The Effect of the Supplementation of Humic Substances and Fermented Products in the Feed on the Content of Salinomycin Residues in Poultry Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards
2.2. Media and Strains
2.3. Experimental Animals and Sample Collection
2.4. Methods
2.5. Determination of Sensitivity of Antibiotic Standards Using STAR and Explorer 2.0
2.6. Pre-Preparation of Samples
2.7. Detection of Salinomycin Residues in Incurred Samples
2.8. Reading the Test Results
2.9. Data and Statistical Analysis
3. Results and Discussion
3.1. Evaluation of the Sensitivity of STAR and Explorer 2.0 for Control Reference Antibiotics and Salinomycin
3.2. Explorer 2.0
3.3. STAR
3.4. ELISA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyazaki, Y.; Shibuya, M.; Sugawara, H.; Kawaguchi, O.; Hirsoe, C. Salinomycin, a New Polyether Antibiotic. J. Antibiot. 1974, 27, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Kožárová, I.; Juščáková, D.; Šimková, J.; Milkovičová, M.; Kožár, M. Effective Screening of Antibiotic and Coccidiostat Residues in Food of Animal Origin by Reliable Broad-Spectrum Residue Screening Tests. Ital. J. Anim. Sci. 2020, 19, 487–501. [Google Scholar] [CrossRef]
- Dewangan, J.; Srivastava, S.; Rath, S.K. Salinomycin: A New Paradigm in Cancer Therapy. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2017, 39, 1010428317695035. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Implementing Regulation (EU) 2017/1914 of 19 October 2017 Concerning the Authorisation of Salinomycin Sodium (Sacox 120 microGranulate and Sacox 200 microGranulate) as a Feed Additive for Chickens for Fattening and Chickens Reared for Laying and Repealing Regulations (EC) No 1852/2003 and (EC) No 1463/2004 (Holder of Authorisation Huvepharma NV) (Text with EEA Relevance). Off. J. Eur. Union 2017, L271, 1–6. [Google Scholar]
- Commission of the European Communities. Report from the Commission to the Council and the European Parliament on the Use of Coccidiostats and Histomonostats as Feed Additives Submitted Pursuant to Article 11 of Regulation (ec) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition. Off. J. Eur. Union 2017. [Google Scholar]
- Federation of Veterinarians of Europe. FVE Position Paper on Coccidiostats or Anticoccidials ‘Coccidiostats to Be under Veterinary Prescription’. Available online: https://www.fve.org/cms/wp-content/uploads/FVE-position-paper-on-coccidiostats-or-anticoccidials.pdf (accessed on 24 November 2023).
- Annunziata, L.; Visciano, P.; Stramenga, A.; Colagrande, M.N.; Campana, G.; Scortichini, G.; Migliorati, G.; Compagnone, D. Determination of Regulatory Ionophore Coccidiostat Residues in Feedstuffs at Carry-over Levels by Liquid Chromatography-Mass Spectrometry. PLoS ONE 2017, 12, e0182831. [Google Scholar] [CrossRef]
- Clarke, L.; Fodey, T.L.; Crooks, S.R.H.; Moloney, M.; O’Mahony, J.; Delahaut, P.; O’Kennedy, R.; Danaher, M. A Review of Coccidiostats and the Analysis of Their Residues in Meat and Other Food. Meat Sci. 2014, 97, 358–374. [Google Scholar] [CrossRef]
- Roila, R.; Branciari, R.; Pecorelli, I.; Cristofani, E.; Carloni, C.; Ranucci, D.; Fioroni, L. Occurrence and Residue Concentration of Coccidiostats in Feed and Food of Animal Origin; Human Exposure Assessment. Foods 2019, 8, 477. [Google Scholar] [CrossRef]
- López-Osorio, S.; Chaparro-Gutiérrez, J.J.; Gómez-Osorio, L.M. Overview of Poultry Eimeria Life Cycle and Host-Parasite Interactions. Front. Vet. Sci. 2020, 7, 384. [Google Scholar] [CrossRef]
