Quantitative Analysis of Decoquinate Residues in Hen Eggs through Derivatization-Gas Chromatography Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Standard Solutions
2.3. Sample Preparation
2.4. Sample Derivatization
2.5. Instrument Conditions
2.6. Method Parameters
2.6.1. Linearity
2.6.2. Matrix Effect
2.6.3. LOQ and LOD
2.6.4. CCα and CCβ
2.6.5. Recovery and Precision
3. Results and Discussion
3.1. Optimized Sample Preparation
3.2. Optimization of the Derivatization Conditions
3.3. GC–MS/MS Optimization
3.4. Quality Parameters
3.4.1. Linearity
3.4.2. Matrix Effect
3.4.3. LOD and LOQ
3.4.4. CCα and CCβ
3.4.5. Recovery and Precision
3.5. Comparison with Other Analytical Methods
3.6. Application with Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, D.; Liu, X.; Li, X.; Xu, L.; Yan, R.; Song, X. Eimeria maxima rhomboid-like protein 5 provided partial protection against homologous challenge in forms of recombinant protein and DNA plasmid in chickens. Vaccines 2021, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.; Ye, C.; Lei, Z.; Shen, B.; Fang, R.; Hu, M. Prevalence of eimeria parasites in the hubei and henan provinces of china. Parasitol. Res. 2021, 120, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Potter, T.J.; Drysdale, R. Use of decoquinate in milk replacer to control coccidiosis in neonatal calves. Cattle Pract. 2011, 19, 203–204. [Google Scholar]
- Bo, R.; Dai, X.; Huang, J.; Wei, S.; Liu, M.; Li, J. Evaluation of optimum conditions for decoquinate nanoliposomes and their anticoccidial efficacy against diclazuril-resistant eimeria tenella infections in broilers. Vet. Parasitol. 2020, 283, 109186. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.R.; Silva, L.J.G.; Pereira, A.M.P.T.; Esteves, A.; Duarte, S.C.; Pena, A. Coccidiostats and poultry: A comprehensive review and current legislation. Foods 2022, 11, 2738. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.J.; Laing, L.; Beteck, R.M.; Gibhard, L.; Haynes, R.K.; Wiesner, L. The evaluation of adme and pharmacokinetic properties of decoquinate derivatives for the treatment of malaria. Front. Pharmacol. 2022, 13, 957690. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.R.; Manfield, M.E. Effects of intermittent and continuous administration of decoquinate on bovine coccidiosis in male calves. Am. J. Vet. Res. 1989, 50, 961–964. [Google Scholar] [PubMed]
- Taylor, M.A.; Bartram, D.J. The history of decoquinate in the control of coccidial infections in ruminants. J. Vet. Pharmacol. Ther. 2012, 35, 417–427. [Google Scholar] [CrossRef]
- Bampidis, V.G.; Azimonti, M.L.; Bastos, H.; Christensen, B.; Dusemund, M.; Kouba, J. Gropp, Safety and efficacy of deccox® (decoquinate) for chickens for fattening. Efsa. J. 2019, 17, e05541. [Google Scholar] [CrossRef]
- Bampidis, V.G.; Azimonti, M.L.; Bastos, H.; Christensen, B.; Dusemund, M.F.; Durjava, M.V. Vettori, Efficacy of the feed additive consisting of decoquinate (Deccox®) for use in chickens for fattening (Zoetis Belgium SA). EFSA J. 2021, 19, e06453. [Google Scholar] [CrossRef]
- Foote, S.J.; Thompson, J.K.; Cowman, A.F.; Kemp, D.J. Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell 1989, 57, 921–930. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. CFR-Code of Federal Regulations Title 21 Part 556 Tolerances for Residue of New Animal Drugs in Food. 2014. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=556.570 (accessed on 25 December 2022).
- E Commission. Commission Decision (EU) No 37/2010 of December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. 2010. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=ceec1dd0976a7e6495b09730a10333fe (accessed on 25 December 2022).
- E Commission. Commission Decision 2002/657/EC of 12 August 2002. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=079f96cddb42d85cb7a40a2e389bff47&site=xueshu_se (accessed on 25 December 2022).
- The Japan Food Chemical Research Foundation. Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods. 2015. Available online: http://db.ffcr.or.jp/front/ (accessed on 25 December 2022).
