Assessment of Mechanical Damage and Germinability in Flaxseeds Using Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Method
2.1. Sample Preparation
2.2. Germination Tests
2.3. Hyperspectral Imaging System and Image Acquisition
2.4. Image Processing
2.5. Spectral Dataset
2.6. Data Mining Techniques and Spectral Analysis
3. Results and Discussion
3.1. Germination Test Results
3.2. PCA-Based Data Exploration
3.3. Wavelength Selection and PLS-DA-Based Classification
3.4. Prediction of Germinability
4. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kajla, P.; Sharma, A.; Sood, D.R. Flaxseed—A potential functional food source. J. Food Sci. Technol. 2015, 52, 1857–1871. [Google Scholar] [CrossRef] [PubMed]
- Parikh, M.; Maddaford, T.G.; Austria, J.A.; Aliani, M.; Netticadan, T.; Pierce, G.N. Dietary Flaxseed as a Strategy for Improving Human Health. Nutrients 2019, 11, 1171. [Google Scholar] [CrossRef] [PubMed]
- Rabetafika, H.N.; Van Remoortel, V.; Danthine, S.; Paquot, M.; Blecker, C. Flaxseed proteins: Food uses and health benefits. Int. J. Food Sci. Technol. 2011, 46, 221–228. [Google Scholar] [CrossRef]
- Duguid, S.D. Flax. In Oil Crops; Springer: Berlin/Heidelberg, Germany, 2009; pp. 233–255. [Google Scholar] [CrossRef]
- Flax Seed Market—Size, Share, Competitive Landscape, 2022 to 2027. 2023. Available online: https://www.marketdataforecast.com/market-reports/flax-seed-market (accessed on 18 June 2023).
- Chen, Z.; Wassgren, C.; Ambrose, R.P.K. A review of grain kernel damage: Mechanisms, modeling, and testing procedures. Trans. ASABE 2020, 63, 455–475. [Google Scholar] [CrossRef]
- Nadimi, M.; Hawley, E.; Liu, J.; Hildebrand, K.; Sopiwnyk, E.; Paliwal, J. Enhancing traceability of wheat quality through the supply chain. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2495–2522. [Google Scholar] [CrossRef]
- SaskFlax. Saskatchewan Flax Development Commission—Industry Overview. Available online: https://www.saskflax.com/industry/index.php (accessed on 18 June 2023).
- Shahbazi, F.; Dowlatshah, A.; Valizadeh, S. Breakage Susceptibility of Wheat and Triticale Seeds Related to Moisture Content and Impact Energy. Cercetari Agronom. Moldova 2013, 45, 5–13. [Google Scholar] [CrossRef]
- Khazaei, J.; Shahbazi, F.; Massah, J.; Nikravesh, M.; Kianmehr, M.H. Evaluation and modeling of physical and physiological damage to wheat seeds under successive impact loadings: Mathematical and neural networks modeling. Crop Sci. 2008, 48, 1532–1544. [Google Scholar] [CrossRef]
- Shahbazi, F.; Dolatshah, A.; Valizadeh, S. Evaluation and modelling the mechanical damage to cowpea seeds under impact loading. Qual. Assur. Saf. Crops Foods 2014, 6, 453–458. [Google Scholar] [CrossRef]
- Shahbazi, F. Impact Damage to Chickpea Seeds as Affected by Moisture Content and Impact Velocity. Appl. Eng. Agric. 2011, 27, 771–775. [Google Scholar] [CrossRef]
- Delfan, F.; Shahbazi, F.; Esvand, H.R. Impact damage to chickpea seeds during free fall. Int. Agrophys. 2023, 37, 41–49. [Google Scholar] [CrossRef]
- Shahbazi, F.; Valizade, S.; Dowlatshah, A. Mechanical damage to green and red lentil seeds. Food Sci. Nutr. 2017, 5, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, R.; Shahbazi, F.; Nadimi, M.; Paliwal, J. Assessing the Effects of Free Fall Conditions on Damage to Corn Seeds: A Comprehensive Examination of Contributing Factors. AgriEngineering 2023, 5, 1104–1117. [Google Scholar] [CrossRef]
- Shahbazi, R.; Shahbazi, F. Effects of cushion box and closed let-down ladder usage on mechanical damage during corn kernel handling: Cracking. J. Stored Prod. Res. 2022, 99, 102006. [Google Scholar] [CrossRef]
