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Abstract: The harvest year of maize seeds has a significant impact on seed vitality and maize
yield. Therefore, it is vital to identify new seeds. In this study, an on-line near-infrared (NIR)
spectra collection device (899–1715 nm) was designed and employed for distinguishing maize seeds
harvested in different years. Compared with least squares support vector machine (LS-SVM), k-
nearest neighbor (KNN), and extreme learning machine (ELM), the partial least squares discriminant
analysis (PLS-DA) model has the optimal recognition performance for maize seed harvest years. Six
different preprocessing methods, including Savitzky–Golay smoothing (SGS), standard normal variate
transformation (SNV), multiplicative scatter correction (MSC), Savitzky–Golay 1 derivative (SG-D1),
Savitzky–Golay 2 derivative (SG-D2), and normalization (Norm), were used to improve the quality
of the spectra. The Monte Carlo cross-validation uninformative variable elimination (MC-UVE),
competitive adaptive reweighted sampling (CARS), bootstrapping soft shrinkage (BOSS), successive
projections algorithm (SPA), and their combinations were used to obtain effective wavelengths and
decrease spectral dimensionality. The MC-UVE-BOSS-PLS-DA model achieved the classification
with an accuracy of 88.75% using 93 features based on Norm preprocessed spectral data. This study
showed that the self-designed NIR collection system could be used to identify the harvested years of
maize seed.

Keywords: maize seeds; on-line assessment; NIR spectral; effective wavelength selection

1. Introduction

Maize (Zea mays L.) is one of the indispensable food crops for human beings and
is extensively cultivated worldwide. Maize is a vital raw material for the chemical and
medical and health industries, as well as an essential feed source for animal aquaculture
and husbandry [1,2]. Moreover, maize has various biological activities [3]. The quality
of seed is crucial to agricultural production. High-quality maize seeds not only increase
yields and ensure the consistency of plant growth, but are also conducive to using drones
to conduct emasculation, pesticide spraying, and other operations [4]. The quality of seed
can be determined by its physicochemical properties or germination ability. The nutrition
of the maize seeds will be lost with the extension of the storage time, resulting in a low
germination rate and weak seedlings [5]. The newly harvested seeds have high vigor,
presenting a high germination rate. Therefore, the seedlings of high-quality seeds tend to
be strong and healthy.

The traditional methods for inspecting the freshness of maize seeds include manual
observation and chemical analysis [6]. The former requires observing the glossiness of
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the seed surface, while the latter requires soaking the maize seeds in red ink solution and
examining the color of the embryo. However, these methods have disadvantages such as
being time-consuming and susceptible to subjective influence, making them unsuitable for
rapid maize seed assessment. The promotion of single seed sowing technology in China has
put forward higher requirements for seed quality. In order to provide high-quality seeds
for cultivation, it is necessary to develop a non-destructive, accurate, and rapid method
for identifying aged maize seeds before seeding. Therefore, the technique of the on-line
assessment of maize seed, which is used for evaluating and sorting maize seed according
to quality at high speed, has enjoyed a great deal of attention from international machinery
companies and researchers.

With the storage time extension, the internal protein, starch, fat, and cellulose compo-
nents in seeds will change, resulting in the decline of the gemination rate. These substances
are rich in hydrogen-containing groups such as C-H, O-H, and N-H [7], which can be char-
acterized and identified by spectral technologies. Hyperspectral imaging technology has
been widely used in seed quality assessment [8–10]. Ambrose et al. [11] used hyperspectral
imaging technology to distinguish aged and normal corn seeds. The results showed that
the classification accuracy for the calibration and prediction set were 97.6% and 95.6%,
respectively. Zhou et al. [12] extracted visible and near-infrared spectral information from
hyperspectral images of nine varieties of sweet corn seeds, which were used to build seven
classifiers. The support vector machine SVM model developed using feature wavelengths
selected by competitive adaptive reweighted sampling (CARS) obtained the optimal clas-
sification results with accuracies of 94.86% and 94.07% for germ and endosperm sides,
respectively. Zhang et al. [13] applied the fused features of near-infrared hyperspectral
imaging to establish classification models to identify the varieties of coated maize kernels
and achieved a classification accuracy of over 90%. Wang et al. [6] identified maize seeds
harvested in different years by using spectra from the endosperm side, embryo side, and
both sides. Fan et al. [14] constructed a YOLOv7 model based on the spectral and image
information of maize seeds, obtaining a classification accuracy of 99.7% for maize seed
germination. The studies stated above indicated that hyperspectral imaging technology
is a powerful tool for maize seed quality assessment. However, the time-consuming ac-
quisition of hyperspectral images with high dimensionality and the high cost of spectral
cameras pose great challenges for fast and real-time assessment, which has hindered the
development of on-line inspection systems. Therefore, hyperspectral imaging technologies
have mostly been used in lab conditions for fundamental research.