- US Department of Health and Human Services, The Food and Drug Administration. Guidance for Industry: Bioanalytical Method Validation; Center for Drug Evaluation and Research, Center for Veterinary Medicine: Rockville, MD, USA, 2001. [Google Scholar]
- Commission Decision. Commission Decision 2002/657/EC of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results. Off. J. Eur. Commun. 2002, L221, 18–36. [Google Scholar]
- Clarke, L.; Moloney, M.J.; O’Mahony, R.; O’Kennedy, M. Danaher, Determination of 20 coccidiostats in milk, duck muscle and non-avian muscle tissue using UHPLC-MS/MS. Food Addit. Contam. Part A 2013, 30, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Preez, J.L.D.; Aucamp, M.E.; Burger, C.; Gerber, M.; Viljoen, J.M.; Zyl, L.V.; Plessis, J.D. Development and validation of the simultaneous determination of artemisone, clofazimine and decoquinate with HPLC. Pharmazie 2018, 73, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Hobson-Frohock, A. Determination of decoquinate in poultry feed. Analyst 1982, 107, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Dasenaki, M.E.; Thomaidis, N.S. Multi-residue methodology for the determination of 16 coccidiostats in animal tissues and eggs by hydrophilic interaction liquid chromatography tandem mass spectrometry. Food Chem. 2019, 275, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Małgorzata, O.; Teresa, S.J. Deposition and depletion of decoquinate in eggs after administration of cross-contaminated feed. Food Addit. Contam. Part A 2015, 32, 1124–1128. [Google Scholar] [CrossRef]
- Rybicki, M.J.; Becue, I.; Daeseleire, E.; Klimek-Turek, A.; Zido, T.D.H. Solvent front position extraction and some conventional sample preparation techniques for the determination of coccidiostats in poultry feed by LC-MS/MS. Sci. Rep. 2022, 12, 3786. [Google Scholar] [CrossRef]
- Lee, K.M.; Yarbrough, D.; Kozman, M.M.; Errman, T.J.; Park, J.; Wang, R.; Kurouski, D. A rapid and convenient screening method for detection of restricted monensin, decoquinate, and lasalocid in animal feed by applying sers and chemometrics. Food Chem. Toxicol. 2020, 144, 111633. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Wang, B.; Chen, L.; Xie, K.; Yang, C. Establishment and validation of a GC-MS/MS method for the quantification of penicillin g residues in poultry eggs. Foods 2021, 10, 2735. [Google Scholar] [CrossRef]
- Guo, Y.W.; Xie, X.Z.; Diao, Z.; Wang, Y.; Wang, B.; Xie, K.; Wang, X.; Zhang, P. Detection and determination of spectinomycin and lincomycin in poultry muscles and pork by ASE-SPE-GC–MS/MS. J. Food Compos. Anal. 2021, 101, 103979. [Google Scholar] [CrossRef]
- Zhao, Q.; Lv, X.; Jia, Y.; Chen, Y.; Xu, G.; Qu, L. Rapid determination of the fat, moisture, and protein contents in homogenized chicken eggs based on near-infrared reflectance spectroscopy. Poult. Sci. 2018, 97, 2239–2245. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xie, K.; Lee, K. Veterinary drug residues in animal-derived foods: Sample preparation and analytical methods. Foods 2021, 10, 555. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.H.; Park, D.H.; Abd El-Aty, A.M.; Kim, S.K.; Jung, H.N.; Jeong, D.H.; Cho, H.-J.; Hacimüftüoğlu, A.; Shim, J.-H.; Jeong, J.H.; et al. Development of an analytical method for multi-residue quantification of 18 anthelmintics in various animal-based food products using liquid chromatography-tandem mass spectrometry. J. Pharm. Anal. 2021, 11, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Feás, X.; Vázquez, B.I.; Iglesias, A.; Cantalapiedra, J.; Fente, C.A.; Cepeda, A. Sensitive determination of decoquinate in milk by high-Performance liquid chromatographic coupled to laser-Induced fluorescence detection. Food Anal. Methods 2010, 3, 138–143. [Google Scholar] [CrossRef]
- ByungJu, K.; Hyunsun, H.; Joo, L.; Cheong, N.; Myung, S. Determination of coccidiostats (amprolium and decoquinate) in cattle and chicken’s muscle using high performance liquid chromatography. Bull. Korean Chem. Soc. 2012, 33, 559–563. [Google Scholar] [CrossRef]
- Pietruk, K.; Olejnik, M.; Posyniak, A. Coccidiostats in milk: Development of a multi-residue method and transfer of salinomycin and lasalocid from contaminated feed. Food Addit. Contam. Part A 2018, 35, 1508–1518. [Google Scholar] [CrossRef] [PubMed]
