Production of Camellia oleifera Abel Seed Oil for Injection: Extraction, Analysis, Deacidification, Decolorization, and Deodorization
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Material and Instruments
2.2. Ultrasound-Assisted Aqueous Enzymatic Method
2.3. Deacidification of Camellia Seed Oil
2.4. Decolorization of Camellia Seed Oil
2.5. Deodorization of Camellia Seed Oil
2.6. Analysis Method
2.7. Physicochemical Properties Analysis of Vegetable Oils
2.8. Data Analysis
3. Results and Discussion
3.1. Extraction of Camellia Seed Oil by the Ultrasound-Assisted Aqueous Enzymatic Method
3.2. Camellia Seed Oil Was Analyzed by Principal Component Analysis
3.3. Camellia Seed Oil Deacidification
3.4. Camellia Seed Oil Decolorization
3.5. Camellia Seed Oil Deodorization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, L.; Gao, C.; Qiu, J.; Yang, L.; Wei, H.; Zhou, Y. Fatty acids and nutritional components of the seed oil from Wangmo red ball Camellia oleifera grown in the low-heat valley of Guizhou, China. Sci. Rep. 2022, 12, 16554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Pan, Y.G.; Zheng, L.; Yang, Y.; Zheng, X.; Ai, B.; Xu, Z.; Sheng, Z. Application of steam explosion in oil extraction of camellia seed (Camellia oleifera Abel.) and evaluation of its physicochemical properties, fatty acid, and antioxidant activities. Food Sci. Nutr. 2019, 7, 1004–1016. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gao, C.; Xie, J.; Qiu, J.; Deng, Q.; Zhou, Y.; Liao, D.; Deng, C. Fruit economic characteristics and yields of 40 superior Camellia oleifera Abel plants in the low-hot valley area of Guizhou Province, China. Sci. Rep. 2022, 12, 7068. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhu, W.; Zhang, J.; Song, D.; Zhuang, L.; Ma, Q.; Yang, X.; Liu, X.; Zhang, J.; Zhang, H.; et al. Antioxidant capacity of phenolic compounds separated from tea seed oil in vitro and in vivo. Food Chem. 2022, 371, 131122. [Google Scholar] [CrossRef]
- Pereira, A.G.; Carpena, M.; Cassani, L.; Chamorro, F.; Simal-Gandara, J.; Prieto, M.A. Occurrence of fatty acids in Camellia genus: Extractions technologies and potential applications: A review. Food Biosci. 2023, 55, 102960. [Google Scholar] [CrossRef]
- Wantida, C.; Pimporn, L.; Jaroon, J.; Chawalit, K. Antioxidant and Moisturizing Effect of Camellia assamica Seed Oil and Its Development into Microemulsion. Cosmetics 2018, 5, 40. [Google Scholar] [CrossRef]
- Luan, F.; Zeng, J.; Yang, Y.; He, X.; Wang, B.; Gao, Y.; Zeng, N. Recent advances in Camellia oleifera Abel: A review of nutritional constituents, biofunctional properties, and potential industrial applications. J. Funct. Foods 2020, 75, 104242. [Google Scholar] [CrossRef]
- Riangjanapatee, P.; Khongkow, M.; Treetong, A.; Unger, O.; Phungbun, C.; Jaemsai, S.; Bootsiri, C.; Okonogi, S. Development of Tea Seed Oil Nanostructured Lipid Carriers and In Vitro Studies on Their Applications in Inducing Human Hair Growth. Pharmaceutics 2022, 14, 984. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Y.; Zheng, J.S.; Shen, L.R. Dietary camellia (Camellia oleifera Abel) seed oil in traditional Chinese cooking for high-risk cardiovascular disease: A three-arm double-blind randomized controlled feeding trial protocol. Asia Pac. J. Clin. Nutr. 2020, 29, 751–762. [Google Scholar]
- Tung, Y.T.; Hsu, Y.J.; Chien, Y.W.; Huang, C.C.; Huang, W.C.; Chiu, W.C. Tea Seed Oil Prevents Obesity, Reduces Physical Fatigue, and Improves Exercise Performance in High-Fat-Diet-Induced Obese Ovariectomized Mice. Molecules 2019, 24, 980. [Google Scholar] [CrossRef]
- Zhao, X.; Song, J.-L.; Yi, R.; Li, G.; Sun, P.; Park, K.-Y.; Suo, H. Comparison of Antioxidative Effects of Insect Tea and Its Raw Tea (Kuding Tea) Polyphenols in Kunming Mice. Molecules 2018, 23, 204. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.-Y.; Chen, H.-P.; Yan, Y.-F.; Li, Y.-Y.; Wang, H.; Liao, Z.-P.; Huang, Q.-R. Sasanquasaponin promotes cellular chloride efflux and elicits cardioprotection via the PKCε pathway. Mol. Med. Rep. 2016, 13, 3597–3603. [Google Scholar] [CrossRef] [PubMed]
