Investigating the Impact of Origins on the Quality Characteristics of Celery Seeds Based on Metabolite Analysis through HS-GC-IMS, HS-SPME-GC-MS and UPLC-ESI-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Headspace-GC-IMS Analysis
2.3. Headspace Solid-Phase Microextraction GC–MS (HS-SPME-GC-MS) Analysis
2.4. UPLC-ESI-MS/MS Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Qualitative Analysis of Volatile Metabolites of Celery Seeds
3.2. Qualitative Analysis of Non-Volatile Metabolites of Celery Seeds
3.3. Discriminating Celery Seeds from Different Geographical Origins via PCA
3.4. Variations in Volatile Metabolites of Celery Seeds from Different Geographical Origins
3.5. Variations in Non-Volatile Metabolites of Celery Seeds from Different Geographical Origins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, L.J.M.; Nagalakshmi, S.; Naik, J.P.; Shankaracharya, N.B. Studies on chemical and technological aspects of celery (Apium graveolens L.) seed. J. Food Sci. Technol. 2000, 37, 631–635. [Google Scholar]
- Sowbhagya, H.B.; Srinivas, P.; Krishnamurthy, N. Effect of enzymes on extraction of volatiles from celery seeds. Food Chem. 2010, 120, 230–234. [Google Scholar] [CrossRef]
- Adam, K.; Maria, L. Chapter 37-Celery (Apium graveolens var. dulce (Mill.) Pers.) Oils. In Essential Oils in Food Preservation; Victor, R.P., Ed.; Flavor and Safety: London, UK, 2016; pp. 325–338. [Google Scholar]
- Sowbhagya, H.B. Chemistry, Technology, and Nutraceutical Functions of Celery (Apium graveolens L.): An Overview. Crit. Rev. Food Sci. Nutr. 2014, 54, 389–398. [Google Scholar] [CrossRef]
- Ma, Z.J.; Zheng, M.Y.; Liu, Z.; Lu, H.Y.; Liu, Y.Y.; Yang, Y.; Fang, Z.X.; Lu, S.M. Identification of potential angiotensin-I-converting enzyme inhibitory components in celery seed using UHPLC-MS and molecular docking. Process Biochem. 2023, 128, 98–105. [Google Scholar] [CrossRef]
- Willmann, L.; David, W.S.; Cheung, H.C.T.; Tang, H.C.; Lam, W.P.; Zhang, L.H.; Leung, P.C.; Yew, D.T.W. Chapter 89-Effects of 3-n-Butylphthalide from Celery on Vascular Dementia. In Diet and Nutrition in Dementia and Cognitive Decline; Colin, R.M., Victor, R.P., Eds.; King’s College London: London, UK, 2015; pp. 963–971. [Google Scholar]
- Safari, M.; Naseri, M.; Esmaeili, E.; Naderi, E. Green synthesis by celery seed extract and improvement of the anticancer activity of quercetin-loaded rGO/Ca1-xMnx Fe2O4 nanocarriers using UV light in breast cancer cells. J. Mol. Struct. 2023, 1281, 135059. [Google Scholar] [CrossRef]
- Mostaphi, A.E.; Hartiti, H.E.; Barrahi, M.; Zarrouk, A.; Berrabeh, M.; Ouhssine, M. Physico-chemical and Chromatographic Analysis Study of the Essential oil of Celery Seed (Apium graveolens L.). Int. J. Res. Stud. Sci. Eng. Technol. 2017, 4, 1–5. [Google Scholar]
- Xu, Y.B.; Zhu, R.Z.; Li, Z.Y.; Mao, D.H.; Zhe, W.; Wang, J.Z.; Yin, B.T.; Liu, Q.; Qu, R.F.; Wang, K.; et al. Analysis of Volatile Components in Celery Seed Oil by GC-TOF/MS. Flavour Fragr. Cosmet. 2020, 1, 4–8. [Google Scholar]
- Yan, J.; Wang, H.; Wang, Y.; Xu, S.; Wang, Y.H.; He, L.Z.; Yu, L.; Zhu, W.M. Integrated metabolome and transcriptome analysis reveals candidate genes involved in metabolism of terpenoids and phthalides in celery seeds. Ind. Crops Prod. 2021, 172, 114011. [Google Scholar] [CrossRef]
- He, L.; Hu, Q.; Zhang, J.K.; Xing, R.R.; Zhao, Y.S.; Yu, N.; Chen, Y. An integrated untargeted metabolomic approach reveals the quality characteristics of black soybeans from different geographical origins in China. Food Res. Int. 2023, 169, 112908. [Google Scholar] [CrossRef]
- Xu, W.Q.; Cheng, Y.L.; Guo, Y.H.; Yao, W.R.; Qian, H. Effects of geographical location and environmental factors on metabolite content and immune activity of Echinacea purpureain China based on metabolomics analysis. Ind. Crops Prod. 2022, 189, 115782. [Google Scholar] [CrossRef]
