Ultrasound-Assisted Nanoemulsion Loaded with Optimized Antibacterial Essential Oil Blend: A New Approach against Escherichia coli, Staphylococcus aureus, and Salmonella Enteritidis in Trout (Oncorhynchus mykiss) Fillets
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Nanoemulsion Preparation
2.3. Nanoemulsion Characterization
2.3.1. Drop Size, Polydispersity Index, and Zeta Potential (ζ-Potential)
2.3.2. Confocal Laser Scanning Microscopy (CLSM)
2.4. Antibacterial Activity
2.4.1. Bacterial Strain and Culture Conditions
2.4.2. Trout Fillet Preparation
2.4.3. Microbiological Analysis
2.5. Statistical Analysis
3. Results
3.1. Drop Size and Distribution
3.2. Antibacterial Activity of Nanoemulsions in Trout Fillets
4. Discussion
4.1. Drop Size and Distribution
4.2. Antibacterial Activity of Nanoemulsions in Trout Fillet
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orives, J.R.; Galvan, D.; Coppo, R.L.; Rodrigues, C.H.F.; Angilelli, K.G.; Borsato, D. Multiresponse Optimisation on Biodiesel Obtained through a Ternary Mixture of Vegetable Oil and Animal Fat: Simplex-Centroid Mixture Design Application. Energy Convers. Manag. 2014, 79, 398–404. [Google Scholar] [CrossRef]
- Fadil, M.; Fikri-Benbrahim, K.; Rachiq, S.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Haloui, T.; Farah, A. Combined Treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. Essential Oils against Salmonella typhimurium: Optimization of Antibacterial Activity by Mixture Design Methodology. Eur. J. Pharm. Biopharm. 2018, 126, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Ouedrhiri, W.; Balouiri, M.; Bouhdid, S.; Moja, S.; Chahdi, F.O.; Taleb, M.; Greche, H. Mixture Design of Origanum Compactum, Origanum majorana and Thymus serpyllum Essential Oils: Optimization of Their Antibacterial Effect. Ind. Crops Prod. 2016, 89, 1–9. [Google Scholar] [CrossRef]
- Torres Neto, L.; Monteiro, M.L.G.; Machado, M.A.M.; Galvan, D.; Conte Junior, C.A. An Optimization of Oregano, Thyme, and Lemongrass Essential Oil Blend to Simultaneous Inactivation of Relevant Foodborne Pathogens by Simplex–Centroid Mixture Design. Antibiotics 2022, 11, 1572. [Google Scholar] [CrossRef] [PubMed]
- Baj, T.; Kowalska, G.; Kowalski, R.; Szymańska, J.; Kai, G.; Coutinho, H.D.M.; Sieniawska, E. Synergistic Antioxidant Activity of Four—Component Mixture of Essential Oils: Basil, Cedarwood, Citronella and Thyme for the Use as Medicinal and Food Ingredient. Antioxidants 2023, 12, 577. [Google Scholar] [CrossRef] [PubMed]
- Torres Neto, L.; Monteiro, M.L.G.; da Silva, B.D.; Galvan, D.; Conte-Junior, C.A. Oil-in-Water Emulsion Loaded with Optimized Antioxidant Blend Improved the Shelf-Life of Trout (Oncorhynchus mykiss) Fillets: A Study with Simplex-Centroid Design. Sci. Rep. 2024, 14, 4810. [Google Scholar] [CrossRef] [PubMed]
- Chraibi, M.; Fadil, M.; Farah, A.; Lebrazi, S.; Fikri-Benbrahim, K. Antimicrobial Combined Action of Mentha pulegium, Ormenis mixta and Mentha piperita Essential Oils against S. aureus, E. coli and C. tropicalis: Application of Mixture Design Methodology. LWT 2021, 145, 111352. [Google Scholar] [CrossRef]
- Soulaimani, B.; Abbad, I.; Varoni, E.; Iriti, M.; Mezrioui, N.-E.; Hassani, L.; Abbad, A. Optimization of Antibacterial Activity of Essential Oil Mixture Obtained from Three Medicinal Plants: Evaluation of Synergism with Conventional Antibiotics and Nanoemulsion Effectiveness. S. Afr. J. Bot. 2022, 151, 900–908. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Y.; Bai, L.; Liao, X.; Liu, D.; Ding, T. Advances in Strategies to Assure the Microbial Safety of Food-Associated Ice. J. Futur. Foods 2023, 3, 115–126. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Available online: https://www.fao.org/3/cc0461en/online/cc0461en.html (accessed on 2 March 2024).
