Discrimination of New and Aged Seeds Based on On-Line Near-Infrared Spectroscopy Technology Combined with Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Spectral Data Acquisition
2.3. Pretreatment of Spectra
2.4. Effective Wavelength Selection Algorithm
2.5. Model Construction
2.6. Software
3. Results and Discussion
3.1. Features of Spectra
3.2. Classification Results Using Full Spectra
3.3. Classification Results Based on Effective Wavelengths
3.4. Wavelength Selection Analysis of the Optimal Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, D.; Zhu, Q.; Huang, M.; Guo, Y.; Qin, J. Model updating for the classification of different varieties of maize seeds from different years by hyperspectral imaging coupled with a pre-labeling method. Comput. Electron. Agric. 2017, 142, 1–8. [Google Scholar] [CrossRef]
- Wang, B.; Deng, J.; Jiang, H. Markov transition field combined with convolutional neural network improved the predictive performance of near-infrared spectroscopy models for determination of aflatoxin B1 in maize. Foods 2022, 11, 2210. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Xie, J.; Wang, N.; Pan, L.; Song, T.; Zhang, Y.; Xu, X. NIR spectrometer for non-destruction measurement of oil contents in a corn seed. Spectrosc. Spectr. Anal. 2005, 25, 1807–1809. [Google Scholar]
- Ahmad, F.; Adeel, M.; Qiu, B.; Ma, J.; Shoaib, M.; Shakoor, A.; Chandio, F.A. Sowing uniformity of bed-type pneumatic maize planter at various seedbed preparation levels and machine travel speeds. Int. J. Agric. Biol. Eng. 2021, 14, 165–171. [Google Scholar] [CrossRef]
- Mcdonald, M.B. Seed deterioration: Physiology, repair and assessment. Seed Sci. Technol. 1999, 27, 177–237. [Google Scholar]
- Wang, Z.; Huang, W.; Tian, X.; Long, Y.; Li, L.; Fan, S. Rapid and Non-destructive Classification of New and Aged Maize Seeds Using Hyperspectral Image and Chemometric Methods. Front. Plant Sci. 2022, 13, 849495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fang, W.; Xu, C.; Xiong, A.; Zhang, M.; Goebel, R.; Bo, G. Current Optical Sensing Applications in Seeds Vigor Determination. Agronomy 2023, 13, 1167. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, Z.; Li, M.; Yuan, W.; Zhang, Z.; Ning, J. pH indicator-based sensor array in combination with hyperspectral imaging for intelligent evaluation of withering degree during processing of black tea. Spectr. Acta Pt. A-Mol. Biomol. Spectr. 2022, 271, 120959. [Google Scholar] [CrossRef]
- Zhang, L.; An, D.; Wei, Y.; Liu, J.; Wu, J. Prediction of oil content in single maize kernel based on hyperspectral imaging and attention convolution neural network. Food Chem. 2022, 395, 133563. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, L.; Zhou, X.; Yao, K.; Tian, Y.; Nirere, A. A method of information fusion for identification of rice seed varieties based on hyperspectral imaging technology. J. Food Process Eng. 2021, 44, 13797. [Google Scholar] [CrossRef]
- Ambrose, A.; Kandpal, L.M.; Kim, M.S.; Lee, W.H.; Cho, B.K. High speed measurement of corn seed viability using hyperspectral imaging. Infrared Phys. Technol. 2016, 75, 173–179. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, W.; Fan, S.; Zhao, F.; Liang, D.; Tian, X. Non-destructive discrimination of the variety of sweet maize seeds based on hyperspectral image coupled with wavelength selection algorithm. Infrared Phys. Technol. 2020, 109, 103418. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Y.; Yan, T.; Bai, X.; Xiao, Q.; Gao, P.; Li, M.; Huang, W.; Bao, Y.; He, Y. Application of near-infrared hyperspectral imaging for variety identification of coated maize kernels with deep learning. Infrared Phys. Technol. 2020, 111, 103550. [Google Scholar] [CrossRef]
