A Comparative Study of Composition and Soluble Polysaccharide Content between Brewer’s Spent Yeast and Cultured Yeast Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Autolysis of Yeast Cell
2.3. Water-Soluble Polysaccharide Extraction from Autolysate Residue
2.4. Characterization of Yeast Cell Components
2.4.1. Proximate Composition
2.4.2. Sugar Composition
2.4.3. Gel Permeation Chromatography (GPC)
2.4.4. Glycosidic Linkage Analysis Using 1H-NMR
2.4.5. FT-IR
2.5. Antioxidant Enzyme Activity of Water-Soluble Polysaccharide
2.5.1. Superoxide Dismutase-like Activity (SOD)
2.5.2. ABTS Radical Scavenging
2.5.3. DPPH Radical Inhibition
2.5.4. Total Phenolic Content
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Yield Components of Yeast Cell Fractionations
3.3. Characterization of Soluble Cell Wall Polysaccharides
3.3.1. Soluble Cell Wall Polysaccharides Composition
3.3.2. Molecular Weight Determination
3.3.3. 1H-NMR Spectroscopic Identification
3.3.4. FT-IR Spectroscopic Identification
3.3.5. Antioxidant Enzyme Activity of Water-Soluble Polysaccharide
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bastos, R.; Oliveira, P.G.; Gaspar, V.M.; Mano, J.F.; Coimbra, M.A.; Coelho, E. Brewer’s yeast polysaccharides—A review of their exquisite structural features and biomedical applications. Carbohydr. Polym. 2022, 277, 118826. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.M.P.L.V.O.; Pinho, O.; Vieira, E.; Tavarela, J.G. Brewer’s Saccharomyces yeast biomass: Characteristics and potential applications. Trends Food Sci. Technol. 2010, 21, 77–84. [Google Scholar] [CrossRef]
- Horn, P.A.; Zeni, A.L.B.; Cavichioli, N.; Winter, E.; Batista, K.Z.S.; Vitali, L.; de Almeida, E.A. Chemical profile of craft brewer’s spent yeast and its antioxidant and antiproliferative activities. Eur. Food Res. Technol. 2023, 249, 2001–2015. [Google Scholar] [CrossRef]
- Pacheco, M.T.B.; Caballero-Córdoba, G.M.; Sgarbieri, V.C. Composition and nutritive value of yeast biomass and yeast protein concentrates. J. Nutr. Sci. Vitaminol. 1997, 43, 601–612. [Google Scholar] [CrossRef]
- Tao, Z.; Yuan, H.; Liu, M.; Liu, Q.; Zhang, S.; Liu, H.; Jiang, Y.; Huang, D.; Wang, T. Yeast Extract: Characteristics, Production, Applications and Future Perspectives. J. Microbiol. Biotechnol. 2023, 33, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, G.; Lv, M. Extraction, characterization and antioxidant activities of mannan from yeast cell wall. Int. J. Biol. Macromol. 2018, 118, 952–956. [Google Scholar] [CrossRef]
- Tang, Q.; Huang, G.; Zhao, F.; Zhou, L.; Huang, S.; Li, H. The antioxidant activities of six (1 → 3)-β-D-glucan derivatives prepared from yeast cell wall. Int. J. Biol. Macromol. 2017, 98, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Utama, G.L.; Oktaviani, L.; Balia, R.L.; Rialita, T. Potential Application of Yeast Cell Wall Biopolymers as Probiotic Encapsulants. Polymers 2023, 15, 3481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fang, Y.; Fu, Y.; Jalukar, S.; Ma, J.; Liu, Y.; Guo, Y.; Ma, Q.; Ji, C.; Zhao, L. Yeast polysaccharide mitigated oxidative injury in broilers induced by mixed mycotoxins via regulating intestinal mucosal oxidative stress and hepatic metabolic enzymes. Poult. Sci. 2023, 102, 102862. [Google Scholar] [CrossRef]