- Baptista, R.C.; Horita, C.N.; Sant’Ana, A.S. Natural Products with Preservative Properties for Enhancing the Microbiological Safety and Extending the Shelf-Life of Seafood: A Review. Food Res. Int. 2020, 127, 108762. [Google Scholar] [CrossRef]
- CDC. Foodborne Disease Outbreak Surveillance System. Available online: https://www.cdc.gov/fdoss/annual-reports/2017-report-highlights.html (accessed on 2 March 2024).
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.M.; Estevinho, B.N.; Rocha, F. Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. Food Bioprocess Technol. 2021, 14, 209–231. [Google Scholar] [CrossRef]
- Erkan, N. The Effect of Thyme and Garlic Oil on the Preservation of Vacuum-Packaged Hot Smoked Rainbow Trout (Oncorhynchus mykiss). Food Bioprocess Technol. 2012, 5, 1246–1254. [Google Scholar] [CrossRef]
- Vatavali, K.; Karakosta, L.; Nathanailides, C.; Georgantelis, D.; Kontominas, M.G. Combined Effect of Chitosan and Oregano Essential Oil Dip on the Microbiological, Chemical, and Sensory Attributes of Red Porgy (Pagrus pagrus) Stored in Ice. Food Bioprocess Technol. 2013, 6, 3510–3521. [Google Scholar] [CrossRef]
- Cai, L.; Cao, A.; Li, T.; Wu, X.; Xu, Y.; Li, J. Effect of the Fumigating with Essential Oils on the Microbiological Characteristics and Quality Changes of Refrigerated Turbot (Scophthalmus maximus) Fillets. Food Bioprocess Technol. 2015, 8, 844–853. [Google Scholar] [CrossRef]
- Eshaghi, R.; Mohsenzadeh, M.; Ayala-Zavala, J.F. Bio-Nanocomposite Active Packaging Films Based on Carboxymethyl Cellulose, Myrrh Gum, TiO2 Nanoparticles and Dill Essential Oil for Preserving Fresh-Fish (Cyprinus carpio) Meat Quality. Int. J. Biol. Macromol. 2024, 263, 129991. [Google Scholar] [CrossRef]
- Azizi, M.; Jahanbin, K.; Shariatifar, N. Evaluation of Whey Protein Coating Containing Nanoliposome Dill (Anethum graveolens L.) Essential Oil on Microbial, Physicochemical and Sensory Changes of Rainbow Trout Fish. Food Chem. X 2024, 21, 101110. [Google Scholar] [CrossRef] [PubMed]
- Yumnam, M.; Marak, P.R.; Gupta, A.K.; Rather, M.A.; Mishra, P. Effect of Pomelo Peel Essential Oil on the Storage Stability of a Few Selected Varieties of Freshwater Fish. J. Agric. Food Res. 2023, 11, 100472. [Google Scholar] [CrossRef]
- Ameur, A.; Bensid, A.; Ozogul, F.; Ucar, Y.; Durmus, M.; Kulawik, P.; Boudjenah-Haroun, S. Application of Oil-in-water Nanoemulsions Based on Grape and Cinnamon Essential Oils for Shelf-life Extension of Chilled Flathead Mullet Fillets. J. Sci. Food Agric. 2022, 102, 105–112. [Google Scholar] [CrossRef]
- Monteiro, M.L.G.; Rosário, D.K.A.; de Carvalho, A.P.A.; Conte-Junior, C.A. Application of UV-C Light to Improve Safety and Overall Quality of Fish: A Systematic Review and Meta-Analysis. Trends Food Sci. Technol. 2021, 116, 279–289. [Google Scholar] [CrossRef]
- UN The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 2 March 2024).