- Fan, Y.; An, T.; Wang, Q.; Yang, G.; Huang, W.; Wang, Z.; Zhao, C.; Tian, X. Non-destructive detection of single-seed viability in maize using hyperspectral imaging technology and multi-scale 3D convolutional neural network. Front. Plant Sci. 2023, 14, 1248598. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.B.; Lozano, V.A. Simultaneous determination of quality parameters in yerba mate (Ilex paraguariensis) samples by application of near-infrared (NIR) spectroscopy and partial least squares (PLS). LWT-Food Sci. Technol. 2020, 126, 109290. [Google Scholar] [CrossRef]
- Zareef, M.; Chen, Q.; Hassan, M.M.; Arslan, M.; Hashim, M.M.; Ahmad, W.; Kutsanedzie, F.Y.H.; Agyekum, A.A. An Overview on the Applications of Typical Non-linear Algorithms Coupled with NIR Spectroscopy in Food Analysis. Food Eng. Rev. 2020, 12, 173–190. [Google Scholar]
- Wang, Y.; Peng, Y.; Zhuang, Q.; Zhao, X. Feasibility analysis of NIR for detecting sweet corn seeds vigor. J. Cereal Sci. 2020, 93, 102977. [Google Scholar] [CrossRef]
- Liu, W.; Luo, B.; Kang, K.; Xia, Y.; Zhang, H. Non-destructive detection of single corn seed vigor based on visible/near-infrared spatially resolved spectroscopy combined with chemometrics. Spectr. Acta Part A-Mol. Biomol. Spectr. 2024, 312, 124089. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, W.; Li, J.; Liu, S.; Fan, S. Assessment of protein content and insect infestation of maize seeds based on on-line near-infrared spectroscopy and machine learning. Comput. Electron. Agric. 2023, 211, 107969. [Google Scholar] [CrossRef]
- Agelet, L.E.; Armstrong, P.R.; Clariana, I.R.; Hurburgh, C.R. Measurement of Single Soybean Seed Attributes by Near-Infrared Technologies. A Comparative Study. J. Agric. Food Chem. 2012, 60, 8314–8322. [Google Scholar] [CrossRef]
- Rinnan, Å.; Berg, F.v.d.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef]
- Fan, S.; Li, J.; Xia, Y.; Tian, X.; Guo, Z.; Huang, W. Long-term evaluation of soluble solids content of apples with biological variability by using near-infrared spectroscopy and calibration transfer method. Postharvest Biol. Technol. 2019, 151, 79–87. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar]
- Zhang, Y.; Wang, Z.; Tian, X.; Yang, X.; Cai, Z.; Li, J. Online analysis of watercore apples by considering different speeds and orientations based on Vis/NIR full-transmittance spectroscopy. Infrared Phys. Technol. 2022, 122, 104090. [Google Scholar] [CrossRef]
- Cai, W.; Li, Y.; Shao, X. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemom. Intell. Lab. Syst. 2008, 90, 188–194. [Google Scholar] [CrossRef]
- Li, J.B.; Huang, W.Q.; Chen, L.P.; Fan, S.X.; Zhang, B.H.; Guo, Z.M.; Zhao, C.J. Variable Selection in Visible and Near-Infrared Spectral Analysis for Noninvasive Determination of Soluble Solids Content of ‘Ya’ Pear. Food Anal. Meth. 2014, 7, 1891–1902. [Google Scholar] [CrossRef]
- Deng, B.C.; Yun, Y.H.; Cao, D.S.; Yin, Y.L.; Wang, W.T.; Lu, H.M.; Luo, Q.Y.; Liang, Y.Z. A bootstrapping soft shrinkage approach for variable selection in chemical modeling. Anal. Chim. Acta 2016, 908, 63–74. [Google Scholar] [CrossRef]