In comparison to hyperspectral imaging technology, the advantages of traditional
NIR spectroscopy technology are convenience, low cost, high inspection efficiency, and
multi-index measurement capability [15]. Recent improvements in miniaturization and
mathematical tools has led to a wide application of NIR spectroscopy technology in the
quality analysis of agricultural products, such as fruit and seeds [16]. In terms of fruit
quality evaluation, NIR spectroscopy technology has been used for fruit sorting by detecting
fruit sugar content and internal bruising in a commercial packing line with a speed of
five or more fruits per second. For seed quality assessment, Wang et al. [17] used a self-
designed NIR spectral collection device to acquire near-infrared spectra of normal maize
seeds, artificially aged maize seeds, and heat-damaged maize seeds, which were utilized
to establish a classification model using a partial least squares discriminant analysis (PLS-
DA) algorithm. The classification accuracy of the prediction set was higher than 95%.
Liu et al. [18] built a single-fiber spatially resolved device using visible/near-infrared
spectroscopy to inspect maize seed vigor and achieved good prediction results. However,
the studies stated above still involve the static assessment of maize seeds. Up to now,
far too little attention has been paid to the on-line application of NIR spectroscopy for
seed inspection. In a recent study, Wang et al. [19] applied self-designed on-line NIR
spectroscopy equipment to evaluate insect-infested seeds and achieved a classification
accuracy of 0.89 and 0.83 using full wavelengths or feature wavelengths, respectively. In
addition, the protein content of maize seeds was predicted precisely, with an RPD of 2.08
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and 2.11 for grain protein content and absolute grain protein content prediction, respectively.
Similar results were reported for soybean seeds [20]. These previous studies demonstrated
the enormous potential of NIR spectroscopy technology for the on-line assessment of maize
seed quality.

Therefore, the aim of this study was to use NIR spectroscopy technology for the
on-line discrimination of maize seeds harvested in different years. The specific objectives
were (1) to acquire the near-infrared spectra of maize seeds using an on-line NIR device;
(2) to establish classification models to identify the harvest year of maize seeds; and (3) to
optimize the model using wavelength selection methods.

2. Materials and Methods
2.1. Preparation of Samples

JINGKE 968 is one of the high-quality varieties of maize seeds that has been widely
planted in China. The JINGKE 968 maize seeds were harvested in 2018 and 2021 in the
Gansu province of China. The seeds were sent to the lab and placed under room conditions
with 60% relative humidity and a temperature of 24 ◦C. A total of 200 seeds, with 100 for
each harvest year, were selected randomly to conduct standard germination tests at 25 ◦C
following the guidelines of the International Seed Testing Association (ISTA) before the
experiment. The normal seedlings were counted after 7 days, and the germination rate of
the maize seeds harvested in 2018 and 2021 were 76% and 91%, respectively. A total of
400 maize seed samples without surface defects were then utilized in this study in January
2022; half of the samples were harvested in 2018, and the rest were harvested in 2021.

Table 1 shows the partition of the sample sets for establishing classification models.
The training set consisted of 320 maize seeds that were selected randomly, including
160 samples harvested in 2018 and 160 samples harvested in 2021. The prediction set
consisted of 80 samples, and the number of maize seeds harvested in 2018 and harvested in
2021 was 40, respectively. In addition, a label value (harvested in 2018 = −1 and harvested
in 2021 = 1) was assigned to each sample.

Table 1. Class assignment and partition of sample sets.