- Hossen, M.A.; Shimul, I.M.; Sameen, D.E.; Rasheed, Z.; Dai, J.; Li, S.; Qin, W.; Tang, W.; Chen, M.; Liu, Y. Essential Oil–Loaded Biopolymeric Particles on Food Industry and Packaging: A Review. Int. J. Biol. Macromol. 2024, 265, 130765. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G. Essential Oil Nanoemulsions as Antimicrobial Agents in Food. J. Biotechnol. 2016, 233, 106–120. [Google Scholar] [CrossRef]
- Nowak, A.; Kalemba, D.; Krala, L.; Piotrowska, M.; Czyzowska, A. The Effects of Thyme (Thymus vulgaris) and Rosemary (Rosmarinus officinalis) Essential Oils on Brochothrix thermosphacta and on the Shelf Life of Beef Packaged in High-Oxygen Modified Atmosphere. Food Microbiol. 2012, 32, 212–216. [Google Scholar] [CrossRef]
- Kalemba, D.; Kunicka, A. Antibacterial and Antifungal Properties of Essential Oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef]
- Galvan, D.; Effting, L.; Torres Neto, L.; Conte-Junior, C.A. An Overview of Research of Essential Oils by Self-organizing Maps: A Novel Approach for Meta-analysis Study. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3136–3163. [Google Scholar] [CrossRef]
- Markets, M. Essential Oil Market. Available online: https://www.marketsandmarkets.com/Market-Reports/essential-oil-market-119674487.html (accessed on 17 February 2024).
- Torres Neto, L.; Monteiro, M.L.G.; Mutz, Y.d.S.; Tonon, R.V.; Conte-Junior, C.A. Nanoemulsification of Essential Oil Blend by Ultrasound: Optimization of Physicochemical, Antioxidant Properties, and Activity against Escherichia coli. Food Bioprocess Technol. 2023. [Google Scholar] [CrossRef]
- Alves de Aguiar Bernardo, Y.; Kaic Alves do Rosario, D.; Adam Conte-Junior, C. Ultrasound on Milk Decontamination: Potential and Limitations Against Foodborne Pathogens and Spoilage Bacteria. Food Rev. Int. 2023, 39, 320–333. [Google Scholar] [CrossRef]
- da Silva, B.D.; do Rosário, D.K.A.; Conte-Junior, C.A. Can droplet size influence antibacterial activity in ultrasound-prepared essential oil nanoemulsions? Crit. Rev. Food Sci. Nutr. 2022, 63, 12567–12577. [Google Scholar] [CrossRef]
- Yang, Z.; He, Q.; Ismail, B.B.; Hu, Y.; Guo, M. Ultrasonication Induced Nano-Emulsification of Thyme Essential Oil: Optimization and Antibacterial Mechanism against Escherichia coli. Food Control 2022, 133, 108609. [Google Scholar] [CrossRef]
- da Silva, B.D.; do Rosário, D.K.A.; Neto, L.T.; Lelis, C.A.; Conte-Junior, C.A. Antioxidant, Antibacterial and Antibiofilm Activity of Nanoemulsion-Based Natural Compound Delivery Systems Compared with Non-Nanoemulsified Versions. Foods 2023, 12, 1901. [Google Scholar] [CrossRef] [PubMed]