- The Commission of the European Communities. Commission Regulation (EC) No 124/2009 of 10 February 2009 Setting Maximum Levels for the Presence of Coccidiostats or Histomonostats in Food Resulting from the Unavoidable Carry-Over of These Substances in Non-Target Feed (Text with EEA Relevance). Off. J. Eur. Union 2009, 40, 7–11. [Google Scholar]
- The European Parliament and the Council of the European Enion. Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition (Text with EEA Relevance). Off. J. Eur. Union 2003, 268, 29–43. [Google Scholar]
- The Commission of the European Communities. Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on Official Controls and Other Official Activities Performed to Ensure the Application of Food and Feed Law, Rules on Animal Health and Welfare, Plant Health and Plant Protection Products, Amending Regulations (EC) No 999/2001, (EC) No 396/2005, (EC) No 1069/2009, (EC) No 1107/2009, (EU) No 1151/2012, (EU) No 652/2014, (EU) 2016/429 and (EU) 2016/2031 of the European Parliament and of the Council, Council Regulations (EC) No 1/2005 and (EC) No 1099/2009 and Council Directives 98/58/EC, 1999/74/EC, 2007/43/EC, 2008/119/EC and 2008/120/EC, and Repealing Regulations (EC) No 854/2004 and (EC) No 882/2004 of the European Parliament and of the Council, Council Directives 89/608/EEC, 89/662/EEC, 90/425/EEC, 91/496/EEC, 96/23/EC, 96/93/EC and 97/78/EC and Council Decision 92/438/EEC (Official Controls Regulation)Text with EEA Relevance. Off. J. Eur. Union 2017, 95, 1–142. [Google Scholar]
- European Commission. 2002/657/EC: Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results (Text with EEA Relevance) (Notified under Document Number C(2002) 3044). Off. J. Eur. Union 2002, 221, 8–36. [Google Scholar]
- EMA Maximum Residue Limits (MRL). Available online: https://www.ema.europa.eu/en/veterinary-regulatory/research-development/maximum-residue-limits-mrl (accessed on 23 November 2023).
- Gaudin, V.; Maris, P.; Fuselier, R.; Ribouchon, J.-L.; Cadieu, N.; Rault, A. Validation of a Microbiological Method: The STAR Protocol, a Five-Plate Test, for the Screening of Antibiotic Residues in Milk. Food Addit. Contam. 2004, 21, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Huet, A.-C.; Bienenmann-Ploum, M.; Vincent, U.; Delahaut, P. Screening Methods and Recent Developments in the Detection of Anticoccidials. Anal. Bioanal. Chem. 2013, 405, 7733–7751. [Google Scholar] [CrossRef] [PubMed]
- Zeulab. Explorer 2.0. Detects More than 50 Antibiotics in Food in a Single Assay with Total Flexibility in the Number of Samples. Available online: https://www.zeulab.com/en/producto/antibiotic-residues/microbiological-screening-antibiotic-residues/explorer-2-0/ (accessed on 24 November 2023).
- Testing Solutions for Food Industry-Zeulab: Making Testing Easier. Available online: https://www.zeulab.com/en/ (accessed on 24 November 2023).
- Serrano, M.J.; Mata, L.; García-Gonzalo, D.; Antón, A.; Razquin, P.; Condón, S.; Pagán, R. Optimization and Validation of a New Microbial Inhibition Test for the Detection of Antimicrobial Residues in Living Animals Intended for Human Consumption. Foods 2021, 10, 1897. [Google Scholar] [CrossRef]
- Gaudin, V.; Hedou, C.; Rault, A.; Verdon, E. Validation of a Five Plate Test, the STAR Protocol, for the Screening of Antibiotic Residues in Muscle from Different Animal Species According to European Decision 2002/657/EC. Food Addit. Contam. Part A 2010, 27, 935–952. [Google Scholar] [CrossRef]
- Certifikačný Orgán/Posudzovanie Zhody. Available online: https://www.svps.sk/zakladne_info/Lab_diagnostika_metody.asp (accessed on 23 November 2023).
