A New Inert Natural Deep Eutectic Solvent (NADES) as a Reaction Medium for Food-Grade Maillard-Type Model Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. NADES Preparation
2.3. Stability Tests of Suc/Sorb NADES under Different Heat and pH Conditions
2.4. Model Reactions and Isolation of 1
2.5. Food-Grade Model Reaction of (R)-2, (S)-2
2.6. Determination of the Exact Mass and Mass Fragmentation of 1 and Its Isotopically Labeled Analog 1-IS Using UHPLC-TOF-MS
2.7. NMR Spectroscopy
2.8. Quantification of 1, (R)-2, and (S)-2 via UHPLC-MS
3. Results and Discussion
3.1. Development and Characterization of a New NADES System
3.2. Thermal Stability of Suc/Sorb NADES System
3.3. pH Stability of Suc/Sorb NADES System
3.4. Formation of 1 in Suc/Sorb NADES
3.5. Formation of (R)-2 and (S)-2 as a Food-Grade Model Reaction in NADES
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.; Witkamp, G.-J.; Verpoorte, R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Vanda, H.; Dai, Y.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. C. R. Chim. 2018, 21, 628–638. [Google Scholar] [CrossRef]
- Vanda, H.; Verpoorte, R.; Klinkhamer, P.G.L.; Choi, Y.H. Natural Deep Eutectic Solvents: From Their Discovery to Their Applications. In Deep Eutectic Solvents: Synthesis, Properties, and Applications; Ramón, D.J., Guillena, G., Eds.; Wiley-VCH: Weinheim, Germany, 2020; pp. 61–81. [Google Scholar]
- Cannavacciuolo, C.; Pagliari, S.; Frigerio, J.; Giustra, C.M.; Labra, M.; Campone, L. Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods 2023, 12, 56. [Google Scholar] [CrossRef]
- González, C.G.; Mustafa, N.R.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Application of natural deep eutectic solvents for the “green” extraction of vanillin from vanilla pods. Flavour Fragr. J. 2018, 33, 91–96. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Ćurko, N.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef]
- Nam, M.W.; Zhao, J.; Lee, M.S.; Jeong, J.H.; Lee, J. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae. Green Chem. 2015, 17, 1718–1727. [Google Scholar] [CrossRef]
- Cao, C.; Nian, B.; Li, Y.; Wu, S.; Liu, Y. Multiple Hydrogen-Bonding Interactions Enhance the Solubility of Starch in Natural Deep Eutectic Solvents: Molecule and Macroscopic Scale Insights. J. Agric. Food Chem. 2019, 67, 12366–12373. [Google Scholar] [CrossRef] [PubMed]
- Lores, H.; Romero, V.; Costas, I.; Bendicho, C.; Lavilla, I. Natural deep eutectic solvents in combination with ultrasonic energy as a green approach for solubilisation of proteins: Application to gluten determination by immunoassay. Talanta 2017, 162, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; Sharma, M.; Mukesh, C.; Gupta, V.; Prasad, K. Improved solubility of DNA in recyclable and reusable bio-based deep eutectic solvents with long-term structural and chemical stability. Chem. Commun. 2013, 49, 9606–9608. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, F.; Chen, Z.-G.; Wu, T.; Wang, Z.-H. Green and efficient removal of cadmium from rice flour using natural deep eutectic solvents. Food Chem. 2018, 244, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Ghanemi, K.; Navidi, M.-A.; Fallah-Mehrjardi, M.; Dadolahi-Sohrab, A. Ultra-fast microwave-assisted digestion in choline chloride–oxalic acid deep eutectic solvent for determining Cu, Fe, Ni and Zn in marine biological samples. Anal. Methods 2014, 6, 1774–1781. [Google Scholar] [CrossRef]
- Mišan, A.; Nađpal, J.; Stupar, A.; Pojić, M.; Mandić, A.; Verpoorte, R.; Choi, Y.H. The perspectives of natural deep eutectic solvents in agri-food sector. Crit. Rev. Food Sci. Nutr. 2019, 60, 2564–2592. [Google Scholar] [CrossRef]
- Piemontese, L.; Perna, F.M.; Logrieco, A.; Capriati, V.; Solfrizzo, M. Deep Eutectic Solvents as Novel and Effective Extraction Media for Quantitative Determination of Ochratoxin A in Wheat and Derived Products. Molecules 2017, 22, 121. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Afshar Mogaddam, M.R.; Aghanassab, M. Deep eutectic solvent-based dispersive liquid–liquid microextraction. Anal. Methods 2016, 8, 2576–2583. [Google Scholar] [CrossRef]
- Elgharbawy, A.A.; Hayyan, A.; Hayyan, M.; Rashid, S.N.; Nor, M.R.M.; Zulkifli, M.Y.; Alias, Y.; Mirghani, M.E.S. Shedding light on lipase stability in natural deep eutectic solvents. Chem. Biochem. Eng. Q. 2018, 32, 359–370. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, C.; Crittle, T.D. Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil. J. Mol. Catal. B Enzym. 2013, 85–86, 243–247. [Google Scholar] [CrossRef]
- Mišan, A.; Pojic, M. Applications of NADES in stabilizing food and protecting food compounds against oxidation. In Eutectic Solvents and Stress in Plants; Verpoorte, R., Ed.; Elsevier Science & Technology: San Diego, CA, USA, 2021. [Google Scholar]
- Kranz, M.; Hofmann, T. Food-grade synthesis of Maillard-type taste enhancers using natural deep eutectic solvents (NADES). Molecules 2018, 23, 261. [Google Scholar] [CrossRef]