- Hąc-Wydro, K.; Flasiński, M.; Romańczuk, K. Essential Oils as Food Eco-Preservatives: Model System Studies on the Effect of Temperature on Limonene Antibacterial Activity. Food Chem. 2017, 235, 127–135. [Google Scholar] [CrossRef]
- da Silva, B.D.; do Rosário, D.K.A.; de Aguiar Bernardo, Y.A.; Conte-Junior, C.A. Improvement of Physicochemical and Antibacterial Properties of Nanoemulsified Origanum vulgare Essential Oil Through Optimization of Ultrasound Processing Variables. Food Bioprocess Technol. 2023, 16, 2016–2026. [Google Scholar] [CrossRef]
- Jiménez, M.; Domínguez, J.A.; Pascual-Pineda, L.A.; Azuara, E.; Beristain, C.I. Elaboration and Characterization of O/W Cinnamon (Cinnamomum zeylanicum) and Black Pepper (Piper nigrum) Emulsions. Food Hydrocoll. 2018, 77, 902–910. [Google Scholar] [CrossRef]
- Bianchin, M.D.; Külkamp-Guerreiro, I.C.; de Oliveira, C.P.; Contri, R.V.; Guterres, S.S.; Pohlmann, A.R. Radar Charts Based on Particle Sizing as an Approach to Establish the Fingerprints of Polymeric Nanoparticles in Aqueous Formulations. J. Drug Deliv. Sci. Technol. 2015, 30, 180–189. [Google Scholar] [CrossRef]
- Chung, C.; Koo, C.K.W.; Sher, A.; Fu, J.-T.R.; Rousset, P.; McClements, D.J. Modulation of Caseinate-Stabilized Model Oil-in-Water Emulsions with Soy Lecithin. Food Res. Int. 2019, 122, 361–370. [Google Scholar] [CrossRef]
- Sharif, H.R.; Abbas, S.; Majeed, H.; Safdar, W.; Shamoon, M.; Khan, M.A.; Shoaib, M.; Raza, H.; Haider, J. Formulation, Characterization and Antimicrobial Properties of Black Cumin Essential Oil Nanoemulsions Stabilized by OSA Starch. J. Food Sci. Technol. 2017, 54, 3358–3365. [Google Scholar] [CrossRef]
- Monteiro, M.L.G.; Torres Neto, L.; Mutz, Y.d.S.; da Silva, C.R.; Cardoso, A.C.C.; Conte-Junior, C.A. Optimized UVC-LED Condition to Improve the Shelf Life of Vacuum-Packed Refrigerated Stored Rainbow Trout (Oncorhynchus mykiss) Fillets. Food Control 2024, 156, 110141. [Google Scholar] [CrossRef]
- Baranyi, J.; Roberts, T.A. A Dynamic Approach to Predicting Bacterial Growth in Food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Alves, M.P.; Scarrone, A.L.; Santos, M.; Pohlmann, A.R.; Guterres, S.S. Human Skin Penetration and Distribution of Nimesulide from Hydrophilic Gels Containing Nanocarriers. Int. J. Pharm. 2007, 341, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Nobbmann, U. D90, D50, D10, and Span—For DLS? Available online: https://www.materials-talks.com/d90-d50-d10-and-span-for-dls/ (accessed on 4 December 2023).
- Malvern Intensity—Volume—Number. Available online: https://www.malvernpanalytical.com/en/learn/knowledge-center/technical-notes/tn101104intensityvolumenumber (accessed on 4 December 2023).
