [CrossRef]
- Harker, F.R.; Maindonald, J.; Murray, S.H.; Gunson, F.A.; Hallett, I.C.; Walker, S.B. Sensory interpretation of instrumental measurements 1: Texture of apple fruit. Postharvest Biol. Technol. 2002, 24, 225–239. [Google Scholar] [CrossRef]
- Harker, F.R.; Marsh, K.B.; Young, H.; Murray, S.H.; Gunson, F.A.; Walker, S.B. Sensory interpretation of instrumental measurements 2: Sweet and acid taste of apple fruit. Postharvest Biol. Technol. 2002, 24, 241–250. [Google Scholar] [CrossRef]
- Both, V.; Thewes, F.R.; Brackmann, A.; de Oliveira Anese, R.; de Freitas Ferreira, D.; Wagner, R. Effects of dynamic controlled atmosphere by respiratory quotient on some quality parameters and volatile profile of ‘Royal Gala’ apple after long-term storage. Food Chem. 2017, 215, 483–492. [Google Scholar] [CrossRef]
- DeEll, J.R.; Lum, G.B.; Mostofi, Y.; Lesage, S.K. Timing of Ethylene Inhibition Affects Internal Browning and Quality of ‘Gala’ Apples in Long-Term Low Oxygen Storage. Front. Plant Sci. 2022, 13, 1560. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Anese, R.; Brackmann, A.; Thewes, F.R.; Schultz, E.E.; Ludwig, V.; Wendt, L.M.; Wagner, R.; Klein, B. Impact of dynamic controlled atmosphere storage and 1-methylcyclopropene treatment on quality and volatile organic compounds profile of ‘Galaxy’ apple. Food Packag. Shelf Life 2020, 23, 100443. [Google Scholar] [CrossRef]
- Fan, X.; Mattheis, J.P. Impact of 1-methylcyclopropene and methyl jasmonate on apple volatile production. J. Agric. Food Chem. 1999, 47, 2847–2853. [Google Scholar] [CrossRef] [PubMed]
- Thewes, F.R.; Brackmann, A.; de Oliveira Anese, R.; Ludwig, V.; Schultz, E.E.; Berghetti, M.R.P. 1-methylcyclopropene suppresses anaerobic metabolism in apples stored under dynamic controlled atmosphere monitored by respiratory quotient. Sci. Hortic. 2018, 227, 288–295. [Google Scholar] [CrossRef]
- Kondo, S.; Setha, S.; Rudell, D.R.; Buchanan, D.A.; Mattheis, J.P. Aroma volatile biosynthesis in apples affected by 1-MCP and methyl jasmonate. Postharvest Biol. Technol. 2005, 36, 61–68. [Google Scholar] [CrossRef]
- Weber, A.; Thewes, F.R.; Anese, R.d.O.; Both, V.; Pavanello, E.P.; Brackmann, A. Dynamic controlled atmosphere (DCA): Interaction between DCA methods and 1-methylcyclopropene on ‘Fuji Suprema’ apple quality. Food Chem. 2017, 235, 136–144. [Google Scholar] [CrossRef]
- Schmidt, S.F.P.; Schultz, E.E.; Ludwig, V.; Berghetti, M.R.P.; Thewes, F.R.; Anese, R.d.O.; Both, V.; Brackmann, A. Volatile compounds and overall quality of ‘Braeburn’ apples after long-term storage: Interaction of innovative storage technologies and 1-MCP treatment. Sci. Hortic. 2020, 262, 109039. [Google Scholar] [CrossRef]
- Xiaotang, Y.; Song, J.; Du, L.; Forney, C.; Campbell-Palmer, L.; Fillmore, S.; Wismer, P.; Zhang, Z. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit. Food Chem. 2016, 194, 325–336. [Google Scholar] [CrossRef]
- Espino-Díaz, M.; Sepúlveda, D.R.; González-Aguilar, G.; Olivas, G.I. Biochemistry of Apple Aroma: A Review. Food Technol. Biotechnol. 2016, 54, 375–397. [Google Scholar] [CrossRef]
- Schiller, D.; Contreras, C.; Vogt, J.; Dunemann, F.; Defilippi, B.G.; Beaudry, R.; Schwab, W. A dual positional specific lipoxygenase functions in the generation of flavor compounds during climacteric ripening of apple. Hortic. Res. 2015, 2, 15003. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Forney, C.F. Flavour volatile production and regulation in fruit. Can. J. Plant Sci. 2008, 88, 537–550. [Google Scholar] [CrossRef]
- Flavornet Home Page. Available online: https://www.flavornet.org/ (accessed on 3 April 2023).