Sample Class No. of Samples Training Set Prediction Set Assigned Class

Seeds harvested in 2018 200 160 40 −1
Seeds harvested in 2021 200 160 40 1

2.2. Spectral Data Acquisition

The NIR spectra were collected using an on-line spectra acquisition device (Ambrose,
2016) (Figure 1). The on-line NIR spectra acquisition device was composed of five parts: an
optical fiber, a photoelectric sensor, a light source, a glass tube, and a spectrometer (Ocean
optics, Orlando, FL, USA, NIR QUEST, spectra range of 899–1715 nm). The specific process
of data collection is described as follows: a single seed triggers the photoelectric sensor as
it slides down the tube, which then sends a signal to the spectrometer to collect a spectrum
(Sraw) using a specific integration time. The spectrum is collected as the kernel travels
down the tube and is displayed and stored in the host computer. Data collection is carried
out through a preset integration time. The integration time in the preliminary experiment
was set to 100 ms after many attempts.

Typically, the spectral data need to be corrected. In this experiment, data correction
was conducted according to the formula below:

SC =
Sraw

Swhite
(1)

where Sc was the corrected spectra, and Swhite was the white reference acquired by turning
on the light source together with no seed in the tube.
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2.3. Pretreatment of Spectra

The acquired spectral signal not only includes effective chemical information reflecting
the samples’ attributes, but also contains noise generated by the measurement environment
and equipment. Thus, it is necessary to improve the quality of the raw spectral data before
modeling [21]. In this study, six commonly used preprocessing methods were applied
for data processing, including Savitzky–Golay smoothing (SGS), standard normal variate
transformation (SNV), multiplicative scatter correction (MSC), Savitzky–Golay 1 derivative
(SG-D1), Savitzky–Golay 2 derivative (SG-D2), and normalization (Norm). SGS can reduce
noise by averaging several spectral points and retaining important features of the spectral
curve [22]. The SNV and MSC can eliminate the influence of scattering from the sample
surface on the spectral information. SG-D1 derivative with second-order filtering and a
smoothing window of 11 points, and SG-D2 with a points second-order filtering smoothing
window of 25 were used to identify the overlapping peaks of the original spectra and to
reduce interference [23]. For the SGS method, a smaller window size could better preserve
spectral features, but may not significantly decrease noise. In contrast, a larger window size
is likely to blur significant spectral features during noise elimination. The smooth window
was set to 9 after previous experience and many attempts. The Norm method normalizes
the data using the Euclidean norm, and can reduce spectral differences caused by slight
optical path variations [24]. Therefore, the performance of the above pretreatment methods
was compared by evaluating the classification results of the built models.

2.4. Effective Wavelength Selection Algorithm

The spectral data, after preprocessing, contains a remarkable amount of uninforma-
tive and redundant spectral variables. In addition, there is multicollinearity between the
informative variables. The effective wavelength selection method can reduce data dimen-
sions and preserve important information, thereby improving model performance. In this
study, four wavelength selection procedures including bootstrapping soft shrinkage (BOSS),
CARS, Monte Carlo cross-validation uninformative variable elimination (MC-UVE), and
the successive projections algorithm (SPA) were adopted. Moreover, the combination of
MC-UVE-BOSS and MC-UVE-SPA algorithms has been proven to be a powerful tool and
was consequently also used [25].

MC-UVE is a modified variable selection method proposed based on the MC (Monte
Carlo) and UVE methods, and is commonly used to eliminate irrelevant information
variables [26]. In the MC-UVE, the effectiveness of each variable was evaluated based on its
stability defined as the ratio of the mean to the standard deviation of regression coefficients,
which was calculated from PLS-DA models based on N subsets randomly sampled using
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the Monte Carlo approach. The specific details of the MC-UVE algorithm can be referred to
in Cai’s paper [27]. The performance of the MC-UVE method is superior to the original
UVE method, which has been proven in some previous studies. However, the variables
selected by MC-UVE are still redundant to a certain extent; it is therefore necessary to
further extract effective variables by combining the approach with other algorithms.

BOSS is a novel variable selection method for reducing the collinearity of spectral
data [28], which is derived from the idea of model population analysis and weighted
bootstrap sampling. The weight of the variables is obtained by the absolute value of the
regression coefficient of numerous PLS sub-models. The weights of variables were updated
stepwise using the weighted bootstrap sampling method, resulting in a soft shrinkage
of variables. The best variable set is then determined by the sub-model with minimum
prediction error.

