Boosting Purnica granatum L. Seed Oil Yield: An Adaptive Neuro-Fuzzy Interference System Fuels SC-CO2 Extraction Breakthrough
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Proximate Analysis
2.3. Supercritical Carbondioxide Extraction (SC-CO2)
2.4. Experimental Design
2.5. Experimental Validation of the Optimal Conditions
2.6. ANFIS Modelling
- IF × is A1 and y is B1, then f 1 = g1(x, y)
- IF × is A2 and y is B2, then f 2 = g2 (x, y)
2.7. Fatty Acid Composition by GC Chromatography
3. Results
3.1. Proximate Analysis
3.2. Supercritical Carbondioxide Extraction (SC-CO2)
3.3. Fitting Model
3.4. Analysis of Regression Coefficients
3.5. Validation of the Model
3.6. Data Acquisition and Preprocessing for ANFIS
3.7. Fatty Acid Composition using GC Chromatography
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- What Is Pomegranate Seed Oil? Available online: http://www.wisegeek.com/what-is-pomegranate-seed-oil.htm (accessed on 30 July 2010).
- Promprom, W. Estrogenic Activity of Pomegranate (Punica granatum) Extract in Ovariectomized Rats. Ph.D. Thesis, School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 2009. [Google Scholar]
- Jurenka, J. Therapeutic Applications of Pomegranate (Punica granatum L.): A Review. Altern. Med. Rev. 2008, 13, 128–144. [Google Scholar]
- Schubert, S.Y.; Lansky, E.P.; Neeman, I. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. J. Ethnopharmacol. 1999, 66, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Chirinang, P.; Oonsivilai, R. Physicochemical properties, in-vitro binding capacities for lard, cholesterol, bile acids and assessment of prebiotic potential of dietary fiber from cassava pulp. Int. Food Res. J. 2018, 25, S63–S74. [Google Scholar]
- Pao-la-or, P.; Marungsri, B.; Posridee, K.; Oonsivilai, R.; Oonsivilai, A. Supercritical CO2 extraction of seed oil from Psophocarpus tetragonolobus (L.) DC: Optimization of operating conditions through response surface methodology and probabilistic neural network. Processes 2023, 11, 1949. [Google Scholar] [CrossRef]
- Liu, G.; Xu, X.; Hao, Q.; Gao, Y. Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. LWT-Food Sci. Technol. 2009, 42, 1491–1495. [Google Scholar] [CrossRef]
- Eikani, M.H.; Golmohammad, F.; Homami, S.S. Extraction of pomegranate (Punica granatum L.) seed oil using superheated hexane. Food and Bioproducts Processing. Food Bioprod. Process. 2012, 90, 32–36. [Google Scholar] [CrossRef]
- Sangwato, S.; Oonsivilai, A. Optimal power flow with interline power flow controller using hybrid genetic algorithm. Int. Rev. Electr. Eng. 2015, 10, 727–733. [Google Scholar] [CrossRef]
- Oonsivilai, A.; El-Hawary, M.E. Self-organizing fuzzy power system stabilizer. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Waterloo, ON, Canada, 25–28 May 1998; pp. 197–200. [Google Scholar] [CrossRef]
- Rodporn, S.; Kulworawanichpong, T.; Oonsivilai, A.; Uthitsunthorn, D.; Oonsivilai, R. Optimal coordination of over-current relays using differential evolution. In Proceedings of the 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phetchaburi, Thailand, 16–18 May 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, G.; Xu, X.; Gong, Y.; He, L.; Gao, Y. Effects of supercritical CO2 extraction parameters on chemical composition and free radical-scavenging activity of pomegranate (Punica granatum L.) seed oil. Food Bioprod. Process. 2012, 90, 573–578. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Z.; Zheng, B.; Lo, Y.M. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrason. Sonochem. 2013, 20, 202–208. [Google Scholar] [CrossRef]
- Natolino, A.; Porto, C.D. Supercritical carbon dioxide extraction of pomegranate (Punica granatum L.) seed oil: Kinetic modelling and solubility evaluation. J. Supercrit. Fluids 2019, 151, 30–39. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Wang, J. Modeling and Optimization of Supercritical Fluid Extraction of Bioactive Compounds from Seed Oil Using Carbon Dioxide and ANFIS. J. Chem. Technol. Biotechnol. 2021, 96, 3610–3619. [Google Scholar] [CrossRef]