- Małgorzata, O.; Teresa, S.J.; Jedziniak, P. Multi-residue confirmatory method for the determination of twelve coccidiostats in chicken liver using liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2009, 1216, 8141–8148. [Google Scholar] [CrossRef]
- Matus, J.L.; Boison, J.O. A multi-residue method for 17 anticoccidial drugs and ractopamine in animal tissues by liquid chromatography-tandem mass spectrometry and time-of-flight mass spectrometry. Drug Test. Anal. 2016, 8, 465–476. [Google Scholar] [CrossRef]
Target Compound | Molecular Weight | Retention Time | Target Compound | Collision Energy (eV) |
---|---|---|---|---|
Acetyl decoxyquine | 459.57 | 17.40 | 231.1 > 229.1 | 48 |
231.1 > 230.1 * | 56 |
Matrix | Acetonitrile | Acetonitrile: Ethyl-Acetate (1:1, v/v) | 4% Acetic Acid Acetonitrile |
---|---|---|---|
Whole egg | 83.50 ± 0.35 | 74.88 ± 0.96 | 82.50 ± 1.02 |
Albumen | 80.23 ± 2.36 | 77.98 ± 1.19 | 78.16 ± 2.05 |
Yolk | 86.46 ± 1.73 | 80.60 ± 0.81 | 81.18 ± 4.12 |
Sample | Linear Regression Equation | Determination Coefficient | Linearity Range (ng/mL) | LOD (µg/kg) | LOQ (µg/kg) | CCα (µg/kg) | CCβ (µg/kg) |
---|---|---|---|---|---|---|---|
Whole egg | y = 603.42x + 15,505 | 0.9992 | 3.4–250.0 | 1.8 | 3.4 | 4.7 | 5.4 |
Albumen | y = 611.19x + 13,692 | 0.9993 | 2.1–250.0 | 1.4 | 2.1 | 2.5 | 3.3 |
Yolk | y = 589.88x + 13,850 | 0.9991 | 4.9–250.0 | 2.4 | 4.9 | 5.5 | 6.2 |
Sample | Solvent Calibration Curve Equation | Matrix Calibration Curve Equation | ME |
---|---|---|---|
Whole egg | y = 677.80x + 58,312, R2 = 0.9990 | y = 603.42x + 15,505, R2 = 0.9992 | −10.97 |
Albumen | y = 663.84x + 55,438, R2 = 0.9992 | y = 611.19x + 13,692, R2 = 0.9993 | −7.93 |
Yolk | y = 681.79x + 68,968, R2 = 0.9996 | y = 589.88x + 13,850, R2 = 0.9991 | −13.48 |
Matrix | Added Level (μg/kg) | Recovery (%) | RSD (%) | Intra-Day RSD (%) | Inter-Day RSD (%) |
---|---|---|---|---|---|
Whole egg | 3.4 | 74.31 ± 1.49 | 2.01 | 2.95 | 3.51 |
50.0 | 82.43 ± 1.78 | 2.16 | 3.06 | 3.68 | |
100.0 α | 86.09 ± 1.97 | 2.29 | 2.76 | 3.16 | |
200.0 | 88.53 ± 2.50 | 2.82 | 3.32 | 3.96 | |
Albumen | 2.1 | 78.61 ± 3.07 | 3.91 | 4.28 | 7.54 |
50.0 | 83.62 ± 1.66 | 1.99 | 4.78 | 6.19 | |
100.0 α | 86.98 ± 1.60 | 1.84 | 2.05 | 2.80 | |
200.0 | 89.77 ± 0.70 | 0.78 | 1.22 | 1.61 | |
Yolk | 4.9 | 76.08 ± 2.38 | 3.13 | 4.61 | 7.38 |
50.0 | 80.44 ± 1.80 | 2.24 | 3.04 | 4.52 | |
100.0 α | 86.91 ± 1.26 | 1.45 | 1.59 | 1.66 | |
200.0 | 88.13 ± 1.44 | 1.63 | 3.43 | 3.99 |
Matrix | Analytical Method | Chromatographic Conditions | LOD (µg/kg) | LOQ (µg/kg) | Recovery (%) |
---|---|---|---|---|---|
Milk [31] | UPLC-MS/MS | Agilent Zorbax Eclipse Plus C18 | 0.78 | 5.0 | ≥98.3 |
Chicken liver [32] | HPLC-UV | Agilent Eclipse XDB-C18 | 100 | 200 | 72.9–96.8 |
Chicken muscle [33] | HPLC-MS/MS | Agilent Poroshell 120 EC-C18 | 8 | 27 | 74–112 |
Egg [20] | UPLC-MS/MS | ACQUITY UPLC BEH HILIC | 0.004 | / | 89.9–108.0 |
The study (Hen egg) | GC-MS/MS | TG-5MS Amine (30.0 m × 0.25 mm, 0.25 μm) | 1.4–2.4 | 2.1–4.9 | 74.31–89.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Chen, L.; Guo, Y.; Gao, P.; Liu, S.; Zhang, T.; Zhang, G.; Xie, K. Quantitative Analysis of Decoquinate Residues in Hen Eggs through Derivatization-Gas Chromatography Tandem Mass Spectrometry. Foods 2024, 13, 119. https://doi.org/10.3390/foods13010119
Zhu Y, Chen L, Guo Y, Gao P, Liu S, Zhang T, Zhang G, Xie K. Quantitative Analysis of Decoquinate Residues in Hen Eggs through Derivatization-Gas Chromatography Tandem Mass Spectrometry. Foods. 2024; 13(1):119. https://doi.org/10.3390/foods13010119
Chicago/Turabian StyleZhu, Yali, Lan Chen, Yawen Guo, Pengfei Gao, Shuyu Liu, Tao Zhang, Genxi Zhang, and Kaizhou Xie. 2024. "Quantitative Analysis of Decoquinate Residues in Hen Eggs through Derivatization-Gas Chromatography Tandem Mass Spectrometry" Foods 13, no. 1: 119. https://doi.org/10.3390/foods13010119
APA StyleZhu, Y., Chen, L., Guo, Y., Gao, P., Liu, S., Zhang, T., Zhang, G., & Xie, K. (2024). Quantitative Analysis of Decoquinate Residues in Hen Eggs through Derivatization-Gas Chromatography Tandem Mass Spectrometry. Foods, 13(1), 119. https://doi.org/10.3390/foods13010119