- Kollár, R.; Reinhold, B.B.; Petráková, E.; Yeh, H.J.C.; Ashwell, G.; Drgonová, J.; Kapteyn, J.C.; Klis, F.M.; Cabib, E. Architecture of the Yeast Cell Wall. J. Biol. Chem. 1997, 272, 17762–17775. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, Y.; Qi, G.; Dai, J.; Zhang, H.; Wang, J.; Wu, S. Yeast cell-wall polysaccharides improve immunity and attenuate inflammatory response via modulating gut microbiota in LPS-challenged laying hens. Int. J. Biol. Macromol. 2023, 224, 407–421. [Google Scholar] [CrossRef] [PubMed]
- De Marco Castro, E.; Calder, P.C.; Roche, H.M. β-1,3/1,6-Glucans and Immunity: State of the Art and Future Directions. Mol. Nutr. Food Res. 2021, 65, 1901071. [Google Scholar] [CrossRef] [PubMed]
- Al-Manhel, A.J.; Niamah, A.K. Mannan extract from Saccharomyces cerevisiae used as prebiotic in bioyogurt production from buffalo milk. Int. Food Res. J. 2017, 24, 2259–2264. [Google Scholar]
- Kumar Suryawanshi, R.; Kango, N. Production of mannooligosaccharides from various mannans and evaluation of their prebiotic potential. Food Chem. 2021, 334, 127428. [Google Scholar] [CrossRef] [PubMed]
- Reis, S.F.; Fernandes, P.A.R.; Martins, V.J.; Gonçalves, S.; Ferreira, L.P.; Gaspar, V.M.; Figueira, D.; Castelo-Branco, D.; Mano, J.F.; Coimbra, M.A.; et al. Brewer’s Spent Yeast Cell Wall Polysaccharides as Vegan and Clean Label Additives for Mayonnaise Formulation. Molecules 2023, 28, 3540. [Google Scholar] [CrossRef] [PubMed]
- Tanguler, H.; Erten, H. Utilisation of spent brewer’s yeast for yeast extract production by autolysis: The effect of temperature. Food Bioprod. Process. 2008, 86, 317–321. [Google Scholar] [CrossRef]
- Takalloo, Z.; Nikkhah, M.; Nemati, R.; Jalilian, N.; Sajedi, R.H. Autolysis, plasmolysis and enzymatic hydrolysis of baker’s yeast (Saccharomyces cerevisiae): A comparative study. World J. Microbiol. Biotechnol. 2020, 36, 68. [Google Scholar] [CrossRef]
- Lee, Y.-O.; Do, S.-H.; Won, J.Y.; Chin, Y.W.; Chewaka, L.S.; Park, B.-R.; Kim, S.-J.; Kim, S.-K. Inverse metabolic engineering for improving protein content in Saccharomyces cerevisiae. Biotechnol. J. 2023, 18, 2300014. [Google Scholar] [CrossRef]
- Kath, F.; Kulicke, W.M. Mild enzymatic isolation of mannan and glucan from yeast Saccharomyces cerevisiae. Angew. Makromol. Chem. 1999, 268, 59–68. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC INTERNA TIONAL; Association of Official Analytical Chemistry International: Rockville, MD, USA, 2005. [Google Scholar]
- Dallies, N.; François, J.; Paquet, V. A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 1998, 14, 1297–1306. [Google Scholar] [CrossRef]
- Kath, F.; Kulicke, W.M. Polymer analytical characterization of glucan and mannan from yeast Saccharomyces cerevisiae. Angew. Makromol. Chem. 1999, 268, 69–80. [Google Scholar] [CrossRef]
- Galichet, A.; Sockalingum, G.D.; Belarbi, A.; Manfait, M. FTIR spectroscopic analysis of Saccharomyces cerevisiae cell walls: Study of an anomalous strain exhibiting a pink-colored cell phenotype. FEMS Microbiol. Lett. 2001, 197, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Oh, Y.C.; Cho, W.K.; Ma, J.Y. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay. Evid.-Based Complement. Altern. Med. 2015, 2015, 165457. [Google Scholar] [CrossRef] [PubMed]