- Shahbazi, R.; Shahbazi, F. Effects of cushion box and closed let-down ladder usage on damage to corn during handling: Physiological deterioration. Plant Methods 2022, 18, 142. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, R.; Shahbazi, F. Effects of cushion box and closed let-down ladder usage on impact damage to corn kernel during handling. Food Sci. Nutr. 2023, 11, 2243–2253. [Google Scholar] [CrossRef] [PubMed]
- Nadimi, M.; Loewen, G.; Paliwal, J. Assessment of mechanical damage to flaxseeds using radiographic imaging and tomography. Smart Agric. Technol. 2022, 2, 100057. [Google Scholar] [CrossRef]
- Du, Z.; Hu, Y.; Buttar, N.A.; Mahmood, A. X-ray computed tomography for quality inspection of agricultural products: A review. Food Sci. Nutr. 2019, 7, 3146–3160. [Google Scholar] [CrossRef] [PubMed]
- Schoeman, L.; Williams, P.; Plessis, A.D.; Manley, M. X-ray micro-computed tomography (μCT) for non-destructive characterisation of food microstructure. Trends Food Sci. Technol. 2016, 47, 10–24. [Google Scholar] [CrossRef]
- Junior, F.G.G.; Cicero, S.M. X-Ray analysis to assess mechanical damage in sweet corn seeds. Rev. Bras. Sementes 2012, 34, 78–85. [Google Scholar] [CrossRef]
- Kotwaliwale, N.; Singh, K.; Kalne, A.; Jha, S.N.; Seth, N.; Kar, A. X-ray imaging methods for internal quality evaluation of agricultural produce. J. Food Sci. Technol. 2014, 51, 1–15. [Google Scholar] [CrossRef]
- De Medeiros, A.D.; Martins, M.S.; da Silva, L.J.; Pereira, M.D.; León, M.J.Z.; Dias, D.C.F.D.S. X-ray imaging and digital processing application in non-destructive assessing of melon seed quality. J. Seed Sci. 2020, 42, e202042005. [Google Scholar] [CrossRef]
- Divyanth, L.G.; Chelladurai, V.; Loganathan, M.; Jayas, D.S.; Soni, P. Identification of Green Gram (Vigna Radiata) Grains Infested by Callosobruchus Maculatus through X-ray Imaging and GAN-Based Image Augmentation. J. Biosyst. Eng. 2022, 2022, 1–16. [Google Scholar] [CrossRef]
- Blunk, S.; Malik, A.H.; de Heer, M.I.; Ekblad, T.; Fredlund, K.; Mooney, S.J.; Sturrock, C.J. Quantification of differences in germination behaviour of pelleted and coated sugar beet seeds using x-ray computed tomography (X-ray CT). Biomed. Phys. Eng. Express 2017, 3, 044001. [Google Scholar] [CrossRef]
- Gargiulo, L.; Leonarduzzi, C.; Mele, G. Micro-CT imaging of tomato seeds: Predictive potential of 3D morphometry on germination. Biosyst. Eng. 2020, 200, 112–122. [Google Scholar] [CrossRef]
- Gomes-Junior, F.G.; Cicero, S.M.; Vaz, C.M.P.; Lasso, P.R.O. X-ray microtomography in comparison to radiographic analysis of mechanically damaged maize seeds and its effect on seed germination. Acta Sci. Adgron. 2019, 41, e42608. [Google Scholar] [CrossRef]
- Orina, I.; Manley, M.; Williams, P.J. Use of high-resolution X-ray micro-computed tomography for the analysis of internal structural changes in maize infected with Fusarium verticillioides. Food Anal. Methods 2017, 10, 2919–2933. [Google Scholar] [CrossRef]
- Dong, P.F.; Xie, R.Z.; Wang, K.R.; Bo, M.; Peng, H.; Hou, J.F.; Jun, X.; Li, C.H.; Li, S.K. Kernel crack characteristics for X-ray computed microtomography (μCT) and their relationship with the breakage rate of maize varieties. J. Integr. Agric. 2020, 19, 2680–2689. [Google Scholar] [CrossRef]
- Shi, H.; Siebenmorgen, T.J.; Luo, H.; Odek, Z. Fissure Detection and Measurement in Rough Rice Using X-Ray Imaging. Trans. ASABE 2019, 62, 859–866. [Google Scholar] [CrossRef]