- Ahmed, S.; Ning, J.; Peng, D.; Chen, T.; Ahmad, I.; Ali, A.; Lei, Z.; Abu bakr Shabbir, M.; Cheng, G.; Yuan, Z. Current Advances in Immunoassays for the Detection of Antibiotics Residues: A Review. Food Agric. Immunol. 2020, 31, 268–290. [Google Scholar] [CrossRef]
- Muldoon, M.T.; Elissalde, M.H.; Beier, R.C.; Stanker, L.H. Development and Validation of a Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay for Salinomycin in Chicken Liver Tissue. J. Agric. Food Chem. 1995, 43, 1745–1750. [Google Scholar] [CrossRef]
- Salinomycin ELISA Kit (DEIA6841V2-Creative Diagnostics). Available online: https://www.creative-diagnostics.com/Salinomycin-Narasin-EIA-Kit-253876-499.htm (accessed on 23 November 2023).
- Popa, D.G.; Lupu, C.; Constantinescu-Aruxandei, D.; Oancea, F. Humic Substances as Microalgal Biostimulants—Implications for Microalgal Biotechnology. Mar. Drugs 2022, 20, 327. [Google Scholar] [CrossRef]
- Domínguez-Negrete, A.; Gómez-Rosales, S.; Angeles, M.d.L.; López-Hernández, L.H.; Reis de Souza, T.C.; Latorre-Cárdenas, J.D.; Téllez-Isaias, G. Addition of Different Levels of Humic Substances Extracted from Worm Compost in Broiler Feeds. Animals 2021, 11, 3199. [Google Scholar] [CrossRef]
- Hriciková, S.; Kožárová, I.; Hudáková, N.; Reitznerová, A.; Nagy, J.; Marcinčák, S. Humic Substances as a Versatile Intermediary. Life 2023, 13, 858. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zou, D.; Zeng, X.; Li, L.; Wang, A.; Liu, F.; Wang, H.; Zeng, Q.; Xiao, Z. Effect of the Direct Use of Biomass in Agricultural Soil on Heavy Metals__Activation or Immobilization? Environ. Pollut. Barking Essex 1987 2021, 272, 115989. [Google Scholar] [CrossRef]
- Bedford, M.R.; Apajalahti, J.H. The Role of Feed Enzymes in Maintaining Poultry Intestinal Health. J. Sci. Food Agric. 2022, 102, 1759–1770. [Google Scholar] [CrossRef] [PubMed]
- Perricone, V.; Sandrini, S.; Irshad, N.; Savoini, G.; Comi, M.; Agazzi, A. Yeast-Derived Products: The Role of Hydrolyzed Yeast and Yeast Culture in Poultry Nutrition—A Review. Animals 2022, 12, 1426. [Google Scholar] [CrossRef] [PubMed]
- Marcinčák, S.; Klempová, T.; Bartkovský, M.; Marcinčáková, D.; Zdolec, N.; Popelka, P.; Mačanga, J.; Čertík, M. Effect of Fungal Solid-State Fermented Product in Broiler Chicken Nutrition on Quality and Safety of Produced Breast Meat. BioMed Res. Int. 2018, 2018, e2609548. [Google Scholar] [CrossRef]
- Mudroňová, D.; Karaffová, V.; Pešulová, T.; Koščová, J.; Maruščáková, I.C.; Bartkovský, M.; Marcinčáková, D.; Ševčíková, Z.; Marcinčák, S. The Effect of Humic Substances on Gut Microbiota and Immune Response of Broilers. Food Agric. Immunol. 2020, 31, 137–149. [Google Scholar] [CrossRef]