The CARS algorithm was proposed to eliminate the influence of uninformative vari-
ables and improve the performance of the established model [29]. In this algorithm, the
absolute values of regression coefficients of the PLS model were used for evaluating the
importance of each variable. This algorithm starts by developing a PLS-DA model with
full wavelengths. The importance of each variable is evaluated by calculating the absolute
values of regression coefficients at each iteration, followed by the elimination of variables
using adaptive reweighted sampling and the exponential decreasing function. At each
iteration, classification performance is evaluated using a subset of variables at each itera-
tion; the subset with the lowest classification accuracy is determined as containing the best
variables. For the CARS effective variables selection, the number of Monte Carlo sampling
was set to 100, and 10-fold cross-validation was used.

SPA is mostly used to eliminate redundant information and reduce the collinearity of
spectral data [30]. The SPA algorithm has two phases. First, one wavelength is selected,
and its projection on the remaining wavelengths is calculated during each cycle. The
wavelength with the maximum projection value is selected as the prospective effective
wavelength. Then, the optimal wavelength can be selected based on the smallest RMSECV
of the MLR model. Using SPA alone is usually not very effective, so it needs to be combined
with other wavelength selection algorithms.

Combination wavelength selection algorithms were also considered in this study.
Taking the example of MC-UVE-SPA, MC-UVE was firstly used to select a set of potential
wavelengths, followed by further wavelength extraction using SPA. MC-UVE-BOSS is
another combination method that uses MC-UVE and BOSS sequentially for selecting the
effective wavelengths.

2.5. Model Construction

To gain a reliable and accurate classifier, four classification models, including least
squares support vector machine (LS-SVM), partial least squares discriminant analysis
(PLS-DA), k-nearest neighbor (KNN), and extreme learning machine (ELM), were built
and compared.

LS-SVM is an evolutionary algorithm based on the standard SVM proposed by Suykens
and Vandewalle [31], and is capable of quickly resolving linear and nonlinear multivariable
analysis [32]. Compared with standard SVM, it maps input features into a high-dimensional
space, reducing the complexity of calculation and obtaining the optimal solution by calcu-
lating the partial differentiation of each feature using a Lagrange multiplier. As a well-liked
kernel function, the radial basis function (RBF) kernel function was chosen as it has advan-
tages in handling nonlinear relationships between spectral data and the target category [33].
A 10-fold cross-validation coupled with grid-search method was employed to search the
optimal parameter values of regularization parameter gamma (γ) and kernel function
parameter sig2 (σ2). PLS-DA is a supervised linear classifier based on PLS regression,
which predicts the membership of the dataset by maximizing the covariance between the
data matrix X (the maize spectral matrix) and the categorical Y matrix (sample labels). The
predicted results obtained by PLS are continuous values, not strictly sample labels. There-
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fore, it is necessary to set a threshold to determine the prediction results of the model. The
threshold was set as 0 in this study. In addition, a 10-fold cross validation was employed on
the training dataset, followed by the determination of optimal latent variables according to
the minimum classification accuracy. KNN is a statistical method for pattern recognition by
tuning the hyperparameters, including distance metric and number of neighbors (K), which
were optimized automatically to minimize 10-fold cross-validation loss [34]. ELM is a fast
machine-learning algorithm proposed by Huang et al. [35], which shows high efficiency,
rapidity, and good generalization performance in analyzing large-scale spectral data. The
number of hidden neurons in ELM was increased from 10 to 150 with a step of 10, followed
by the determination of the optimal hidden neurons according to the classification results.

2.6. Software

In this study, the spectral data analysis was performed in MATLAB 2018b (The Math
Works, Natick, MA, USA) with the assistance of libpls toolbox [36]. Origin 2018 (Origin
Lab Corporation, Northampton, MA, USA) was applied to construct figures.

3. Results and Discussion
3.1. Features of Spectra

The tested sample is irradiated with near-infrared radiation, with transmitted or
reflected radiation measured by a spectrometer. The spectral characteristics change through
scattering and absorption processes and can reflect the structure and content information
of X-H groups (C–H, O–H and N–H) in the sample [37]. Figure 2a shows the raw average
spectra (solid line) and deviation distribution (shadow region) of the maize seeds. The blue
part represents the seeds harvested in 2021 and the red part represents the seeds harvested
in 2018. It can be clearly seen that the spectra of new and aged maize seeds have similar
intensity and trend. The prominent absorption peak and valley were located at around
1110 nm, 1200 nm, and 1300 nm. The spectral intensity peak and valley at about 1110 nm
and 1200 nm might be relative to the second overtone of C-H [38], while the peak at around
1300 nm is possibly caused by the combination of the fundamental amide vibrations and
the first overtone of Amide B [39]. It is difficult to directly distinguish seeds in different
harvest years by only depending on spectral intensity. Therefore, it is necessary to establish
an appropriate classification model using machine learning and chemometric methods.