- Brehm, L.; Frank, O.; Ranner, J.; Hofmann, T. Quantitative determination of thiamine-derived taste enhancers in aqueous model systems, natural deep eutectic solvents, and thermally processed foods. J. Agric. Food Chem. 2020, 68, 6181–6189. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.I.; Jongen, W.M.; Van Boekel, M.A. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 2000, 11, 364–373. [Google Scholar] [CrossRef]
- Lund, M.N.; Ray, C.A. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. J. Agric. Food Chem. 2017, 65, 4537–4552. [Google Scholar] [CrossRef]
- Festring, D.; Hofmann, T. Discovery of N 2-(1-carboxyethyl) guanosine 5′-monophosphate as an umami-enhancing Maillard-modified nucleotide in yeast extracts. J. Agric. Food Chem. 2010, 58, 10614–10622. [Google Scholar] [CrossRef] [PubMed]
- Suess, B.; Brockhoff, A.; Degenhardt, A.; Billmayer, S.; Meyerhof, W.; Hofmann, T. Human taste and umami receptor responses to chemosensorica generated by Maillard-type N2-alkyl- and N2-arylthiomethylation of guanosine 5′-monophosphates. J. Agric. Food Chem. 2014, 62, 11429–11440. [Google Scholar] [CrossRef]
- Brehm, L.; Frank, O.; Juenger, M.; Wimmer, M.; Ranner, J.; Hofmann, T. Novel Taste-Enhancing 4-Amino-2-methyl-5-heteroalkypyrimidines Formed from Thiamine by Maillard-Type Reactions. J. Agric. Food Chem. 2019, 67, 13986–13997. [Google Scholar] [CrossRef]
- Festring, D. Geschmacksstoffe und Geschmacksmodulatoren in Hefeextrakten und Studien zur Maillard-Reaktion von Guanosin-5′-Monophosphat. Ph.D. Thesis, Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Technical University of Munich, Munich, Germany, 9 July 2012; p. 141. [Google Scholar]
- Lu, K.; Ye, W.; Gold, A.; Ball, L.M.; Swenberg, J.A. Formation of S-[1-(N2-deoxyguanosinyl) methyl] glutathione between glutathione and DNA induced by formaldehyde. J. Am. Chem. Soc. 2009, 131, 3414–3415. [Google Scholar] [CrossRef]
- Lang, R.; Klade, S.; Beusch, A.; Dunkel, A.; Hofmann, T. Mozambioside is an arabica-specific bitter-tasting furokaurane glucoside in coffee beans. J. Agric. Food Chem. 2015, 63, 10492–10499. [Google Scholar] [CrossRef]
- Frank, O.; Kreissl, J.K.; Daschner, A.; Hofmann, T. Accurate determination of reference materials and natural isolates by means of quantitative 1H NMR spectroscopy. J. Agric. Food Chem. 2014, 62, 2506–2515. [Google Scholar] [CrossRef]
- Union, E. Commission Regulation (EU) No. 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No. 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. Union L 2011, 54, 12-11. [Google Scholar]
- Patil, D.H.; Grimble, G.K.; Silk, D.B. Lactitol, a new hydrogenated lactose derivative: Intestinal absorption and laxative threshold in normal human subjects. Br. J. Nutr. 1987, 57, 195–199. [Google Scholar] [CrossRef]
- Newsome, R. Sugar Substitutes. In Low-Calorie Foods Handbook; Altschul, A.M., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1993; p. 148. [Google Scholar]
- Kearsley, M.W.; Deis, R.C. Sorbitol and Mannitol. In Sweetners and Sugar Alternatives in Food Technology; Mitchell, H., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 249–261. [Google Scholar]
- Basu, S.; Shivhare, U. Rheological, textural, microstructural, and sensory properties of sorbitol-substituted mango jam. Food Bioprocess Tech. 2013, 6, 1401–1413. [Google Scholar] [CrossRef]
- Le, A.S.; Mulderrig, K.B. Sorbitol and Mannitol. In Alternative Sweeteners; Nabors, L.O., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2001; Volume 3, pp. 317–334. [Google Scholar]
- Meyer, B.; Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. 2003, 42, 864–890. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.-N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Rusanen, A.; Lappalainen, K.; Kärkkäinen, J.; Lassi, U. Furfural and 5-Hydroxymethylfurfural Production from Sugar Mixture Using Deep Eutectic Solvent/MIBK System. ChemistryOpen 2021, 10, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.C.; Ferrer, M.L.; Mateo, C.R.; del Monte, F. Freeze-Drying of Aqueous Solutions of Deep Eutectic Solvents: A Suitable Approach to Deep Eutectic Suspensions of Self-Assembled Structures. Langmuir 2009, 25, 5509–5515. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Zhao, Y.; Wang, J.; Yu, Z. Insights into the Hydrogen Bond Interactions in Deep Eutectic Solvents Composed of Choline Chloride and Polyols. ACS Sustain. Chem. Eng. 2019, 7, 7760–7767. [Google Scholar] [CrossRef]
- Zheng, Y.-Z.; Wang, N.-N.; Luo, J.-J.; Zhou, Y.; Yu, Z.-W. Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile. Phys. Chem. Chem. Phys. 2013, 15, 18055–18064. [Google Scholar] [CrossRef]
- Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radic. Res. 2013, 47, 3–27. [Google Scholar] [CrossRef] [PubMed]
- International Organization of Flavor Industry. IOFI Code Of Practice Revision April 2020; International Organization of Flavor Industry: Washington, DC, USA, 2020; pp. 36–38. Available online: https://cdn2.assets-servd.host/erratic-warthog/production/IOFI-Code-of-Practice-5th-Revision.pdf (accessed on 29 April 2023).