- Kelley, K.; Hyde, J.; Travis, J.; Crassweller, R. Assessing Consumer Preferences of Scab-resistant Apples: A Sensory Evaluation. Hortte 2010, 20, 885–891. [Google Scholar] [CrossRef]
Samples | Weight [g] | TSS [°Brix] | FF [kg/cm2] | TA [g Malic Acid Equiv./L] | pH | Juice Content [%] | Flesh/Corebrowning [%] |
---|---|---|---|---|---|---|---|
Fresh | 189 ± 26 A | 13.9 ± 0.3 C | 7.9 ± 0.9 BC | 17.5 ± 0.1 D | 3.32 ± 0.01 A | 22.5 | 0/0 |
4M-RA | 192 ± 21 A | 12.7 ± 0.1 A | 6.2 ± 0.6 A | / | / | 12.9 | 0/0 |
4M-CA | 202 ± 21 A | 13.6 ± 0.2 BC | 7.8 ± 0.5 BC | / | / | 20.6 | 0/0 |
4M-MCP | 210 ± 30 A | 13.6 ± 0.5 BC | 7.4 ± 0.7 B | / | / | 20.2 | 0/0 |
6M-RA | 193 ± 23 A | 12.8 ± 0.2 A | 6.1 ± 0.5 A | 8.8 ± 0.3 A | 3.98 ± 0.01 D | 13.1 | 27/13 |
6M-CA | 194 ± 33 A | 13.3 ± 0.5 B | 7.7 ± 0.6 BC | 10.7 ± 0.1 B | 3.80 ± 0.01 C | 21.3 | 0/0 |
6M-MCP | 190 ± 28 A | 13.7 ± 0.5 BC | 8.3 ± 0.7 C | 14.0 ± 0.1 C | 3.68 ± 0.01 B | 21.2 | 0/0 |
Primary Aroma Compounds | Secondary Aroma Compounds | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compound Name a | RI (exp.) b | RI (lit.) c | Fresh d [µg/kg] | CA d [µg/kg] | MCP d [µg/kg] | RA d [µg/kg] | Fresh d [µg/L] | CA d [µg/L] | MCP d [µg/L] | RA d [µg/L] |
Alcohols | ||||||||||
2-Propanol | 508 | 506 | 1.17 A | 0.33 B | 0.34 B | 0.25 B | 0.92 B | 0.98 B | 1.94 A | 1.50 AB |
1-Propanol | 565 | 558 | 22.7 A | 0.19 C | 0.15 C | 6.59 C | 23.5 B | 3.48 C | 0.3 C | 44.6 A |
1-Propanol, 2-methyl- | 632 | 635 | 28.2 A | 8.81 B | 2.12 C | 9.85 C | n.d. | n.d. | n.d. | n.d. |
1-Butanol | 668 | 670 | 777 A | 75.4 C | 2.30 D | 364 D | 772.89 | 475 BC | 96.9 C | 1850 A |
1-Butanol, 2-methyl- | 740 | 738 | 876 A | 153.7 B | 82.5 C | 94.1 C | 703 B | 825 A | 456 C | 500 C |
1-Pentanol | 767 | 771 | 121.8 A | 4.50 C | 0.39 D | 6.90 D | 121.9 A | 30.9 B | 3.58 C | 40.4 B |
2-Buten-1-ol, 2-methyl- t | 774 | n.a. | n.d. D | 17.2 A | 6.46 B | 1.86 C | 10.4 C | 108 A | 55.1 B | 10.2 C |
2-Hexen-1-ol, (E)- | 866 | 867 | 23.6 A | 2.97 B | 1.69 C | 2.76 C | 2.61 A | 27 B | 32.0 B | 32.0 B |
1-Hexanol | 869 | 870 | 763 A | 55.6 C | 4.71 D | 82.1 D | 737 A | 323 C | 143 D | 537 B |
Heptanol | 968 | 972 | 6.55 A | 0.58 C | 0.21 D | 1.63 D | 6.74 B | 3.83 C | 1.57 D | 10.6 A |
1-Hexanol, 2-ethyl- | 1029 | 1031 | n.d. D | 0.46 C | 0.36 C | 0.52 C | 3.53 AB | 3.32 AB | 2.92 B | 3.70 A |
1-Octanol | 1069 | 1070 | n.d. D | 0.39 C | 0.08 C | 1.63 C | 12.63 A | 0.79 C | 0.15 C | 6.81 B |
1-Decanol | 1273 | 1272 | n.d. C | 0.24 B | 0.15 B | 0.40 B | 1.01 A | 4.14 A | 2.8 A | 8.3 A |
Aldehydes | ||||||||||
Butanal | 593 | 598 | 4.74 A | 1.26 C | 0.90 C | 3.24 C | 4.77 BC | 6.1 B | 4.3 C | 13.3 A |