3.2. Classification Results Using Full Spectra

Figure 2b–g represent the spectra pretreated by SGS, SNV, MSC, SG-D1, SG-D2, and
Norm, respectively. It can be seen that SGS effectively reduced the noise of the spectral
data, while MSC and SNV eliminated the influence of scattering. However, the SG-D1
and SG-D2 preprocessing methods did not improve the spectral quality. It is worth noting
that the spectral curves of the seeds harvested in different years after Norm pretreatment
showed more differences. However, there were still obvious overlaps between the two
types of spectra.

In order to determine the optimal pretreatment method, the spectral data preprocessed
by SGS, SNV, MSC, SG-D1, SG-D2, and Norm were used as inputs to establish PLS-DA,
LS-SVM, KNN, and ELM models. The key parameters (γ, σ2 for LS-SVM, LVs for PLS-DA,
K for KNN, and hidden neurons for ELM) and classification results in the training set and
the prediction set are summarized in Table 2.
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original spectra curves; (b–g) stand for the spectra preprocessed by SGS, SNV, MSC, SG-D1, SG-D2,
and Norm.

In comparison with the inspection results obtained by the raw spectra, the classification
results yielded by the preprocessed spectra were improved to different degrees except for
the model built with derivative spectra. Compared with other preprocessing methods, the
spectra pretreated by SGS obtained the best results regardless of the classification methods.
It can be seen that the result of the four classification models represented significant
differences. Basically, PLS-DA obtained the best performance in inspecting seeds from
different harvest years by comparing the four classification methods. When the number of
LVs was equal to 7, 8, 8, 7, 5, and 10, the best discrimination results were obtained with
spectral data preprocessed by SGS, SNV, MSC, SG-D1, SG-D2, and Norm preprocessing,
respectively. The PLS-DA model based on spectra pretreated by Norm yielded relatively
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higher accuracy in discriminating between kernels from different harvest years, with
classification accuracies of 96.56% and 91.25%, respectively for the training and prediction
sets. Therefore PLS-DA will be used for further analysis. The above classification results
indicated that near-infrared spectroscopy technology can achieve the on-line recognition of
new and aged maize seeds. Seed quality properties, such as freshness, damage, and internal
components, can be evaluated simultaneously through an on-line NIR device and multiple
NIR calibration models, requiring high computing performance and shorter measurement
time, especially when the seeds are inspected at a fast speed. In addition, the full spectra
contain redundancy and multicollinearity variables among contiguous wavebands, thus
causing time-consuming calibration processes and hindering the computing speed. Thus,
it is necessary to select effective wavelengths to simplify calibration models.

Table 2. The discrimination results for seeds harvested years by different classification models and
preprocessing methods using full wavelengths.

Models Preprocessing
Methods

(γ, σ2) LVs K Hidden
Neurons

Classification Accuracy of
Training Set (%)

Classification Accuracy of
Prediction Set (%)

2018 2021 Total 2018 2021 Total

LS-SVM

Raw 59,845.85;
14,662.89 100.00 99.38 99.69 82.50 87.50 85.00

SNV 18,298.45;
11,9622.43 98.75 100.00 99.38 82.50 85.00 83.75

MSC 1280.47;
43,116.50 95.00 95.63 95.31 85.00 87.50 86.25

Norm 4062.37;
7016.89 100.00 100.00 100.00 92.50 87.50 90.00

SGS 9440.09;
317.76 100.00 100.00 100.00 97.50 80.00 88.75

S-G-1st 91.37;
4736.06 93.13% 92.50 92.81 77.50 80.00 78.75

S-G-2nd 10,870.69;
52,589.62 97.50 97.50 97.50 77.50 67.50 72.50

PLSDA

Raw 9 98.13 97.50 97.81 87.50 85.00 86.25
SNV 7 98.13 93.75 95.94 90.00 90.00 90.00
MSC 8 98.75 97.50 98.13 90.00 85.00 87.50
Norm 8 98.13 95.00 96.56 90.00 92.50 91.25
SGS 7 86.88 87.50 87.19 90.00 85.00 87.50