- Yun, Y.H.; Li, H.D.; Deng, B.C.; Cao, D.S. An overview of variable selection methods in multivariate analysis of near-infrared spectra. TrAC Trends Anal. Chem. 2019, 113, 102–115. [Google Scholar]
- Sun, J.T.; Ma, B.X.; Dong, J.; Zhu, R.G.; Zhang, R.Y.; Jiang, W. Detection of internal qualities of hami melons using hyperspectral imaging technology based on variable selection algorithms. J. Food Process Eng. 2017, 40, 12496. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Wu, D.; Shi, H.; Wang, S.; He, Y.; Bao, Y.; Liu, K. Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Anal. Chim. Acta 2012, 726, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.H.; Sun, D.W. Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT-Food Sci. Technol. 2015, 62, 1060–1068. [Google Scholar] [CrossRef]
- Cai, Z.; Huang, W.; Wang, Q.; Li, J. Detection of early decayed oranges by structured-illumination reflectance imaging coupling with texture feature classification models. Front. Plant Sci. 2022, 13, 952942. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Li, H.; Xu, Q.; Liang, Y. libPLS: An integrated library for partial least squares regression and linear discriminant analysis. Chemometr. Intell. Lab. Syst. 2018, 176, 34–43. [Google Scholar] [CrossRef]
- Badaro, A.T.; Morimitsu, F.L.; Ferreira, A.R.; Clerici, M.T.P.S.; Barbin, D.F. Identification of fiber added to semolina by near infrared (NIR) spectral techniques. Food Chem. 2019, 289, 195–203. [Google Scholar] [CrossRef]
- Marques, A.S.; Castro, J.N.F.; Costa, F.J.; Neto, R.M.; Lima, K.M.G. Near-infrared spectroscopy and variable selection techniques to discriminate Pseudomonas aeruginosa strains in clinical samples. Microchem. J. 2016, 124, 306–310. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, Y.; Na, R.; Mi, C.; Zhu, S.; He, Y.; Zhang, C. Variety identification of oat seeds using hyperspectral imaging: Investigating the representation ability of deep convolutional neural network. RSC Adv. 2019, 9, 12635–12644. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, S.; Zhang, C.; Bao, Y.; Feng, X.; He, Y. Identification of Maize Kernel Vigor under Different Accelerated Aging Times Using Hyperspectral Imaging. Molecules 2018, 23, 3078. [Google Scholar] [CrossRef]
- Westad, F.; Schmidt, A.; Kermit, M. Incorporating chemical band-assignment in near infrared spectroscopy regression models. J. Near Infrared Spec. 2008, 16, 265–273. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Qiao, X.; Zhuang, Q. Discriminant analysis and comparison of corn seed vigor based on multiband spectrum. Comput. Electron. Agric. 2021, 190, 106444. [Google Scholar] [CrossRef]
Sample Class | No. of Samples | Training Set | Prediction Set | Assigned Class |
---|---|---|---|---|
Seeds harvested in 2018 | 200 | 160 | 40 | −1 |
Seeds harvested in 2021 | 200 | 160 | 40 | 1 |
Models | Preprocessing Methods | (γ, σ2) | LVs | K | Hidden Neurons | Classification Accuracy of Training Set (%) | Classification Accuracy of Prediction Set (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 2021 | Total | 2018 | 2021 | Total | ||||||
LS-SVM | Raw | 59,845.85; 14,662.89 | 100.00 | 99.38 | 99.69 | 82.50 | 87.50 | 85.00 | |||
SNV | 18,298.45; 11,9622.43 | 98.75 | 100.00 | 99.38 | 82.50 | 85.00 | 83.75 | ||||
MSC | 1280.47; 43,116.50 | 95.00 | 95.63 | 95.31 | 85.00 | 87.50 | 86.25 | ||||