- Senba, Y.; Nishishita, T.; Saito, K.; Yoshioka, H.; Yoshioka, H. Stopped-flow and spectrophotometric study on radical scavenging by tea catechins and the model compounds. Chem. Pharm. Bull. 1999, 47, 1369–1374. [Google Scholar] [CrossRef]
- Chae, H.J.; Joo, H.; In, M.J. Utilization of brewer’s yeast cells for the production of food-grade yeast extract. Part 1: Effects of different enzymatic treatments on solid and protein recovery and flavor characteristics. Bioresour. Technol. 2001, 76, 253–258. [Google Scholar] [CrossRef]
- Heringer, H.C.E.; Kuhn Marchioro, M.L.; Meneguzzi, D.; Barbosa-Dekker, A.M.; Dekker, R.F.H.; Alves da Cunha, M.A. Valorization of spent Brewers yeast in the integrated production of the fungal exopolysaccharide (1 → 6)-β-D-glucan (lasiodiplodan) and single-cell protein. Biocatal. Agric. Biotechnol. 2023, 54, 102971. [Google Scholar] [CrossRef]
- Wan, M.; Wang, M.; Zhao, Y.; Deng, H.; Tan, C.; Lin, S.; Kong, Y.; Tong, Y.; Meng, X. Extraction of mannoprotein from Saccharomyces cerevisiae and analysis of its chemical composition and molecular structure. Int. J. Biol. Macromol. 2021, 193, 2252–2259. [Google Scholar] [CrossRef] [PubMed]
- Bzducha-Wróbel, A.; Kieliszek, M.; Błażejak, S. Chemical composition of the cell wall of probiotic and brewer’s yeast in response to cultivation medium with glycerol as a carbon source. Eur. Food Res. Technol. 2013, 237, 489–499. [Google Scholar] [CrossRef]
- Bastos, R.; Coelho, E.; Coimbra, M.A. Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process. Carbohydr. Polym. 2015, 124, 322–330. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, G.; Liu, J. Effect of preparation methods on physiochemical and functional properties of yeast β-glucan. LWT 2022, 160, 113284. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Zheng, F.; Niu, C.; Liu, C.; Li, Q.; Sun, J. Cell wall polysaccharides: Before and after autolysis of brewer’s yeast. World J. Microbiol. Biotechnol. 2018, 34, 137. [Google Scholar] [CrossRef]
- Aguilar-Uscanga, B.; François, J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett. Appl. Microbiol. 2003, 37, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Klis, F.M.; Boorsma, A.; De Groot, P.W.J. Cell wall construction in Saccharomyces cerevisiae. Yeast 2006, 23, 185–202. [Google Scholar] [CrossRef]
- Huang, G.L.; Yang, Q.; Wang, Z.B. Extraction and deproteinization of mannan oligosaccharides. Z. Fur Naturforsch.—Sect. C J. Biosci. 2010, 65 C, 387–390. [Google Scholar] [CrossRef]
- Da Silva Araújo, V.B.; De Melo, A.N.F.; Costa, A.G.; Castro-Gomez, R.H.; Madruga, M.S.; De Souza, E.L.; Magnani, M. Followed extraction of β-glucan and mannoprotein from spent brewer’s yeast (Saccharomyces uvarum) and application of the obtained mannoprotein as a stabilizer in mayonnaise. Innov. Food Sci. Emerg. Technol. 2014, 23, 164–170. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Coimbra, M.A. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef]
- Zeng, W.; Chen, L.; Xiao, Z.; Li, Y.; Ma, J.; Ding, J.; Yang, J. Comparative Study on the Structural Properties and Bioactivities of Three Different Molecular Weights of Lycium barbarum Polysaccharides. Molecules 2023, 28, 701. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Z.; Liu, L.; Hui, H.; Wang, Q. Structural characterization and antineoplastic activity of saccharomyces cerevisiae mannoprotein. Int. J. Food Prop. 2015, 18, 359–371. [Google Scholar] [CrossRef]