- Yu, D.X.; Zhang, X.; Guo, S.; Yan, H.; Wang, J.M.; Zhou, J.Q.; Yang, J.; Duan, J.A. Headspace GC/MS and fast GC e-nose combined with chemometric analysis to identify the varieties and geographical origins of ginger (Zingiber officinale Roscoe). Food Chem. 2022, 396, 133672. [Google Scholar] [CrossRef]
- Feng, X.Y.; Wang, H.W.; Wang, Z.R.; Huang, P.M.; Kan, J.Q. Discrimination and characterization of the volatile organic compounds in eight kinds of huajiao with geographical indication of China using electronic nose, HS-GC-IMS and HS-SPME-GC–MS. Food Chem. 2022, 375, 131671. [Google Scholar] [CrossRef]
- Feng, T.; Sun, J.Q.; Song, S.Q.; Wang, H.T.; Yao, L.Y.; Sun, M.; Wang, K.; Chen, D. Geographical differentiation of Molixiang table grapes grown in China based on volatile compounds analysis by HS-GC-IMS coupled with PCA and sensory evaluation of the grapes. Food Chem. X 2022, 15, 100423. [Google Scholar] [CrossRef]
- Yan, J.; Yu, L.; Xu, S.; Wang, Y.; Shen, J.H.; Zhu, W.M. Assay and evaluation of flavonoid content in Chinese celery. Agric. Sci. Technol. 2014, 15, 1200–1204. [Google Scholar]
- Li, Y.; Liang, L.; Xu, C.; Yang, T.M.; Wang, Y.X. UPLC-Q-TOF/MS-based untargeted metabolomics for discrimination of navel oranges from different geographical origins of China. LWT—Food Sci. Technol. 2021, 137, 110382. [Google Scholar] [CrossRef]
- Fraga, C.G.; Clowers, B.H.; Moore, R.J.; Zink, E.M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Anal. Chem. 2010, 82, 4165–4173. [Google Scholar] [CrossRef]
- Zhang, X.X.; Dai, Z.; Fan, X.J.; Liu, M.; Ma, J.F.; Shang, W.T.; Liu, J.G.; Stappe, P.; Blanchard, C.; Zhou, Z.K. A study on volatile metabolites screening by HS-SPME-GC-MS and HS-GC-IMS for discrimination and characterization of white and yellowed rice. Cereal Chem. 2020, 97, 496–504. [Google Scholar] [CrossRef]
- Wang, S.Q.; Chen, H.T.; Sun, B.G. Recent progress in food flavor analysis using gas chromatography -ion mobility spectrometry (GC-IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Ouyang, G.; Pawliszyn, J. Recent developments in SPME for on-site analysis and monitoring. Trace Trends Anal. Chem. 2006, 25, 692–703. [Google Scholar] [CrossRef]
- Yan, J.; Xiaofeng, Y.; He, L.Z.; Huang, Z.W.; Zhu, M.F.; Fan, L.H.; Li, H.; Wu, L.Y.; Yu, L.; Zhu, W.M. Comprehensive Quality and Bioactive Constituent Analysis of Celery Juice Made from Different Cultivars. Foods 2022, 11, 2719. [Google Scholar] [CrossRef]
- Beck, J.J.; Chou, S.C. The Structural Diversity of Phthalides from the Apiaceae. J. Nat. Prod. 2007, 70, 891–900. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Laua, H.; Lasernaa, A.K.C.; Li, S.F.Y. 1H NMR-based metabolomics for the discrimination of celery (Apium graveolens L. var. dulce) from different geographical origins. Food Chem. 2020, 332, 127424. [Google Scholar] [CrossRef]
- Feng, Y.C.; Fan, X.; Zhang, S.; Wu, T.; Bai, L.; Wang, H.Y.; Ma, Y.T.; Guan, X.; Wang, C.Y.; Yang, H.Z. Effects of variety and origin on the metabolic and texture characteristics of quinoa seeds based on ultrahigh-performance liquid chromatography coupled with high-field quadrupole-orbitrap high-resolution mass spectrometry. Food Res. Int. 2022, 162, 111693. [Google Scholar] [CrossRef]
- Xu, C.C.; Li, Q.L.; Wang, N.; Liu, D.K.; Guo, C.X. Identifying and discriminating aroma attribute and bioactive components of five commercial essential oils of celery (Apium graveolens L.) seeds using E-nose, HS-GC-IMS, and GC-MS. LWT—Food Sci. Technol. 2023, 184, 115094. [Google Scholar] [CrossRef]
- Chavez-Arias, C.C.; Ramírez-Godoy, A.; Restrepo-Díaz, H. Influence of drought, high temperatures, and/or defense against arthropod herbivory on the production of secondary metabolites in maize plants. A review. Curr. Plant Biol. 2022, 32, 100268. [Google Scholar] [CrossRef]