S-G-1st 5 96.88 98.13 97.50 70.00 75.00 72.50
S-G-2nd 10 100.00 100.00 100.00 70.00 77.50 73.75

KNN

Raw 4 87.50 69.38 78.44 77.50 62.50 70.00
SNV 10 73.75 69.38 71.56 65.00 67.50 66.25
MSC 5 74.38 73.75 74.06 72.50 67.50 70.00
Norm 8 93.75 92.50 93.13 90.00 85.00 87.50
SGS 6 93.75 95.63 94.69 90.00 82.50 86.25

S-G-1st 1 100.00 100.00 100.00 65.00 70.00 67.50
S-G-2nd 5 73.13 75.00 74.06 67.50 57.50 62.50

ELM

Raw 140 85.13 83.70 84.41 73.40 68.75 71.08
SNV 60 81.25 81.25 81.25 77.50 85.00 81.25
MSC 100 86.25 82.50 84.38 82.50 80.00 81.25
Norm 90 100.00 100.00 100.00 87.50 92.50 90.00
SGS 110 98.13 99.38 98.75 92.50 82.50 87.50

S-G-1st 50 80.00 77.50 78.75 77.50 82.50 80.00
S-G-2nd 60 80.63 78.75 79.69 72.50 70.00 71.25

3.3. Classification Results Based on Effective Wavelengths

At first, four groups of effective wavelengths selected by MC-UVE, CARS, BOSS, and
SPA were separately used as the inputs to establish PLS-DA models for identifying maize
seeds harvested in different years. The discrimination results of the PLS-DA models built
with effective wavelengths selected by different wavelength selection methods are shown
in Table 3.
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Table 3. The classification results for PLS-DA models using different wavelength selection methods.

Model
No. of

Wavelengths LVs

Classification Accuracy of
Training Set (%)

Classification Accuracy of
Prediction Set (%)

2018 2021 Total 2018 2021 Total

MC-UVE-PLS-DA 140 8 96.88 96.25 96.56 90.00 82.50 86.25
CARS-PLS-DA 48 7 93.13 92.50 92.81 82.50 80.00 81.25
BOSS-PLS-DA 107 7 96.88 95.00 95.94 80.00 77.50 78.75
SPA-PLS-DA 6 6 61.25 71.88 66.56 67.50 72.50 70.00

MC-UVE-SPA-PLS-DA 4 4 59.38 73.13 66.25 62.50 72.50 67.50
MC-UVE-BOSS-PLS-DA 93 8 95.63 94.38 95.00 85.00 92.50 88.75

When the numbers of LVs were equal to 8, 7, 7, and 6, the best classification results
were acquired by MC-UVE-PLS-DA, CARS-PLS-DA, BOSS-PLS-DA, and SPA-PLS-DA,
respectively, with classification accuracies of 86.25, 81.25, 78.75, and 70.00%. The classifi-
cation accuracy of CARS-PLS-DA and BOSS-PLS-DA models on the prediction set were
81.25% and 78.75%, respectively. It can be clearly seen that SPA and MC-UVE-SPA could
effectively compress data, with the selected number of wavelengths of 6 and 4, respectively,
but the classification accuracy of the prediction set was smaller than 70%. The MC-UVE-
PLS-DA model’s performance was better than the CARS-PLS-DA model, with success
rates of 90% and 82.5% for aged and new seeds, respectively. MC-UVE-PLS-DA obtained
more promising classification results for seeds from different harvest years. However, the
number of selected wavelengths was a little higher, and it can be reduced further by using
other variable selection methods. MC-UVE-SPA-PLS- DA and MC-UVE-BOSS-PLS-DA
models were then developed, respectively. The MC-UVE-BOSS-PLS-DA model obtained
the optimal performance with an accuracy of 88.75% for the prediction set. Compared
with the full-spectrum PLS-DA model, the MC-UVE-BOSS-PLS-DA model reduced the
classification accuracy of prediction sets by 2.5%. However, the MC-UVE-BOSS-PLS-DA
model only used 93 wavelengths (18% of full spectral data). It is worth noting that the MC-
UVE-BOSS-PLS-DA model has a prediction accuracy of 92.5% for new seeds, which is the
same accuracy as the full-spectrum PLS-DA model. The results demonstrated that the NIR
spectra collected from the on-line acquisition device could establish a classification model
for detecting maize seeds from different harvest years. The optimal models developed by
93 effective wavelengths were more suitable for on-line application.