- Sood, S.; Mahajan, S.; Doegar, A.; Das, A. Internal crack detection in kidney bean seeds using X-ray imaging technique. In Proceedings of the 2016 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2016, Jaipur, India, 21–24 September 2016; pp. 2258–2261. [Google Scholar] [CrossRef]
- Pinto, T.L.F.; Cicero, S.M.; França-Neto, J.B.; Forti, V.A. An assessment of mechanical and stink bug damage in soybean seed using X-ray analysis test. Seed Sci. Technol. 2009, 37, 110–120. [Google Scholar] [CrossRef]
- Nadimi, M.; Divyanth, L.G.; Paliwal, J. Automated Detection of Mechanical Damage in Flaxseeds Using Radiographic Imaging and Machine Learning. Food Bioprocess Technol. 2022, 16, 526–536. [Google Scholar] [CrossRef]
- Divyanth, L.G.; Chakraborty, S.; Li, B.; Weindorf, D.C.; Deb, P.; Gem, C.J. Non-Destructive Prediction of Nicotine Content in Tobacco Using Hyperspectral Image–Derived Spectra and Machine Learning. J. Biosyst. Eng. 2022, 47, 106–117. [Google Scholar] [CrossRef]
- Zhu, L.; Ma, Q.; Chen, J.; Zhao, G. Current progress on innovative pest detection techniques for stored cereal grains and thereof powders. Food Chem. 2022, 396, 133706. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wang, Q.; Zhang, M.; Zhu, Q. Prediction of color and moisture content for vegetable soybean during drying using hyperspectral imaging technology. J. Food Eng. 2014, 128, 24–30. [Google Scholar] [CrossRef]
- Erkinbaev, C.; Nadimi, M.; Paliwal, J. A unified heuristic approach to simultaneously detect fusarium and ergot damage in wheat. Meas. Food 2022, 7, 100043. [Google Scholar] [CrossRef]
- Nadimi, M.; Brown, J.M.; Morrison, J.; Paliwal, J. Examination of wheat kernels for the presence of Fusarium damage and mycotoxins using near-infrared hyperspectral imaging. Meas. Food 2021, 4, 100011. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Protein content prediction in single wheat kernels using hyperspectral imaging. Food Chem. 2018, 240, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Huang, W.; Yang, G.; Wang, Q.; Li, J.; Chen, L. Determination of starch content in single kernel using near-infrared hyperspectral images from two sides of corn seeds. Infrared Phys. Technol. 2020, 110, 103462. [Google Scholar] [CrossRef]
- Aviara, N.A.; Liberty, J.T.; Olatunbosun, O.S.; Shoyombo, H.A.; Oyeniyi, S.K. Potential application of hyperspectral imaging in food grain quality inspection, evaluation and control during bulk storage. J. Agric. Food Res. 2022, 8, 100288. [Google Scholar] [CrossRef]
- Srivastava, S.; Mishra, H.N. Detection of insect damaged rice grains using visible and near infrared hyperspectral imaging technique. Chemom. Intell. Lab. Syst. 2022, 221, 104489. [Google Scholar] [CrossRef]
- Chen, S.Y.; Chang, C.Y.; Ou, C.S.; Lien, C.T. Detection of insect damage in green coffee beans using VIS-NIR hyperspectral imaging. Remote Sens. 2020, 12, 2348. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Guarienti, E.M.; Tibola, C.S. Detection of sprout damage in wheat kernels using NIR hyperspectral imaging. Biosyst. Eng. 2018, 175, 124–132. [Google Scholar] [CrossRef]
- Shao, Y.; Gao, C.; Xuan, G.; Gao, X.; Chen, Y.; Hu, Z. Determination of damaged wheat kernels with hyperspectral imaging analysis. Int. J. Agric. Biol. Eng. 2020, 13, 194–198. [Google Scholar] [CrossRef]
- Erkinbaev, C.; Morrison, J.; Paliwal, J. Assessment of Seed Germinability of Mechanically-Damaged Soybeans Using Near-Infrared Hyperspectral Imaging. Canadian Biosystems Engineering. Available online: https://library.csbe-scgab.ca/all-publications/2751-assessment-of-seed-germinability-of-mechanically-damaged-soybeans-using-near-infrared-hyperspectral-imaging (accessed on 30 December 2021).