- Tamano, K.; Nakasha, K.; Iwamoto, M.; Numata, M.; Suzuki, T.; Uyama, H.; Fukuhara, G. Chiroptical properties of reporter-modified or reporter-complexed highly 1,6-glucose-branched β-1,3-glucan. Polym. J. 2019, 51, 1063–1071. [Google Scholar] [CrossRef]
- Chen, L.; Sadek, M.; Stone, B.A.; Brownlee, R.T.C.; Fincher, G.B.; Høj, P.B. Stereochemical course of glucan hydrolysis by barley (1 → 3)- and (1 → 3,1 → 4)-β-glucanases. Biochim. Biophys. Acta (BBA)/Protein Struct. Mol. 1995, 1253, 112–116. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Bourbon, A.I.; Pinheiro, A.C.; Martins, J.T.; Souza, B.W.S.; Teixeira, J.A.; Vicente, A.A. Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci. Technol. 2011, 22, 662–671. [Google Scholar] [CrossRef]
- Zeng, W.C.; Zhang, Z.; Gao, H.; Jia, L.R.; Chen, W.Y. Characterization of antioxidant polysaccharides from Auricularia auricular using microwave-assisted extraction. Carbohydr. Polym. 2012, 89, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, M.; Masek, A. Saccharomyces cerevisiae cell wall components as tools for ochratoxin A decontamination. Toxins 2015, 7, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.L. Extraction of two active polysaccharides from the yeast cell wall. Z. Fur Naturforsch.—Sect. C J. Biosci. 2008, 63, 919–921. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, L.F.; Cerqueira, M.A.; Teixeira, J.A.; Mussatto, S.I. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydr. Polym. 2015, 127, 347–354. [Google Scholar] [CrossRef]
- Bzducha-Wróbel, A.; Blłazejak, S.; Kawarska, A.; Stasiak-Rózańska, L.; Gientka, I.; Majewska, E. Evaluation of the efficiency of different disruption methods on yeast cell wall preparation for β-glucan isolation. Molecules 2014, 19, 20941–20961. [Google Scholar] [CrossRef]
- Ren, L.; Hemar, Y.; Perera, C.O.; Lewis, G.; Krissansen, G.W.; Buchanan, P.K. Antibacterial and antioxidant activities of aqueous extracts of eight edible mushrooms. Bioact. Carbohydr. Diet. Fibre 2014, 3, 41–51. [Google Scholar] [CrossRef]
- Hromádková, Z.; Ebringerová, A.; Sasinková, V.; Šandula, J.; Hříbalová, V.; Omelková, J. Influence of the drying method on the physical properties and immunomodulatory activity of the particulate (1 → 3)-β-D-glucan from Saccharomyces cerevisiae. Carbohydr. Polym. 2003, 51, 9–15. [Google Scholar] [CrossRef]
- Hudson, L.E.; McDermott, C.D.; Stewart, T.P.; Hudson, W.H.; Rios, D.; Fasken, M.B.; Corbett, A.H.; Lamb, T.J. Characterization of the probiotic yeast Saccharomyces boulardii in the healthy mucosal immune system. PLoS ONE 2016, 11, e0153351. [Google Scholar] [CrossRef]
- Bryant, R.W.; Cohen, S.D. Characterization of hop acids in spent brewer’s yeast from craft and multinational sources. J. Am. Soc. Brew. Chem. 2015, 73, 159–164. [Google Scholar] [CrossRef]
- Jaehrig, S.C.; Rohn, S.; Kroh, L.W.; Fleischer, L.-G.; Kurz, T. In Vitro Potential Antioxidant Activity of Saccharomyces cerevisiae Cell Walls. J. Agric. Food Chem. 2007, 55, 4710–4716. [Google Scholar] [CrossRef] [PubMed]