Hexanal | 799 | 802 | 27.4 A | 10.8 B | 6.18 C | 11.5 C | 149.5 A | 254 A | 245 A | 357 A |
2-Hexenal, (Z)- | 846 | 848 | 3.43 A | 0.13 B | 0.08 B | 0.10 B | 10.8 A | 12.0 A | 9.48 A | 10.8 A |
2-Hexenal, (E)- | 855 | 854 | 90.5 A | 10.85 B | 8.42 BC | 7.77 BC | 357 A | 272 B | 243 B | 282 B |
2,4-Hexadienal, (E,E)- | 912 | 913 | 2.31 A | 0.43 B | 0.34 B | 0.41 B | 13.3 A | 14.1 A | 12.8 A | 12.6 A |
Octanal | 1004 | 1005 | n.d. D | 2.77 B | 1.01 C | 2.79 B | 3.9 B | 8.62 A | 3.4 B | 11.0 A |
Nonanal | 1106 | 1106 | n.d. C | 3.16 B | 2.29 B | 3.73 B | 12.9 A | 9.3 A | 10.7 A | 11.8 |
Esters | ||||||||||
Acetic acid, methyl ester | 535 | 525 | 2.66 B | 1.48 BC | 0.79 C | 3.65 C | 0.77 C | 4.02 B | 2.1 C | 12.78 A |
Acetic acid, ethyl ester | 618 | 620 | 7.26 B | 3.23 C | 4.02 C | 9.90 C | 2.41 C | 8.42 B | 9.43 B | 23.0 A |
Carbonic acid, dimethyl ester | 621 | 620 | 2.35 A | 0.74 B | 0.76 B | 0.61 B | 1.72 C | 2.69 A | 2.94 A | 2.18 B |
Propanoic acid, methyl ester | 634 | 643 | 3.54 A | 0.95 BC | 1.07 B | 0.63 B | 1.05 C | 2.02 AB | 2.39 A | 1.4 BC |
Acetic acid, propyl ester | 714 | 720 | 45.8 A | 0.29 C | 0.01 C | 13.9 C | 25.5 B | 4.07 C | 0.83 C | 48 A |
Butanoic acid, methyl ester | 724 | 728 | 10.9 A | 2.93 B | 2.97 B | 2.54 B | 2.8 D | 9.7 B | 11 A | 8.0 C |
Acetic acid, 2-methylpropyl ester | 774 | 780 | 10.68 A | 5.01 C | 1.68 D | 8.31 D | 6.77 C | 21.2 B | 7.75 C | 32.4 A |
Propanoic acid, propyl ester | 809 | 812 | 12.1 A | 0.01 C | n.d. C | 0.69 C | 8.51 A | 0.64 C | 0.05 D | 3.95 B |
Acetic acid, butyl ester | 813 | 817 | 536 A | 38.1 C | 0.73 D | 298 D | 475 B | 248 BC | 36.6 C | 1340 A |
Acetic acid, 2-methylbutyl ester | 877 | 885 | 508 A | 69.0 B | 65.9 B | 75.1 B | 414 A | 300 A | 221 A | 318 A |
Butanoic acid, propyl ester | 896 | 898 | 4.73 A | 0.04 C | 0.02 C | 2.32 C | 3.86 B | 1.14 C | 0.13 D | 14.03 A |
Propanoic acid, butyl ester | 906 | 908 | 56.1 A | 0.30 C | 0.03 C | 5.49 C | 40.2 A | 3.70 C | 0.77 D | 27.1 B |
Acetic acid, pentyl ester | 911 | 915 | 93.0 A | 5.25 C | 0.35 D | 15.3 D | 80.5 A | 26.0 C | 0.89 D | 73.7 B |
2-Buten-1-ol, 3-methyl-, acetate | 920 | 923 | 3.00 B | 4.94 A | 1.99 C | 0.73 C | 2.64 D | 22.9 A | 11.5 B | 4.56 C |
Hexanoic acid, methyl ester | 923 | 923 | n.d. | n.d. | n.d. | n.d. | 0.68 C | 1.15 B | 1.09 B | 1.51 A |
Butanoic acid, 2-methyl-, propyl ester | 945 | 938 | 5.02 A | 0.03 C | n.d. C | 1.04 C | 3.02 B | 0.85 C | 0.02 D | 5.36 A |
Butanoic acid, butyl ester | 993 | 996 | 22.7 A | 0.44 C | 0.01 C | 14.0 C | 21.1 B | 4.36 C | 0.27 D | 63.5 A |
Acetic acid, hexyl ester | 1010 | 1013 | 230.9 A | 35.2 C | 1.97 D | 73.2 D | 95.4 B | 133 B | 15.5 C | 349 A |