- Canadian Food Inspection Agency. CFIA Methods and Procedures for Testing Seed; Canadian Food Inspection Agency: Fallowfield, OT, Canada, 2012.
- Nadimi, M.; Sun, D.W.; Paliwal, J. Effect of Laser Biostimulation on Germination of Wheat. Appl. Eng. Agric. 2022, 38, 77–84. [Google Scholar] [CrossRef]
- Otsu, N. Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 1979, SMC-9, 62–66. [Google Scholar] [CrossRef]
- Kennard, R.W.; Stone, L.A. Computer Aided Design of Experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Zhang, L.; Li, G.; Sun, M.; Li, H.; Wang, Z.; Li, Y.; Lin, L. Kennard-Stone combined with least square support vector machine method for noncontact discriminating human blood species. Infrared Phys. Technol. 2017, 86, 116–119. [Google Scholar] [CrossRef]
- Bro, R.; Kjeldahl, K.; Smilde, A.K.; Kiers, H.A.L. Cross-validation of component models: A critical look at current methods. Anal. Bioanal. Chem. 2008, 390, 1241–1251. [Google Scholar] [CrossRef]
- Anowar, F.; Sadaoui, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput. Sci. Rev. 2021, 40, 100378. [Google Scholar] [CrossRef]
- Lee, L.C.; Jemain, A.A. On overview of PCA application strategy in processing high dimensionality forensic data. Microchem. J. 2021, 169, 106608. [Google Scholar] [CrossRef]
- Syvilay, D.; Wilkie-Chancellier, N.; Trichereau, B.; Texier, A.; Martinez, L.; Serfaty, S.; Detalle, V. Evaluation of the standard normal variate method for Laser-Induced Breakdown Spectroscopy data treatment applied to the discrimination of painting layers. Spectrochim. Acta Part. B Spectrosc. 2015, 114, 38–45. [Google Scholar] [CrossRef]
- Worley, B.; Halouska, S.; Powers, R. Utilities for quantifying separation in PCA/PLS-DA scores plots. Anal. Biochem. 2013, 433, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Cocchi, M.; Biancolillo, A.; Marini, F. Chemometric Methods for Classification and Feature Selection. Compr. Anal. Chem. 2018, 82, 265–299. [Google Scholar] [CrossRef]
- Chi-Hyuck, J.; Lee, S.H.; Park, H.S.; Lee, J.H. Use of partial least squares regression for variable selection and quality prediction. In Proceedings of the 2009 International Conference on Computers and Industrial Engineering, CIE 2009, Troyes, France, 6–9 July 2009; pp. 1302–1307. [Google Scholar] [CrossRef]
- Asri, M.N.M.; Verma, R.; Mahat, N.A.; Nor, N.A.M.; Desa, W.N.S.M.; Ismail, D. Discrimination and source correspondence of black gel inks using Raman spectroscopy and chemometric analysis with UMAP and PLS-DA. Chemom. Intell. Lab. Syst. 2022, 225, 104557. [Google Scholar] [CrossRef]
- Zhang, Z.; Pu, Y.; Wei, Z.; Liu, H.; Zhang, D.; Zhang, B.; Zhang, Z.; Zhao, J.; Hu, J. Combination of interactance and transmittance modes of Vis/NIR spectroscopy improved the performance of PLS-DA model for moldy apple core. Infrared Phys. Technol. 2022, 126, 104366. [Google Scholar] [CrossRef]
- De Jong, S. SIMPLS: An alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993, 18, 251–263. [Google Scholar] [CrossRef]
- Mundhada, S.; Chaudhry, M.M.A.; Erkinbaev, C.; Paliwal, J. Development of safe storage guidelines for prairie-grown flaxseed. J. Stored Prod. Res. 2022, 97, 101965. [Google Scholar] [CrossRef]