- Kofuji, K.; Aoki, A.; Tsubaki, K.; Konishi, M.; Isobe, T.; Murata, Y. Antioxidant Activity of β -Glucan. ISRN Pharm. 2012, 2012, 125864. [Google Scholar] [CrossRef] [PubMed]
Components (%) | BSY | S. cerevisiae | S. boulardii | |||
---|---|---|---|---|---|---|
WC | AR | WC | AR | WC | AR | |
Crude protein | 52.04 ± 1.98 c | 30.50 ± 0.21 a | 53.46 ± 2.43 b | 18.64 ± 0.06 c | 57.43 ± 2.71 a | 19.57 ± 0.38 b |
Carbohydrate | 28.80 ± 0.54 c | 53.13 ± 0.23 c | 38.87 ± 1.25 a | 67.17 ± 0.09 a | 33.65 ± 0.95 b | 64.65 ± 0.41 b |
Ash | 6.43 ± 0.04 c | 10.39 ± 0.06 a | 7.35 ± 0.04 b | 7.77 ± 0.01 c | 8.47 ± 0.07 a | 8.39 ± 0.04 b |
Components | BSY | S. cerevisiae | S. boulardii |
---|---|---|---|
Autolysate (%) (F1) | 39.67 ± 0.03 c | 55.06 ± 0.08 a | 50.82 ± 0.04 b |
Autolysate residue (%) (F2) | 53.11 ± 0.07 a | 43.83 ± 0.07 c | 44.99 ± 0.05 b |
β-glucan (μg/mg) | 346.21 ± 15.12 a | 284.58 ± 10.03 b | 268.53 ± 11.85 c |
Mannan (μg/mg) | 291.73 ± 5.75 a | 255.26 ± 4.76 b | 297.40 ± 10.91 a |
Chitin (μg/mg) | 3.96 ± 0.04 c | 13.68 ± 0.54 b | 25.63 ± 1.25 a |
Total (μg/mg) | 641.90 ± 6.28 a | 553.52 ± 4.66 c | 591.56 ± 2.32 b |
Cell wall % (on cell dry mass) | 34.09 ± 0.12 a | 24.25 ± 0.03 c | 26.61 ± 0.09 b |
Soluble polysaccharides (F3) | 33.62 ± 0.09 c | 40.76 ± 0.14 b | 42.97 ± 0.21 a |
Insoluble polysaccharides (F4) | 44.14 ± 0.18 a | 31.17 ± 0.26 c | 33.76 ± 0.23 b |
Polysaccharides | BSY | S. cerevisiae | S. boulardii |
---|---|---|---|
β-glucan | 201.80 ± 5.41 a | 87.89 ± 2.42 b | 56.21 ± 2.70 c |
Mannan | 493.11 ± 7.45 c | 596.25 ± 10.25 a | 573.75 ± 7.45 b |
Chitin | 5.99 ± 0.13 a | 4.70 ± 0.01 c | 4.74 ± 0.01 b |
Total | 700.90 ± 1.50 a | 688.84 ± 4.07 b | 634.70 ± 4.43 c |
Mannan: β-glucan | 70:30 | 86:14 | 90:10 |
Sample | Mw 1 | Mp 2 | DP 3 |
---|---|---|---|
BSY | 185.8 | 19.3 | 118.9 |
S. cerevisiae | 302.9 | 452.5 | 2793.2 |
S. boulardii | 261.7 | 405.3 | 2502.1 |
Samples | SOD Activity (%) | ABTS Scavenging µgTE/mg | DPPH Inhibition µgTE/mg | TPA mgGAE/g |
---|---|---|---|---|
BSY-SP | 76.35 ± 1.75 a | 192.38 ± 2.77 a | 535.01 ± 4.20 a | 81.19 ± 1.56 a |
SC-SP | 63.81 ± 1.25 b | 86.70± 4.93 b | 359.79 ± 2.26 b | 43.08 ± 1.69 b |
SB-SP | 62.55 ± 2.32 b | 78.99± 1.52 c | 306.54 ± 2.74 c | 49.63 ± 0.64 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.J.; Park, B.-R.; Chewaka, L.S. A Comparative Study of Composition and Soluble Polysaccharide Content between Brewer’s Spent Yeast and Cultured Yeast Cells. Foods 2024, 13, 1567. https://doi.org/10.3390/foods13101567
Lee HJ, Park B-R, Chewaka LS. A Comparative Study of Composition and Soluble Polysaccharide Content between Brewer’s Spent Yeast and Cultured Yeast Cells. Foods. 2024; 13(10):1567. https://doi.org/10.3390/foods13101567
Chicago/Turabian StyleLee, Hyun Ji, Bo-Ram Park, and Legesse Shiferaw Chewaka. 2024. "A Comparative Study of Composition and Soluble Polysaccharide Content between Brewer’s Spent Yeast and Cultured Yeast Cells" Foods 13, no. 10: 1567. https://doi.org/10.3390/foods13101567
APA StyleLee, H. J., Park, B. -R., & Chewaka, L. S. (2024). A Comparative Study of Composition and Soluble Polysaccharide Content between Brewer’s Spent Yeast and Cultured Yeast Cells. Foods, 13(10), 1567. https://doi.org/10.3390/foods13101567