- Rashed, M.M.A.; Ghaleb, A.D.S.; Li, J.; Al-Hashedi, S.A.; Rehman, A. Functional-Characteristics of Zanthoxylum schinifolium (Siebold & Zucc.) Essential Oil Nanoparticles. Ind. Crops Prod. 2021, 161, 113192. [Google Scholar] [CrossRef]
- Hasheminya, S.-M.; Dehghannya, J. Development and Characterization of Froriepia subpinnata (Ledeb.) Baill Essential Oil and Its Nanoemulsion Using Ultrasound. Food Bioprocess Technol. 2022, 15, 2531–2546. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical Characterization of Lemongrass Essential Oil–Alginate Nanoemulsions: Effect of Ultrasound Processing Parameters. Food Bioprocess Technol. 2013, 6, 2439–2446. [Google Scholar] [CrossRef]
- Raviadaran, R.; Chandran, D.; Shin, L.H.; Manickam, S. Optimization of Palm Oil in Water Nano-Emulsion with Curcumin Using Microfluidizer and Response Surface Methodology. LWT 2018, 96, 58–65. [Google Scholar] [CrossRef]
- McClements, D.J. Advances in Edible Nanoemulsions: Digestion, Bioavailability, and Potential Toxicity. Prog. Lipid Res. 2021, 81, 101081. [Google Scholar] [CrossRef] [PubMed]
- Hemmatkhah, F.; Zeynali, F.; Almasi, H. Encapsulated Cumin Seed Essential Oil-Loaded Active Papers: Characterization and Evaluation of the Effect on Quality Attributes of Beef Hamburger. Food Bioprocess Technol. 2020, 13, 533–547. [Google Scholar] [CrossRef]
- McDonald, K.; Sun, D.-W. Predictive Food Microbiology for the Meat Industry: A Review. Int. J. Food Microbiol. 1999, 52, 1–27. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.D.; do Rosário, D.K.A.; Weitz, D.A.; Conte-Junior, C.A. Essential Oil Nanoemulsions: Properties, Development, and Application in Meat and Meat Products. Trends Food Sci. Technol. 2022, 121, 1–13. [Google Scholar] [CrossRef]
- Prakash, A.; Baskaran, R.; Paramasivam, N.; Vadivel, V. Essential Oil Based Nanoemulsions to Improve the Microbial Quality of Minimally Processed Fruits and Vegetables: A Review. Food Res. Int. 2018, 111, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, F.; Nabizadeh, S.; Kamankesh, M.; Ghasemi, J.B.; Mohammadi, A. Recent Advances in Natural Product-Based Nanoemulsions as Promising Substitutes for Hazardous Synthetic Food Additives: A New Revolution in Food Processing. Food Bioprocess Technol. 2023, 17, 1087–1108. [Google Scholar] [CrossRef]
- Raji, F.; Khanzadi, S.; Hashemi, M.; Azizzadeh, M. Effect of Chitosan Coating Nano-Emulsion Containing Zataria multiflora and Bunium persicum Essential Oils on Escherichia coli O157:H7 in Vacuum-Packed Rainbow Trout Fillet. J. Human Environ. Heal. Promot. 2019, 5, 21–25. [Google Scholar] [CrossRef]
- Kazemeini, H.; Azizian, A.; Shahavi, M.H. Effect of Chitosan Nano-Gel/Emulsion Containing Bunium persicum Essential Oil and Nisin as an Edible Biodegradable Coating on Escherichia coli O157:H7 in Rainbow Trout Fillet. J. Water Environ. Nanotechnol. 2019, 4, 343–349. [Google Scholar] [CrossRef]
- Stratakos, A.C.; Grant, I.R. Evaluation of the Efficacy of Multiple Physical, Biological and Natural Antimicrobial Interventions for Control of Pathogenic Escherichia coli on Beef. Food Microbiol. 2018, 76, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; Valdramidis, V.P.; O’ Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of Natural Antimicrobials for Food Preservation. J. Agric. Food Chem. 2009, 57, 5987–6000. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.D.; Bernardes, P.C.; Pinheiro, P.F.; Fantuzzi, E.; Roberto, C.D. Chemical Composition, Extraction Sources and Action Mechanisms of Essential Oils: Natural Preservative and Limitations of Use in Meat Products. Meat Sci. 2021, 176, 108463. [Google Scholar] [CrossRef]