- Park, Y.J.; Kim, Y.J.; Park, S.U.; Kim, H.Y.; Yang, J.Y.; Song, S.Y.; Lee, M.J.; Seo, W.D.; Kim, J.K. Lipids and volatile organic compounds in sesame seeds and their relationships with environmental temperature induced stress. Food Res. Int. 2023, 169, 112831. [Google Scholar] [CrossRef]
- Kashyap, D.; Sharma, A.; Tulic, H.S.; Sak, K.; Garg, V.K.; Buttar, H.S.; Setzer, W.N.; Sethi, G. Apigenin: A natural bioactive flavone -type molecule with promising therapeutic function. J. Funct. Foods 2018, 48, 457–471. [Google Scholar] [CrossRef]
- Krishnan, B.; Ganesan, A.R.; Balasubramani, R.; Nguyen, D.D.; Chang, S.W.; Wang, S.Y.; Xiao, J.B.; Balasubramanian, B. Chrysoeriol ameliorates hyperglycemia by regulating the carbohydrate metabolic enzymes in streptozotocin -induced diabetic rats. Food Sci. Hum. Wellness 2020, 9, 346–354. [Google Scholar] [CrossRef]
- Sun, M.Z.; Li, J.; Zhang, L.C.; Ding, C.F.; Yang, S.D.; Yu, H.F.; Hu, W.Y. Potential therapeutic use of plant flavonoids in AD and PD. Heliyon 2022, 8, e11440. [Google Scholar]
- Liu, W.J.; Wu, L.M.; Liu, W.W.; Tian, L.T.; Chen, H.H.; Wu, Z.C.; Wang, N.; Liu, X.; Qiu, J.S.; Feng, X.L.; et al. Design, synthesis and biological evaluation of novel coumarin derivatives as multifunctional ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2022, 242, 114689. [Google Scholar] [CrossRef]
- Beier, R.C.; Oertli, E.H. Psoralen and other linear furocoumarins as phytoalexins in celery. Phytochemistry 1983, 22, 2595–2597. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Guo, M.X.; Li, Y.W.; Wang, T.; Ren, Y.; Wang, R.; Jiang, X.; Zhang, X.X.; Tian, J.Y.; Wang, H. α-Linolenic acid regulates macrophages via GPR 120-NLRP3 inflamma some pathway to ameliorate diabetic rats. J. Funct. Foods 2022, 99, 105348. [Google Scholar] [CrossRef]
- Muhammad, A.A.; Muhammad, I.; Rizwan, R.; Iqbal, H.; Muhammad, R.; Muhammad, S.A. Chapter 8 Environmental Stress and Secondary Metabolites in Plants: An Overview. In Plant Metabolites and Regulation under Environmental Stress; Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni, M.N., Eds.; Elsevier: London, UK, 2018; pp. 153–167. [Google Scholar]
- Wu, G.; Johnson, S.K.; Bornman, J.F.; Bennett, S.J.; Clarke, M.W.; Singh, V.; Fang, Z.X. Growth temperature and genotype both play important roles in sorghum grain phenolic composition. Sci. Rep. 2016, 6, 21835. [Google Scholar] [CrossRef]
- Upadhyaya, H. Changes in antioxidative responses to low temperature in tea (Camellia sinensis (L.) O. Kuntze) cultivars. Int. J. Mod. Bot. 2012, 2, 83–87. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; He, L.; Huang, Z.; Wang, H.; Yu, L.; Zhu, W. Investigating the Impact of Origins on the Quality Characteristics of Celery Seeds Based on Metabolite Analysis through HS-GC-IMS, HS-SPME-GC-MS and UPLC-ESI-MS/MS. Foods 2024, 13, 1428. https://doi.org/10.3390/foods13101428
Yan J, He L, Huang Z, Wang H, Yu L, Zhu W. Investigating the Impact of Origins on the Quality Characteristics of Celery Seeds Based on Metabolite Analysis through HS-GC-IMS, HS-SPME-GC-MS and UPLC-ESI-MS/MS. Foods. 2024; 13(10):1428. https://doi.org/10.3390/foods13101428
Chicago/Turabian StyleYan, Jun, Lizhong He, Zhiwu Huang, Hong Wang, Li Yu, and Weimin Zhu. 2024. "Investigating the Impact of Origins on the Quality Characteristics of Celery Seeds Based on Metabolite Analysis through HS-GC-IMS, HS-SPME-GC-MS and UPLC-ESI-MS/MS" Foods 13, no. 10: 1428. https://doi.org/10.3390/foods13101428
APA StyleYan, J., He, L., Huang, Z., Wang, H., Yu, L., & Zhu, W. (2024). Investigating the Impact of Origins on the Quality Characteristics of Celery Seeds Based on Metabolite Analysis through HS-GC-IMS, HS-SPME-GC-MS and UPLC-ESI-MS/MS. Foods, 13(10), 1428. https://doi.org/10.3390/foods13101428