- Li, H.; Li, T.; Zhao, C.; Liu, X. Application of Adaptive Neuro-Fuzzy Inference System (ANFIS) for modeling and optimization of supercritical fluid extraction of bioactive compounds from seed oil using carbon dioxide. J. Food Eng. 2022, 322, 108300. [Google Scholar] [CrossRef]
- Salameh, T.; Rezk, H.; Issa, U.; Kamarudin, S.K.; Abdelkareem, M.A.; Olabi, A.G.; Alkasrawi, M. Boosting Biodiesel Production from Dairy-Washed Scum Oil Using Beetle Antennae Search Algorithm and Fuzzy Modelling. Resources 2023, 12, 131. [Google Scholar] [CrossRef]
- Jisieike, C.F.; Ishola, N.B.; Latinwo, L.M.; Betiku, E. Crude rubber seed oil esterification using a solid catalyst: Optimization by hybrid adaptive neuro-fuzzy inference system and response surface methodology. Energy J. 2023, 263, 125734. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Zhao, C. Application of ANFIS for prediction and optimization of supercritical fluid extraction of bioactive compounds from Nigella Sativa seed oil using carbon dioxide. J. Chem. Technol. Biotechnol. 2023, 98, 432–441. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Zhao, C.; Liu, X. Modeling and Optimization of Supercritical Fluid Extraction of Bioactive Compounds from Black Cumin Seed Oil Using ANFIS and Carbon Dioxide. J. Food Eng. 2023, 335, 111802. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Wang, J. Modeling and optimization of supercritical fluid extraction of bioactive compounds from sea buckthorn seed oil using ANFIS. Food Bioproc. Tech. 2023, 16, 53–62. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Zhao, C. Application of ANFIS for prediction and optimization of supercritical fluid extraction of bioactive compounds from seed oil using carbon dioxide. J. Chem. Technol. Biotechnol. 2023, 98, 213–222. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis Association of Official Analytical Chemists; AOAC: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Posridee, K.; Oonsivilai, A.; Oonsivilai, R. Optimization of sweet cassava (Manihot esculents crantz.) crude extract with high maltodextrin level using Response Surface Methodology. Int. Food Res. J. 2018, 25, S51–S56. [Google Scholar]
- Kachenpukdee, N.; Santerre, C.R.; Ferruzzi, M.G.; Oonsivilai, R. Enzymatic digestion optimization of dietary fiber from cassava pulp and their effect on mercury bioaccessibility and intestinal uptake from fish using an in vitro digestion/Caco-2 model. Int. Food Res. J. 2016, 23, 660–666. [Google Scholar]
- Intarapichet, K.-O.; Suksombat, W.; Maikhunthod, B. Chemical compositions, fatty acid, collagen and cholesterol contents of Thai hybrid native and broiler chicken meats. J. Poult. Sci. 2008, 45, 7–14. [Google Scholar] [CrossRef]
- Ananthasiri, T.; Pomloy, N.; Oonsivilai, R. Winged bean seed oil preparation and dietary supplement development from winged bean seed, pomegranate seed and moringa oleifera seed oil mixture. In Proceedings of the GMSARN International Conference on Smart Energy, Environment, and Development for Sustainable GMS, Luanprabang, Lao People’s Democratic Republic, 27–29 November 2020. [Google Scholar]
- Raymond, H.M.; Douglas, C.M.; Christine, M.A.-C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; 856p, ISBN 978-1-118-91601-8. [Google Scholar]
- Kumar, S.; Jain, S.; Kumar, H. Application of adaptive neuro-fuzzy inference system and response surface methodology in biodiesel synthesis from jatropha–algae oil and its performance and emission analysis on diesel engine coupled with generator. Energy J. 2021, 226, 120428. [Google Scholar] [CrossRef]
- Abbasi, H.; Rezaei, K.; Emamdjomeh, Z.; Mousavi, S.M.E. Effect of various extraction conditions on the phenolic contents of pomegranate seed oil. Eur. J. Lipid Sci. Technol. 2008, 110, 435–440. [Google Scholar] [CrossRef]
Symbols | Independent Variables | Coded Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
X1 | Extraction pressure (MPa) | 20 | 30 | 40 |
X2 | Extraction temperature (°C) | 50 | 55 | 60 |