- Semjon, B.; Bartkovský, M.; Marcinčáková, D.; Klempová, T.; Bujňák, L.; Hudák, M.; Jaďuttová, I.; Čertík, M.; Marcinčák, S. Effect of Solid-State Fermented Wheat Bran Supplemented with Agrimony Extract on Growth Performance, Fatty Acid Profile, and Meat Quality of Broiler Chickens. Animals 2020, 10, 942. [Google Scholar] [CrossRef]
- Bartkovský, M.; Mudroňová, D.; Marcinčáková, D.; Klempová, T.; Sesztáková, E.; Maskaľová, I.; Karaffová, V.; Jaďuttová, I.; Čertík, M.; Hudák, M.; et al. Effect of Fungal Solid-State Fermented Product Enriched with Gamma-Linolenic Acid and ß-Carotene on Blood Biochemistry and Immunology of Broiler Chickens. Pol. J. Vet. Sci. 2020, 23, 247–254. [Google Scholar] [CrossRef]
- Hudák, M.; Semjon, B.; Marcinčáková, D.; Bujňák, L.; Naď, P.; Koréneková, B.; Nagy, J.; Bartkovský, M.; Marcinčák, S. Effect of Broilers Chicken Diet Supplementation with Natural and Acidified Humic Substances on Quality of Produced Breast Meat. Animals 2021, 11, 1087. [Google Scholar] [CrossRef]
- Mudroňová, D.; Karaffová, V.; Semjon, B.; Naď, P.; Koščová, J.; Bartkovský, M.; Makiš, A.; Bujňák, L.; Nagy, J.; Mojžišová, J.; et al. Effects of Dietary Supplementation of Humic Substances on Production Parameters, Immune Status and Gut Microbiota of Laying Hens. Agriculture 2021, 11, 744. [Google Scholar] [CrossRef]
- Bartkovský, M.; Marcinčáková, D.; Makiš, A.; Klempová, T.; Semjon, B.; Roba, P.; Marcinčák, S. Effect of Feeding of 10% Prefermented Feed on Fatty Acid Profile and Oxidation Changes in Chicken Breast Meat. MASO Int. J. Food Sci. Technol. 2021, 11, 11–15. [Google Scholar] [CrossRef]
- The Council of the European Union. Council Regulation (EC) No 1099/2009 of 24 September 2009 on the Protection of Animals at the Time of Killing (Text with EEA Relevance). Off. J. Eur. Union 2009, 303, 1–30. [Google Scholar]
- Cross, T.G.; Hornshaw, M.P. Can LC and LC-MS Ever Replace Immunoassays? J. Appl. Bioanal. 2016, 2, 108–116. [Google Scholar] [CrossRef]
- Gondová, Z.; Kožárová, I.; Poláková, Z.; Mad’arová, M. Comparison of Four Microbiological Inhibition Tests for the Screening of Antimicrobial Residues in the Tissues of Food-Producing Animals. Ital. J. Anim. Sci. 2014, 13, 3521. [Google Scholar] [CrossRef]
- Bujňák, L.; Hreško Šamudovská, A.; Mudroňová, D.; Naď, P.; Marcinčák, S.; Maskaľová, I.; Harčárová, M.; Karaffová, V.; Bartkovský, M. The Effect of Dietary Humic Substances on Cellular Immunity and Blood Characteristics in Piglets. Agriculture 2023, 13, 636. [Google Scholar] [CrossRef]