- Findlay, C.R.; Singh, J.; Nadimi, M.; Paliwal, J. Advanced Oxidative Decontamination of Flax and Its Impacts on Storage. Food Bioprocess Technol. 2023, 1, 1–12. [Google Scholar] [CrossRef]
- Yang, J.; Wen, C.; Duan, Y.; Deng, Q.; Peng, D.; Zhang, H.; Ma, H. The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends Food Sci. Technol. 2021, 118, 252–260. [Google Scholar] [CrossRef]
- Mueed, A.; Shibli, S.; Korma, S.A.; Madjirebaye, P.; Esatbeyoglu, T.; Deng, Z. Flaxseed Bioactive Compounds: Chemical Composition, Functional Properties, Food Applications and Health Benefits-Related Gut Microbes. Foods 2022, 11, 3307. [Google Scholar] [CrossRef]
Wavelength Range | Group | Impact Energy | Number of Samples |
---|---|---|---|
Vis-NIR | Nil/low damaged | 0 mJ (control samples) | 36 |
2 mJ | 34 | ||
Medium/high damaged | 4 mJ | 35 | |
6 mJ | 36 | ||
SWIR | Nil/low damaged | 0 mJ (control samples) | 36 |
2 mJ | 36 | ||
Medium/high damaged | 4 mJ | 36 | |
6 mJ | 36 |
Calibration | ||||
True class | Recall (%) | |||
Predicted class | Nil/low | Medium/high | ||
Nil/low | 43 | 4 | 91.49 | |
Medium/high | 6 | 45 | 88.24 | |
Precision (%) | 87.76 | 91.84 | ||
Cross-validation | ||||
True class | Recall (%) | |||
Predicted class | Nil/low | Medium/high | ||
Nil/low | 43 | 5 | 89.58 | |
Medium/high | 6 | 44 | 88.00 | |
Precision (%) | 87.76 | 89.80 | ||
Test | ||||
True class | Recall (%) | |||
Predicted class | Nil/low | Medium/high | ||
Nil/low | 18 | 1 | 94.74 | |
Medium/high | 3 | 21 | 87.50 | |
Precision (%) | 85.71 | 95.45 |
Calibration | ||||
True class | Recall (%) | |||
Predicted class | Nil/low | Medium/high | ||
Nil/low | 50 | 6 | 89.29 | |
Medium/high | 4 | 40 | 90.91 | |
Precision (%) | 92.59 | 86.96 | ||
Cross-validation | ||||
True class | Recall (%) | |||
Predicted class | Nil/low | Medium/high | ||
Nil/low | 50 | 7 | 87.72 | |
Medium/high | 4 | 39 | 90.70 | |
Precision (%) | 92.59 | 84.78 | ||
Test | ||||
True class | Recall (%) | |||
Predicted class | Nil/low | Medium/high | ||
Nil/low | 17 | 2 | 89.47 | |
Medium/high | 1 | 24 | 96.00 | |
Precision (%) | 94.44 | 92.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadimi, M.; Divyanth, L.G.; Chaudhry, M.M.A.; Singh, T.; Loewen, G.; Paliwal, J. Assessment of Mechanical Damage and Germinability in Flaxseeds Using Hyperspectral Imaging. Foods 2024, 13, 120. https://doi.org/10.3390/foods13010120
Nadimi M, Divyanth LG, Chaudhry MMA, Singh T, Loewen G, Paliwal J. Assessment of Mechanical Damage and Germinability in Flaxseeds Using Hyperspectral Imaging. Foods. 2024; 13(1):120. https://doi.org/10.3390/foods13010120
Chicago/Turabian StyleNadimi, Mohammad, L. G. Divyanth, Muhammad Mudassir Arif Chaudhry, Taranveer Singh, Georgia Loewen, and Jitendra Paliwal. 2024. "Assessment of Mechanical Damage and Germinability in Flaxseeds Using Hyperspectral Imaging" Foods 13, no. 1: 120. https://doi.org/10.3390/foods13010120
APA StyleNadimi, M., Divyanth, L. G., Chaudhry, M. M. A., Singh, T., Loewen, G., & Paliwal, J. (2024). Assessment of Mechanical Damage and Germinability in Flaxseeds Using Hyperspectral Imaging. Foods, 13(1), 120. https://doi.org/10.3390/foods13010120