X3 | Extraction time (min) | 60 | 90 | 120 |
Components | Content (%) |
---|---|
Moisture | 3.53 ± 0.15 |
Ash | 1.56 ± 0.09 |
Protein | 9.34 ± 0.38 |
Fat | 2.63 ± 0.24 |
Crude fiber | 45.26 ± 0.76 |
Carbohydrate | 37.68 ± 0.70 |
Exp. No.a | Independent Variables | Punica granatum L. | ||||
---|---|---|---|---|---|---|
Pressure (MPa) X1 | Temp. (°C) X2 | Time (min) X3 | % Yield (Y1) Experimental | % Yield (Y1) RSM-Predicted | % Yield (Y1) ANFIS-Predicted | |
1 | 20 | 50 | 90 | 3.57 ± 0.38 d | 3.57 | 3.57 |
2 | 20 | 55 | 60 | 3.73 ± 0.28 bcd | 3.73 | 3.73 |
3 | 20 | 55 | 120 | 3.80 ± 0.18 bcd | 3.8 | 3.80 |
4 | 20 | 60 | 90 | 3.70 ± 0.12 cd | 3.70 | 3.70 |
5 | 30 | 50 | 60 | 4.00 ± 0.21 abcd | 4.00 | 4.00 |
6 | 30 | 50 | 120 | 4.24 ± 0.31 abc | 4.24 | 4.24 |
7 | 30 | 55 | 90 | 4.33 ± 0.10 ab | 4.35 | 4.35 |
8 | 30 | 55 | 90 | 4.44 ± 0.06 a | 4.35 | 4.35 |
9 | 30 | 55 | 90 | 4.28 ± 0.22 abc | 3.93 | 3.93 |
10 | 30 | 60 | 60 | 3.93 ± 0.29 abcd | 4.14 | 4.14 |
11 | 30 | 60 | 120 | 4.14 ± 0.04 abc | 4.25 | 4.25 |
12 | 40 | 50 | 90 | 4.25 ± 0.64 abc | 4.10 | 4.10 |
13 | 40 | 55 | 60 | 4.10 ± 0.62 abcd | 4.50 | 4.50 |
14 | 40 | 55 | 120 | 4.50 ± 0.13 a | 4.21 | 4.21 |
15 | 40 | 60 | 90 | 4.21 ± 0.36 abc | 3.57 | 3.57 |
Source | Purnica granatum L. | |||||
---|---|---|---|---|---|---|
Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Significant | |
Model | 1.09 | 9 | 0.1216 | 25.66 | 0.0012 | significant |
A-pressure | 0.6384 | 1 | 0.6384 | 134.69 | <0.0001 | |
B-temp | 0.0008 | 1 | 0.0008 | 0.1688 | 0.6982 | |
C-time | 0.1058 | 1 | 0.1058 | 22.32 | 0.0052 | |
AB | 0.0072 | 1 | 0.0072 | 1.52 | 0.2718 | |
AC | 0.0272 | 1 | 0.0272 | 5.74 | 0.0619 | |
BC | 0.0002 | 1 | 0.0002 | 0.0475 | 0.8361 | |
A2 | 0.1975 | 1 | 0.1975 | 41.66 | 0.0013 | |
B2 | 0.1281 | 1 | 0.1281 | 27.02 | 0.0035 | |
C2 | 0.0275 | 1 | 0.0275 | 5.79 | 0.0611 | |
Residual | 0.0237 | 5 | 0.0047 | |||
Lack of Fit | 0.0103 | 3 | 0.0034 | 0.5124 | 0.7135 | not significant |
Pure Error | 0.0134 | 2 | 0.0067 | |||
Cor Total | 1.12 | 14 | ||||
Std.Dev = 0.0688 R-Squared = 0.9788 Mean = 4.08 R-Squared = 0.9407 C.V.% = 1.69 Adeq Precision = 15.9213 | ||||||
Ret Time (min) | Type | Area (Pa·s) | Amt/Area | Norm (%) | Grp | Name |
---|---|---|---|---|---|---|
27.676 | BB | 427.21164 | 9.55544 × 10−4 | 9.990683 | Palmitic acid sat | C16:0 |
34.103 | BB | 323.84680 | 9.45592 × 10−4 | 7.494542 | Stearic acid sat | C18:0 |
36.838 | BV | 837.20972 | 9.41893 × 10−4 | 19.299116 | Oleic acid w-9 FA | C18:1n9c |
41.400 | BB | 796.17188 | 9.88680 × 10−4 | 19.264782 | Linoleic acid | C18:2n6c |
45.734 | BB | 96.01950 | 1.23414 × 10−3 | 2.900177 | α-Linolenic acid ALA | C18:3n3 |
57.766 | VB | 1796.60498 | 9.33612 × 10−4 | 41.050699 | Lignoceric acid | C24:0 |
Total | 100.000000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pao-la-or, P.; Marungsri, B.; Chirinang, P.; Posridee, K.; Oonsivilai, R.; Oonsivilai, A. Boosting Purnica granatum L. Seed Oil Yield: An Adaptive Neuro-Fuzzy Interference System Fuels SC-CO2 Extraction Breakthrough. Foods 2024, 13, 161. https://doi.org/10.3390/foods13010161
Pao-la-or P, Marungsri B, Chirinang P, Posridee K, Oonsivilai R, Oonsivilai A. Boosting Purnica granatum L. Seed Oil Yield: An Adaptive Neuro-Fuzzy Interference System Fuels SC-CO2 Extraction Breakthrough. Foods. 2024; 13(1):161. https://doi.org/10.3390/foods13010161
Chicago/Turabian StylePao-la-or, Padej, Boonruang Marungsri, Pornariya Chirinang, Kakanang Posridee, Ratchadaporn Oonsivilai, and Anant Oonsivilai. 2024. "Boosting Purnica granatum L. Seed Oil Yield: An Adaptive Neuro-Fuzzy Interference System Fuels SC-CO2 Extraction Breakthrough" Foods 13, no. 1: 161. https://doi.org/10.3390/foods13010161
APA StylePao-la-or, P., Marungsri, B., Chirinang, P., Posridee, K., Oonsivilai, R., & Oonsivilai, A. (2024). Boosting Purnica granatum L. Seed Oil Yield: An Adaptive Neuro-Fuzzy Interference System Fuels SC-CO2 Extraction Breakthrough. Foods, 13(1), 161. https://doi.org/10.3390/foods13010161