- Kennedy, D.G.; Blanchflower, W.J.; O’Dornan, B.C. Development of an ELISA for Salinomycin and Depletion Kinetics of Salinomycin Residues in Poultry. Food Addit. Contam. 1995, 12, 93–99. [Google Scholar] [CrossRef]
Standard | Bacillus subtilis BGA | Kocuria rhizophila ATCC 9341 | Bacillus cereus ATCC 11778 | Escherichia coli ATCC 11303 | Bacillus stearothermophilus ATCC 10149 | Explorer 2.0 |
---|---|---|---|---|---|---|
STM | 4.75 ± 0.09 | 0 | 0 | 0 | 0 | - |
TYL | 0 | 3.88 ± 0.25 | 0 | 0 | 5.39 ± 0.08 | - |
CHTC | 0 | 0 | 5.22 ± 0.02 | 0 | 0 | - |
CFC | 8.06 ± 0.51 | 0 | 0 | 6.58 ± 0.31 | 0 | - |
SD | 0 | 0 | 0 | 0 | 21.54 ± 0.15 | - |
SAL(50) | 0 | 0 | 0 | 0 | 2.59 ± 0.18 | −(53) |
SAL(100) | 0 | 0 | 0 | 0 | 5.38 ± 0.14 | +(98) |
SAL(150) | 0 | 0 | 0 | 0 | 8.32 ± 0.15 | +(111) |
NC | 0 | 0 | 0 | 0 | 0 | −(40) |
Groups of Experimental Animals | ||||||
---|---|---|---|---|---|---|
Sample | C(30) | C(33) | C(37) | H | F | FH |
Muscle | +(73) | +(62) | −(50) | −(36) | −(37) | −(19) |
Liver | +(80) | +(77) | −(54) | −(39) | −(36) | −(23) |
Kidney | +(82) | +(76) | −(51) | −(38) | −(38) | −(22) |
Antibiotic | Muscle | Liver | Kidney | |||
---|---|---|---|---|---|---|
LOD | MRL | LOD | MRL | LOD | MRL | |
Amoxicillin | 10 | 50 | - | - | ≤25 | 50 |
Cephalexin | 200 | 200 | 300 | 200 | 250–500 | 1000 |
Cloxacillin | 100 | 300 | - | - | - | - |
Ceftiofur | 200 | 1000 | - | - | - | - |
Doxycycline | 100 | 100 | ≤100 | 300 | ≤200 | 600 |
Erythromycin | 300 | 200 | - | - | 300 | 200 |
Gentamicin | 50–100 | 50 | ≤100 | 200 | - | - |
Lincomycin | - | - | - | - | ≤500 | 1500 |
Neomycin | 200 | 500 | - | - | ≤1000 | 5000 |
Oxytetracycline | 200 | 100 | - | - | ||
Penicillin G | ≤20 | 50 | - | - | - | - |
Sulphathiazole | 100 | 100 | - | - | ≤50 | 100 |
Sulphadiazine | 100 | 100 | 50-100 | 100 | 100 | 100 |
Sulphamethazine | - | - | - | - | 50–100 | 100 |
Sulphadimethoxine | 100 | 100 | - | - | - | - |
Tylosin | 100–150 | 100 | ≤50 | 100 | ≤50 | 100 |
Bacterial Test Strain | ||||||
---|---|---|---|---|---|---|
Groups of Experimental Animals | Tissue | Bacillus subtilis BGA | Kocuria rhizophila ATCC 9341 | Bacillus cereus ATCC 11778 | Escherichia coli ATCC 11303 | Bacillus stearothermophilus ATCC 10149 |
C(30) | Muscle | 0 | 0.59 ± 0.09 | 0 | 0 | 5.18 ± 0.40 |
Stomach | 0 | 0 | 0 | 0 | 3.43 ± 0.15 | |
Heart | 0 | 1.43 ± 0.22 | 0 | 0 | 6.45 ± 0.24 | |
Liver | 0 | 4.32 ± 0.62 | 0 | 0 | 7.47 ± 0.86 | |
Spleen | 0 | 3.64 ± 0.09 | 0 | 0 | 7.96 ± 0.37 | |
Kidney | 0 | 1.01 ± 0.14 | 0 | 0 | 6.70 ± 0.29 | |
C(33) | Muscle | 0 | 0.34 ± 0.03 | 0 | 0 | 4.00 ± 0.27 |