Butanoic acid, 2-methylbutyl ester | 1041 | 1041 | 55.9 A | 2.27 C | 0.13 C | 19.7 C | 27.7 B | 11.3 C | 1.57 D | 81.8 A |
Butanoic acid, 2-methyl-, 2-methylbutyl ester | 1104 | 1104 | 11.5 A | 2.37 B | 0.33 D | 1.65 D | 3.06 B | 5.66 A | 0.37 C | 5.14 A |
Butanoic acid, hexyl ester | 1191 | 1191 | n.d. D | 0.66 C | 0.02 C | 7.98 B | 3.06 BC | 1.89 B | 0.39 B | 22.2 A |
Butanoic acid, 2-methyl-, hexyl est. | 1237 | 1238 | 101 A | 4.74 B | 0.10 C | 19.2 C | 12.0 B | 3.99 C | 0.04 D | 36.2 A |
Ketones | ||||||||||
2-Butanone | 599 | 600 | 23.9 A | 11.0 BC | 11.5 B | 9.00 B | 10.4 D | 46.2 B | 53.4 A | 35.7 C |
2-Pentanone | 688 | 690 | 18.1 A | 5.05 B | 5.10 B | 4.06 B | 8.43 C | 16.0 AB | 20.5 A | 13.7 BC |
3-Pentanone | 698 | 701 | 11.7 A | 3.92 B | 4.23 B | 2.46 B | 6.90 B | 17.3 A | 18.2 A | 7.4 B |
3-Pentanone, 2-methyl- | 753 | 752 | 2.78 A | 0.56 B | 0.59 B | 0.43 B | 1.04 C | 1.86 B | 2.22 A | 1.23 C |
Others | ||||||||||
Butanoic acid, 2-methyl- | 846 | 848 | 51.9 A | 0.73 B | 0.17 B | 0.87 B | 74.6 A | 30.6 B | 1.05 C | 7.56 C |
α-Pinene | 946 | 944 | n.d. | n.d. | n.d. | n.d. | 0.20 A | 1.6 A | 1.02 A | 0.73 A |
Hexanal dimethyl acetal | 977 | 980 | n.d. D | 0.04 D | 0.02 D | 0.05 D | 2.63 C | 10.9 B | 8.39 B | 20.8 A |
Linalool oxide | 1083 | 1088 | n.d. D | 0.11 CD | 0.07 CD | 0.88 C | 0.92 B | 1.15 B | 0.59 C | 8.73 A |
Undecane | 1100 | 1100 | 21 A | 4.26 B | 3.63 B | 5.02 B | 11.0 B | 22.9 A | 21.3 A | 27.6 A |
Dodecane | 1203 | 1200 | 1.94 A | 0.41 B | 0.34 B | 0.55 B | n.d. | n.d. | n.d. | n.d. |
Tetradecane | 1404 | 1400 | 0.20 A | 0.24 A | 0.18 A | 0.36 A | n.d. | n.d. | n.d. | n.d. |
β-Damascenone, (E)- | 1406 | 1396 | 1.79 A | 0.52 B | 0.55 B | 0.48 B | 1.04 AB | 1.02 AB | 1.11 A | 0.49 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontesegger, N.; Rühmer, T.; Siegmund, B. Physicochemical Attributes, Aroma Profile, and Sensory Quality of Organic Crimson Crisp Apples after Storage. Foods 2023, 12, 1876. https://doi.org/10.3390/foods12091876
Pontesegger N, Rühmer T, Siegmund B. Physicochemical Attributes, Aroma Profile, and Sensory Quality of Organic Crimson Crisp Apples after Storage. Foods. 2023; 12(9):1876. https://doi.org/10.3390/foods12091876
Chicago/Turabian StylePontesegger, Niklas, Thomas Rühmer, and Barbara Siegmund. 2023. "Physicochemical Attributes, Aroma Profile, and Sensory Quality of Organic Crimson Crisp Apples after Storage" Foods 12, no. 9: 1876. https://doi.org/10.3390/foods12091876
APA StylePontesegger, N., Rühmer, T., & Siegmund, B. (2023). Physicochemical Attributes, Aroma Profile, and Sensory Quality of Organic Crimson Crisp Apples after Storage. Foods, 12(9), 1876. https://doi.org/10.3390/foods12091876