- Chuy, S.; Bell, L.N. Buffer pH and pKa values as affected by added glycerol and sucrose. Int. Food Res. J. 2006, 39, 342–348. [Google Scholar] [CrossRef]
- Eggleston, G.; Vercellotti, J. Degradation of sucrose, glucose, and fructose in concentrated aqueous solutions under constant pH conditions at elevated temperature. J. Carbohydr. Chem. 2000, 19, 1305–1318. [Google Scholar] [CrossRef]
- Clarke, M.A.; Edye, L.A.; Eggleston, G. Sucrose decomposition in aqueous solution, and losses in sugar manufacture and refining. In Advances in Carbohydrate Chemistry and Biochemistry; Elsevier: Amsterdam, The Netherlands, 1997; pp. 441–470. [Google Scholar]
- Rychlik, M.; Asam, S. Stable isotope dilution assays in mycotoxin analysis. Anal. Bioanal. Chem. 2008, 390, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Stark, T.; Wollmann, N.; Lösch, S.; Hofmann, T. Quantitation of resveratrol in red wines by means of stable isotope dilution analysis− ultra-performance liquid chromatography−Quan-time-of-flight mass spectrometry and cross validation. Anal. Chem. 2011, 83, 3398–3405. [Google Scholar] [CrossRef]
- Yamaguchi, S. The synergistic taste effect of monosodium glutamate and disodium 5′-inosinate. J. Food Sci. 1967, 32, 473–478. [Google Scholar] [CrossRef]
- Ames, J.M. Control of the Maillard reaction in food systems. Trends Food Sci. Technol. 1990, 1, 150. [Google Scholar] [CrossRef]
- van Boekel, M.A.J.S. Kinetic aspects of the Maillard reaction: A critical review. Nahrung 2001, 45, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Festring, D.; Hofmann, T. Systematic Studies on the Chemical Structure and Umami Enhancing Activity of Maillard-Modified Guanosine 5′-Monophosphates. J. Agric. Food Chem. 2011, 59, 665–676. [Google Scholar] [CrossRef]
- Scharbert, S.; Hofmann, T. Molecular Definition of Black Tea Taste by Means of Quantitative Studies, Taste Reconstitution, and Omission Experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. [Google Scholar] [CrossRef]
- Sonntag, T.; Kunert, C.; Dunkel, A.; Hofmann, T. Sensory-guided identification of N-(1-methyl-4-oxoimidazolidin-2-ylidene)-α-amino acids as contributors to the thick-sour and mouth-drying orosensation of stewed beef juice. J. Agric. Food Chem. 2010, 58, 6341–6350. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartl, D.M.; Frank, O.; Dawid, C.; Hofmann, T.F. A New Inert Natural Deep Eutectic Solvent (NADES) as a Reaction Medium for Food-Grade Maillard-Type Model Reactions. Foods 2023, 12, 1877. https://doi.org/10.3390/foods12091877
Hartl DM, Frank O, Dawid C, Hofmann TF. A New Inert Natural Deep Eutectic Solvent (NADES) as a Reaction Medium for Food-Grade Maillard-Type Model Reactions. Foods. 2023; 12(9):1877. https://doi.org/10.3390/foods12091877
Chicago/Turabian StyleHartl, Daniela Marianne, Oliver Frank, Corinna Dawid, and Thomas Frank Hofmann. 2023. "A New Inert Natural Deep Eutectic Solvent (NADES) as a Reaction Medium for Food-Grade Maillard-Type Model Reactions" Foods 12, no. 9: 1877. https://doi.org/10.3390/foods12091877
APA StyleHartl, D. M., Frank, O., Dawid, C., & Hofmann, T. F. (2023). A New Inert Natural Deep Eutectic Solvent (NADES) as a Reaction Medium for Food-Grade Maillard-Type Model Reactions. Foods, 12(9), 1877. https://doi.org/10.3390/foods12091877