Stomach | 0 | 0 | 0 | 0 | 2.98 ± 0.12 | |
Heart | 0 | 1.29 ± 0.17 | 0 | 0 | 4.78 ± 0.34 | |
Liver | 0 | 2.19 ± 0.28 | 0 | 0 | 5.54 ± 0.41 | |
Spleen | 0 | 2.49 ± 0.31 | 0 | 0 | 5.83 ± 0.26 | |
Kidney | 0 | 0.87 ± 0.02 | 0 | 0 | 4.61 ± 0.15 | |
C(37) | Muscle | 0 | 0 | 0 | 0 | 2.74 ± 0.32 |
Stomach | 0 | 0 | 0 | 0 | 1.96 ± 0.24 | |
Heart | 0 | 0.43 ± 0.24 | 0 | 0 | 3.07 ± 0.21 | |
Liver | 0 | 0.97 ± 0.26 | 0 | 0 | 3.38 ± 0.17 | |
Spleen | 0 | 0.51 ± 0.17 | 0 | 0 | 2.53 ± 0.34 | |
Kidney | 0 | 0.94 ± 0.19 | 0 | 0 | 3.57 ± 0.28 | |
H | Muscle | 0 | 0 | 0 | 0 | 0 |
Stomach | 0 | 0 | 0 | 0 | 0 | |
Heart | 0 | 0 | 0 | 0 | 0 | |
Liver | 0 | 0 | 0 | 0 | 0 | |
Spleen | 0 | 0 | 0 | 0 | 0 | |
Kidney | 0 | 0 | 0 | 0 | 0 | |
F | Muscle | 0 | 0 | 0 | 0 | 0 |
Stomach | 0 | 0 | 0 | 0 | 0 | |
Heart | 0 | 0 | 0 | 0 | 0 | |
Liver | 0 | 0 | 0 | 0 | 0 | |
Spleen | 0 | 0 | 0 | 0 | 0 | |
Kidney | 0 | 0 | 0 | 0 | 0 | |
FH | Muscle | 0 | 0 | 0 | 0 | 0 |
Stomach | 0 | 0 | 0 | 0 | 0 | |
Heart | 0 | 0 | 0 | 0 | 0 | |
Liver | 0 | 0 | 0 | 0 | 0 | |
Spleen | 0 | 0 | 0 | 0 | 0 | |
Kidney | 0 | 0 | 0 | 0 | 0 | |
NC | 0 | 0 | 0 | 0 | 0 |
Control/Experimental Group | Absorbance at 450 nm (±SD) | Salinomycin Concentration (µg·L−1 or µg·Kg−1) |
---|---|---|
C(30) | 0.233 ± 0.006 a | 4.749 |
C(33) | 0.505 ± 0.006 b | 3.008 |
C(37) | 0.584 ± 0.017 c | 2.502 |
H | 0.925 ± 0.019 df | 0.324 |
F | 0.826 ± 0.011 e | 0.953 |
FH | 0.927 ± 0.048 f | 0.310 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hriciková, S.; Kožárová, I.; Koréneková, B.; Marcinčák, S. The Effect of the Supplementation of Humic Substances and Fermented Products in the Feed on the Content of Salinomycin Residues in Poultry Tissues. Foods 2024, 13, 68. https://doi.org/10.3390/foods13010068
Hriciková S, Kožárová I, Koréneková B, Marcinčák S. The Effect of the Supplementation of Humic Substances and Fermented Products in the Feed on the Content of Salinomycin Residues in Poultry Tissues. Foods. 2024; 13(1):68. https://doi.org/10.3390/foods13010068
Chicago/Turabian StyleHriciková, Simona, Ivona Kožárová, Beáta Koréneková, and Slavomír Marcinčák. 2024. "The Effect of the Supplementation of Humic Substances and Fermented Products in the Feed on the Content of Salinomycin Residues in Poultry Tissues" Foods 13, no. 1: 68. https://doi.org/10.3390/foods13010068
APA StyleHriciková, S., Kožárová, I., Koréneková, B., & Marcinčák, S. (2024). The Effect of the Supplementation of Humic Substances and Fermented Products in the Feed on the Content of Salinomycin Residues in Poultry Tissues. Foods, 13(1), 68. https://doi.org/10.3390/foods13010068