- Hippalgaonkar, K.; Majumdar, S.; Kansara, V. Injectable Lipid Emulsions—Advancements, Opportunities and Challenges. AAPS PharmSciTech 2010, 11, 1526–1540. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, J.S.; Chen, P.H.; Boyd, K.L. Effects of Repeated Intraperitoneal Injection of Pharmaceutical-grade and Nonpharmaceutical-grade Corn Oil in Female C57BL/6J Mice. J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 779–785. [Google Scholar] [PubMed]
- Sarica, O.; Kayhan, A.; Demirkurek, H.C.; Igdem, A.A. Subcutaneous Oleomas Following Sunflower Oil Injection: A Novel Case and Review of Literature. J. Breast Health 2016, 12, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Mirtallo, J.M.; Ayers, P.; Boullata, J.; Gura, K.M.; Plogsted, S.; Anderson, C.R. ASPEN Lipid Injectable Emulsion Safety Recommendations, Part 1: Background and Adult Considerations. Nutr. Clin. Pract. 2020, 35, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.A.; Cho, B.S.; Anez-Bustillos, L.; Dao, D.T.; Pan, A.; O’Loughlin, A.A. Fish oil–based injectable lipid emulsions containing medium-chain triglycerides or added α-tocopherol offer anti-inflammatory benefits in a murine model of parenteral nutrition–induced liver injury. Am. J. Clin. Nutr. 2019, 109, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Pietrasik, Z.; Wang, H.; Janz, J.A. Effect of canola oil emulsion injection on processing characteristics and consumer acceptability of three muscles from mature beef. Meat Sci. 2013, 93, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Kok-Yong, C.; Dhivakaran, G.; Fadlin, M.N.; Rehan, K.; Sherlyn, E.; Siti, A.; Soelaiman, I.N. The Effects of Annatto Tocotrienol on Bone Biomechanical Strength and Bone Calcium Content in an Animal Model of Osteoporosis Due to Testosterone Deficiency. Nutrients 2016, 8, 808. [Google Scholar] [CrossRef]
- Briassoulis, D.; Athanasoulia, I.G.; Tserotas, P. PHB/PLA plasticized by olive oil and carvacrol solvent-cast films with optimised ductility and physical ageing stability. Polym. Degrad. Stab. 2022, 200, 109958. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Yang, X.; Wang, S.; Wu, W. Efficacy and safety of Brucea javanica oil emulsion injection as adjuvant therapy for cancer: An overview of systematic reviews and meta-analyses. Phytomedicine 2022, 102, 154141. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Z.; Zhang, Q.; Wei, X.H.; Jiang, C.X.; Li, X.K.; Shang, H.C.; Lin, S. Multiple anti-inflammatory mechanisms of Zedoary Turmeric Oil Injection against lipopolysaccharides-induced acute lung injury in rats elucidated by network pharmacology combined with transcriptomics. Phytomedicine 2022, 106, 154418. [Google Scholar] [CrossRef]
- Zhang, P.; Meng, X.; Tang, X.; Ren, L.; Liang, J. The effect of a coix seed oil injection on cancer pain relief. Support Care Cancer 2019, 27, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Boussuges, A.; Gainnier, M.; Quenee, V.; Donati, S.; Ayem, M.L.; Barthelemy, A.; Sainty, J.M. Fat embolism after intrapenile injection of sweet almond oil. Rev. Des Mal. Respir. 1998, 15, 307–308. [Google Scholar]
- Higashi, S.; Shimizu, M.; Nakashima, T.; Iwata, K.; Uchiyama, F.; Tateno, S.; Tamura, S.; Setoguchi, T. Arterial-injection chemotherapy for hepatocellular carcinoma using monodispersed poppy-seed oil microdroplets containing fine aqueous vesicles of epirubicin. Initial medical application of a membrane-emulsification technique. Cancer 1995, 75, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Yarkoni, E.; Rapp, H.J. Local tumor regression after intralesional injection of croton oil. J. Natl. Cancer Inst. 1979, 63, 503–505. [Google Scholar] [PubMed]
- Tian, H.; Xiangrong, Y.; Rong, Z.; Rao, S.; Hongyan, T.; Chunhu, S.; Lun, L.; Jinhui, T.; Kehu, Y. Safety and efficacy of a new parenteral lipid emulsion (SMOF) for surgical patients: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2013, 71, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Gavahian, M.; Mousavi Khaneghah, A.; Lorenzo, J.M.; Munekata, P.E.S.; Garcia-Mantrana, I.; Collado, M.C.; Meléndez-Martínez, A.J.; Barba, F.J. Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends Food Sci. Technol. 2019, 88, 220–227. [Google Scholar] [CrossRef]