- Possas, A.; Posada-Izquierdo, G.D.; Pérez-Rodríguez, F.; Valero, A.; García-Gimeno, R.M.; Duarte, M.C.T. Application of Predictive Models to Assess the Influence of Thyme Essential Oil on Salmonella Enteritidis Behaviour during Shelf Life of Ready-to-Eat Turkey Products. Int. J. Food Microbiol. 2017, 240, 40–46. [Google Scholar] [CrossRef]
Escherichia coli | Staphylococcus aureus | Salmonella Enteritidis | ||||
---|---|---|---|---|---|---|
Treatments * | Lag Phase # | µmax # | Lag Phase # | µmax # | Lag Phase # | µmax # |
Control | - | 0.035 ± 0.01 a | 5.434 ± 0.34 a | 0.368 ± 0.03 a | - | 0.071 ± 0.00 a |
NE0.5 | 0.022 ± 0.00 a | 6.043 ± 0.33 a | 0.304 ± 0.03 a | 0.031 ± 0.00 b | ||
NE1 | −0.022 ± 0.01 b | 6.159 ± 0.24 a | 0.298 ± 0.01 a | 0.025 ± 0.00 b | ||
NE2 | −0.040 ± 0.01 b | 0.000 ± 0.00 b | 0.057 ± 0.01 b | −0.018 ± 0.00 c |
Variables # | Salmonella Enteritidis | Escherichia coli | Staphylococcus aureus |
---|---|---|---|
Di (10) | −0.996 | −0.872 | 0.877 |
Di (50) | −0.999 * | −0.896 | 0.844 |
Di (90) | −0.946 | −0.733 | 0.972 |
Dn (10) | −0.791 | −0.475 | 0.763 |
Dn (50) | −0.789 | −0.472 | 0.761 |
Dn (90) | −0.787 | −0.470 | 0.759 |
Dv (10) | −0.798 | −0.484 | 0.770 |
Dv (50) | −0.829 | −0.532 | 0.805 |
Dv (90) | −0.970 | −0.787 | 0.975 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres Neto, L.; Monteiro, M.L.G.; da Silva, B.D.; Machado, M.A.M.; Mutz, Y.d.S.; Conte-Junior, C.A. Ultrasound-Assisted Nanoemulsion Loaded with Optimized Antibacterial Essential Oil Blend: A New Approach against Escherichia coli, Staphylococcus aureus, and Salmonella Enteritidis in Trout (Oncorhynchus mykiss) Fillets. Foods 2024, 13, 1569. https://doi.org/10.3390/foods13101569
Torres Neto L, Monteiro MLG, da Silva BD, Machado MAM, Mutz YdS, Conte-Junior CA. Ultrasound-Assisted Nanoemulsion Loaded with Optimized Antibacterial Essential Oil Blend: A New Approach against Escherichia coli, Staphylococcus aureus, and Salmonella Enteritidis in Trout (Oncorhynchus mykiss) Fillets. Foods. 2024; 13(10):1569. https://doi.org/10.3390/foods13101569
Chicago/Turabian StyleTorres Neto, Luiz, Maria Lucia Guerra Monteiro, Bruno Dutra da Silva, Maxsueli Aparecida Moura Machado, Yhan da Silva Mutz, and Carlos Adam Conte-Junior. 2024. "Ultrasound-Assisted Nanoemulsion Loaded with Optimized Antibacterial Essential Oil Blend: A New Approach against Escherichia coli, Staphylococcus aureus, and Salmonella Enteritidis in Trout (Oncorhynchus mykiss) Fillets" Foods 13, no. 10: 1569. https://doi.org/10.3390/foods13101569
APA StyleTorres Neto, L., Monteiro, M. L. G., da Silva, B. D., Machado, M. A. M., Mutz, Y. d. S., & Conte-Junior, C. A. (2024). Ultrasound-Assisted Nanoemulsion Loaded with Optimized Antibacterial Essential Oil Blend: A New Approach against Escherichia coli, Staphylococcus aureus, and Salmonella Enteritidis in Trout (Oncorhynchus mykiss) Fillets. Foods, 13(10), 1569. https://doi.org/10.3390/foods13101569