Norm | 4062.37; 7016.89 | 100.00 | 100.00 | 100.00 | 92.50 | 87.50 | 90.00 | ||||
SGS | 9440.09; 317.76 | 100.00 | 100.00 | 100.00 | 97.50 | 80.00 | 88.75 | ||||
S-G-1st | 91.37; 4736.06 | 93.13% | 92.50 | 92.81 | 77.50 | 80.00 | 78.75 | ||||
S-G-2nd | 10,870.69; 52,589.62 | 97.50 | 97.50 | 97.50 | 77.50 | 67.50 | 72.50 | ||||
PLSDA | Raw | 9 | 98.13 | 97.50 | 97.81 | 87.50 | 85.00 | 86.25 | |||
SNV | 7 | 98.13 | 93.75 | 95.94 | 90.00 | 90.00 | 90.00 | ||||
MSC | 8 | 98.75 | 97.50 | 98.13 | 90.00 | 85.00 | 87.50 | ||||
Norm | 8 | 98.13 | 95.00 | 96.56 | 90.00 | 92.50 | 91.25 | ||||
SGS | 7 | 86.88 | 87.50 | 87.19 | 90.00 | 85.00 | 87.50 | ||||
S-G-1st | 5 | 96.88 | 98.13 | 97.50 | 70.00 | 75.00 | 72.50 | ||||
S-G-2nd | 10 | 100.00 | 100.00 | 100.00 | 70.00 | 77.50 | 73.75 | ||||
KNN | Raw | 4 | 87.50 | 69.38 | 78.44 | 77.50 | 62.50 | 70.00 | |||
SNV | 10 | 73.75 | 69.38 | 71.56 | 65.00 | 67.50 | 66.25 | ||||
MSC | 5 | 74.38 | 73.75 | 74.06 | 72.50 | 67.50 | 70.00 | ||||
Norm | 8 | 93.75 | 92.50 | 93.13 | 90.00 | 85.00 | 87.50 | ||||
SGS | 6 | 93.75 | 95.63 | 94.69 | 90.00 | 82.50 | 86.25 | ||||
S-G-1st | 1 | 100.00 | 100.00 | 100.00 | 65.00 | 70.00 | 67.50 | ||||
S-G-2nd | 5 | 73.13 | 75.00 | 74.06 | 67.50 | 57.50 | 62.50 | ||||
ELM | Raw | 140 | 85.13 | 83.70 | 84.41 | 73.40 | 68.75 | 71.08 | |||
SNV | 60 | 81.25 | 81.25 | 81.25 | 77.50 | 85.00 | 81.25 | ||||
MSC | 100 | 86.25 | 82.50 | 84.38 | 82.50 | 80.00 | 81.25 | ||||
Norm | 90 | 100.00 | 100.00 | 100.00 | 87.50 | 92.50 | 90.00 | ||||
SGS | 110 | 98.13 | 99.38 | 98.75 | 92.50 | 82.50 | 87.50 | ||||
S-G-1st | 50 | 80.00 | 77.50 | 78.75 | 77.50 | 82.50 | 80.00 | ||||
S-G-2nd | 60 | 80.63 | 78.75 | 79.69 | 72.50 | 70.00 | 71.25 |
Model | No. of Wavelengths | LVs | Classification Accuracy of Training Set (%) | Classification Accuracy of Prediction Set (%) | ||||
---|---|---|---|---|---|---|---|---|
2018 | 2021 | Total | 2018 | 2021 | Total | |||
MC-UVE-PLS-DA | 140 | 8 | 96.88 | 96.25 | 96.56 | 90.00 | 82.50 | 86.25 |
CARS-PLS-DA | 48 | 7 | 93.13 | 92.50 | 92.81 | 82.50 | 80.00 | 81.25 |
BOSS-PLS-DA | 107 | 7 | 96.88 | 95.00 | 95.94 | 80.00 | 77.50 | 78.75 |
SPA-PLS-DA | 6 | 6 | 61.25 | 71.88 | 66.56 | 67.50 | 72.50 | 70.00 |
MC-UVE-SPA-PLS-DA | 4 | 4 | 59.38 | 73.13 | 66.25 | 62.50 | 72.50 | 67.50 |
MC-UVE-BOSS-PLS-DA | 93 | 8 | 95.63 | 94.38 | 95.00 | 85.00 | 92.50 | 88.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Fan, S.; Zuo, M.; Zhang, B.; Zhu, Q.; Kong, J. Discrimination of New and Aged Seeds Based on On-Line Near-Infrared Spectroscopy Technology Combined with Machine Learning. Foods 2024, 13, 1570. https://doi.org/10.3390/foods13101570
Zhu Y, Fan S, Zuo M, Zhang B, Zhu Q, Kong J. Discrimination of New and Aged Seeds Based on On-Line Near-Infrared Spectroscopy Technology Combined with Machine Learning. Foods. 2024; 13(10):1570. https://doi.org/10.3390/foods13101570
Chicago/Turabian StyleZhu, Yanqiu, Shuxiang Fan, Min Zuo, Baohua Zhang, Qingzhen Zhu, and Jianlei Kong. 2024. "Discrimination of New and Aged Seeds Based on On-Line Near-Infrared Spectroscopy Technology Combined with Machine Learning" Foods 13, no. 10: 1570. https://doi.org/10.3390/foods13101570
APA StyleZhu, Y., Fan, S., Zuo, M., Zhang, B., Zhu, Q., & Kong, J. (2024). Discrimination of New and Aged Seeds Based on On-Line Near-Infrared Spectroscopy Technology Combined with Machine Learning. Foods, 13(10), 1570. https://doi.org/10.3390/foods13101570