- Huang, Z.-W.; Wu, X.-H.; Lan, X.-H.; Zhang, B. Camellia oleifera Oil Body as a Delivery System for Curcumin: Encapsulation, Physical, and in Vitro Digestion Properties. Food Biophys. 2023, 18, 596–605. [Google Scholar] [CrossRef]
- Hu, K.; Jia, E.; Zhang, Q.; Zheng, W.; Sun, R.; Qian, M.; Tan, Y.; Hu, W. Injectable carboxymethyl chitosan-genipin hydrogels encapsulating tea tree oil for wound healing. Carbohydr. Polym. 2023, 301, 120348. [Google Scholar] [CrossRef]
- Gao, Y.; Ding, Z.; Liu, Y.; Xu, Y.-J. Aqueous enzymatic extraction: A green, environmentally friendly and sustainable oil extraction technology. Trends Food Sci. Technol. 2024, 144, 104315. [Google Scholar] [CrossRef]
- Ding, Y.; Gao, P.; Mao, Y.; Liu, H.; Zhong, W.; Hu, C.; He, D.; Wang, X. Assessment of the Physicochemical Properties of Fragrant Rapeseed Blended Hotpot Oil by Principal Component Analysis. J. Oleo Sci. 2023, 72, 263–272. [Google Scholar] [CrossRef]
- Liu, C.; Hao, L.H.; Chen, F.S.; Zhu, T.W. The Mechanism of Extraction of Peanut Protein and Oil Bodies by Enzymatic Hydrolysis of the Cell Wall. J. Oleo Sci. 2020, 69, 1467–1479. [Google Scholar] [CrossRef] [PubMed]
- Haji Heidari, S.; Taghian Dinani, S. The Study of Ultrasound-Assisted Enzymatic Extraction of Oil From Peanut Seeds Using Response Surface Methodology. Eur. J. Lipid Sci. Technol. 2017, 120, 1700252. [Google Scholar] [CrossRef]
- Ye, L.; Zhu, X.; Liu, Y. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution. Ultrason. Sonochemistry 2019, 59, 104744. [Google Scholar] [CrossRef]
- Zeng, C.; Zhao, R.; Ma, M.; Zeng, Z.; Gong, D. Mutagenesis and characterization of a Bacillus amyloliquefaciens strain for Cinnamomum camphora seed kernel oil extraction by aqueous enzymatic method. Amb Express 2017, 7, 154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, W.Q.; Li, J.; Ling, S. Combining Cell-Free Expression and Multifactor Optimization for Enhanced Biosynthesis of Cinnamyl Alcohol. J. Agric. Food Chem. 2023, 71, 8551–8557. [Google Scholar] [CrossRef] [PubMed]
- Joshy, J.; Naveen; Mahipal, D. The effect of free fatty acids on the tribological properties of karanja oil. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1114, 012053. [Google Scholar] [CrossRef]
- El-Hadad, S.S.; Tikhomirova, N.A. Physicochemical properties and oxidative stability of butter oil supplemented with corn oil and dihydroquercetin. J. Food Process. Preserv. 2018, 42, e13765. [Google Scholar] [CrossRef]
- Vorholt, A.J.; Behr, A. Oleochemistry, Applied Homogeneous Catalysis with Organometallic Compounds; Wiley Online Library: Hoboken, NJ, USA, 2017. [Google Scholar]
- Yin, F.; Sun, X.; Zheng, W.; Luo, X.; Peng, C.; Jia, Q.; Fu, Y. Improving the quality of microalgae DHA-rich oil in the deodorization process using deoxygenated steam. J. Food Process. Preserv. 2020, 44, e14602. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Han, M.; Nie, X.; Fu, X.; Hong, K.; He, D. Production of Camellia oleifera Abel Seed Oil for Injection: Extraction, Analysis, Deacidification, Decolorization, and Deodorization. Foods 2024, 13, 1430. https://doi.org/10.3390/foods13101430
Zhang H, Han M, Nie X, Fu X, Hong K, He D. Production of Camellia oleifera Abel Seed Oil for Injection: Extraction, Analysis, Deacidification, Decolorization, and Deodorization. Foods. 2024; 13(10):1430. https://doi.org/10.3390/foods13101430
Chicago/Turabian StyleZhang, Han, Mei Han, Xuejiao Nie, Xiaomeng Fu, Kunqiang Hong, and Dongping He. 2024. "Production of Camellia oleifera Abel Seed Oil for Injection: Extraction, Analysis, Deacidification, Decolorization, and Deodorization" Foods 13, no. 10: 1430. https://doi.org/10.3390/foods13101430
APA StyleZhang, H., Han, M., Nie, X., Fu, X., Hong, K., & He, D. (2024). Production of Camellia oleifera Abel Seed Oil for Injection: Extraction, Analysis, Deacidification, Decolorization, and Deodorization. Foods, 13(10), 1430. https://doi.org/10.3390/foods13101430