3.4. Wavelength Selection Analysis of the Optimal Models

As discussed in Section 3.4, MC-UVE-BOSS, a combination of MC-UVE and BOSS, was
an effective wavelength selection method in the identification of maize seeds from different
harvest years. Figure 3 shows the wavelength selection process of the MC-UVE-BOSS
method. In the process of MC-UVE, 320 samples in the training set were applied as the
input for the MC-UVE algorithm for selecting effective wavelengths. The stability of each
wavelength was calculated and is shown in Figure 3a. The absolute values of stability were
sorted in a descending manner. A number (N) of the variables were then selected from
the sorted stabilities as informative wavelengths, corresponding to the stability of the Nth
variable as the cutoff value. As the N increased from 20 to 500 with a step of 20, a set of
PLS models were developed and applied to the prediction set, followed by the calculation
of RMSEP values. Figure 3b represents the RMSEP variation of the PLS calibration model
with the increase in the number of variables. It can be seen that the lowest RMSEP value
was acquired when the number of the selected wavelengths was 140, corresponding to the
wavelength’s stability outside the cut-off line (Figure 3a, red dotted line).
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(d) RMSECV in sub-models in each iteration of BOSS.

After wavelength selection by the MC-UVE method, the BOSS method was used to
further extract effective information. In the process of BOSS, 140 wavelengths selected by
MC-UVE were used to generate a large number of subsets in variable space, which were
used to build PLS sub-models. The sub-models with a smaller RMSECV were extracted
(10%), obtaining the regression coefficients and then new weights for the variables. Based
on the new weights, a weighted bootstrap sampling (WBS) method was used to generate
a new subset. The number of selected variables decreased gradually and reached 1 after
14 iterations (Figure 3c). Meanwhile, the RMSECV in the sub-models increased during
the iterations. It can be seen that the minimum RMSECV value was obtained at the first
iteration, with the number of selected wavelengths of 93. The wavelengths selected by MC-
UVE-BOSS were mainly located at 1000–1020, 1260–1300, 1420–1480, and 1500–1520 nm
(Figure 4). The wavelengths near 1200 nm were associated with the attributes of the
secondary stretching vibration of C–H bonds in starch, proteins, or lipids [40]. The selected
wavelengths around 1400–1500 nm were the absorption wavelengths of the first overtone
of O-H and N-H stretching, which were related to the water and protein contents of maize
seeds [41]. The wavelengths near 1700 nm were relevant to the absorption wavelength
of the first overtone of C-H, which was caused by the strong absorption of fatty acids
contained in the maize kernels [42]. This indicates that the selected wavelengths contain
rich information related to the nutritional composition of maize seeds.
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4. Conclusions

An on-line NIR device with a spectral range of 899–1715 nm was successfully utilized
for the non-destructive and rapid classification of maize seeds harvested in different years.
Four classic classification models, including PLS-DA, LS-SVM, KNN, and ELM, were
established based on full spectra (512 wavelengths). The results indicated that the PLS-DA
was more suitable for distinguishing maize seeds harvested in different years. The norm
method has been determined as the optimal preprocessing method based on the PLS-DA
model. In order to further improve the performance of the model, different wavelength
selection methods were adopted. The classification accuracy of MC-UVE-BOSS-PLS-DA
for the maize seed harvest year was 88.75%, which was slightly lower than the 91.25%
achieved by the full-spectrum PLS-DA model. However, the number of wavelengths used
by the MC-UVE-BOSS-PLSDA model was only about 1/6 of the full-spectrum PLS-DA
model. Moreover, the classification accuracy of new seeds by the MC-UVE-BOSS-PLSDA
model was equal to the full-spectrum PLS-DA model. In the next step, improvements in the
classification accuracy will be studied by optimizing equipment and spectral data methods,
thereby promoting the on-line application of this technology.
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