Improvement in the Sustained-Release Performance of Electrospun Zein Nanofibers via Crosslinking Using Glutaraldehyde Vapors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication and Crosslinking of Electrospun Zein Nanofibers
2.3. Scanning Electron Microscopy (SEM)
2.4. Mechanical Properties
- Fm = maximum load (N) recorded
- S = cross-sectional area of the nanofibers
- Lb = length (mm) at the breaking point
- L0 = initial length (mm) of the nanofibers
- Lm = test length (mm) corresponding to the maximum load
- Lg = gauge length (mm)
2.5. Water Contact Angle (WCA)
2.6. Attenuated Total Reflectance Infrared Spectroscopy (ATR-FT-IR)
2.7. Preparation and GTA Crosslinking of Zein Nanofibers Loaded with EU
2.8. Immersion Study
2.9. In Vitro Release Behavior of EU
2.10. EU Release Kinetics
2.11. Statistical Analysis
3. Results and Discussion
3.1. Morphology and Fiber Diameter Distribution
3.2. Mechanical Characterization
3.3. Water Contact Angle (WCA)
3.4. Stability
3.5. Fourier Transform Infrared Spectrometry (FT-IR)
3.6. In Vitro EU Release Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Ge, X.; Zhou, L.; Wang, Y. Eugenol embedded zein and poly (lactic acid) film as active food packaging: Formation, characterization, and antimicrobial effects. Food Chem. 2022, 384, 132482. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Zhou, D.; Ge, X.; Luo, Y.; Su, J. The role of essential oils in maintaining the postharvest quality and preservation of peach and other fruits. J. Food Biochem. 2022, 46, e14513. [Google Scholar] [CrossRef]
- Abdou, A.; Ennaji, H.; Maaghloud, F.E.; Azhary, K.E.; Badou, A.; Elmakssoudi, A.; Aboulmouhajir, A.; Ibenmoussa, S.; JamalEddine, J.; Dakir, M. In silico and in vivo anti-inflammatory effect of eugenol and acetyleugenol. Sci. Afr. 2024, 24, e02205. [Google Scholar] [CrossRef]
- Zanikov, T.; Gerasymchuk, M.; Robinson, G.I.; Gojani, E.G.; Asghari, S.; Groves, A.; Cameron, M.; Rodriguez-Juarez, R.; Snelling, A.; Hudson, D.; et al. Psilocybin and eugenol prevent dss-induced neuroinflammation in mice. Biocatal. Agric. Biotechnol. 2024, 56, 103033. [Google Scholar] [CrossRef]
- Golmakani, M.R.; Abrari, K.; Goudarzi, I.; Khodaparast, A.; Bagheri, F. Protective role of eugenol against the destructive effects of lead on conditioned fear memory in male rats with post-traumatic stress disorder-related behavioral traits. IBRO Neurosci. Rep. 2024, 16, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Sullca, C.; Ben Messaoud, G.; Sánchez-González, L.; Tehrany, E.A.; Vargas, M.; Atarés, L.; Chiralt, A. Chitosan films containing encapsulated eugenol in alginate microspheres. Food Hydrocoll. 2024, 151, 109791. [Google Scholar] [CrossRef]
- Chang, J.; Chen, B.; Du, Z.; Zhao, B.; Li, J.; Li, Z.; Arunachalam, K.; Shi, T.; Wei, D.; Shi, C. Eugenol targeting crtm inhibits the biosynthesis of staphyloxanthin in staphylococcus aureus. FSHW 2024, 13, 1368–1377. [Google Scholar] [CrossRef]
- Azizi-Lalabadi, M.; Rahimzadeh-Sani, Z.; Feng, J.; Hosseini, H.; Jafari, S.M. The impact of essential oils on the qualitative properties, release profile, and stimuli-responsiveness of active food packaging nanocomposites. Crit. Rev. Food Sci. 2023, 63, 1822–1845. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.S.; Liu, J.Y.; Chang, E.H.; Chang, S.T. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresour. Technol. 2008, 99, 5145–5149. [Google Scholar] [CrossRef]
- Jiang, T.; Feng, L.; Zheng, X. Effect of chitosan coating enriched with thyme oil on postharvest quality and shelf life of shiitake mushroom (lentinus edodes). J. Agric. Food Chem. 2012, 60, 188–196. [Google Scholar] [CrossRef]
- Das, B.; Devi, L.S.; Dutta, J.; Kumar, S. Eugenol and aloe vera blended natural wax-based coating for preserving postharvest quality of kaji lemon (citrus jambhiri). Food Chem. X 2024, 22, 101349. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liao, R.; Bu, N.; Zhang, D.; Pang, J.; Mu, R. Electrospun konjac glucomannan/polyvinyl alcohol long polymeric filaments incorporated with tea polyphenols for food preservations. Foods 2024, 13, 284–300. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.J.; Yu, D.G.; Williams, G.R.; Yang, J.H.; Wang, X. Influence of the drug distribution in electrospun gliadin fibers on drug-release behavior. Eur. J. Pharm. Sci. 2017, 106, 422–430. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Jiang, H.; Wang, R.; Xie, Y.; Zhao, C. Fabrication of metronidazole loaded poly (epsilon-caprolactone)/zein core/shell nanofiber membranes via coaxial electrospinning for guided tissue regeneration. J. Colloid Interface Sci. 2017, 490, 270–278. [Google Scholar] [CrossRef]
- Tang, S.; Zhao, Z.; Chen, G.; Su, Y.; Lu, L.; Li, B.; Liang, D.; Jin, R. Fabrication of ampicillin/starch/polymer composite nanofibers with controlled drug release properties by electrospinning. J. Sol-Gel Sci. Technol. 2015, 77, 594–603. [Google Scholar] [CrossRef]
- Ko, S.W.; Lee, J.Y.; Lee, J.; Son, B.C.; Jang, S.R.; Aguilar, L.E.; Oh, Y.M.; Park, C.H.; Kim, C.S. Analysis of drug release behavior utilizing the swelling characteristics of cellulosic nanofibers. Polymers 2019, 11, 1376. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.A.; Orqueda, M.E.; Gómez-Mascaraque, L.G.; Isla, M.I.; López-Rubio, A. Crosslinked electrospun zein-based food packaging coatings containing bioactive chilto fruit extracts. Food Hydrocoll. 2019, 95, 496–505. [Google Scholar] [CrossRef]
- Baghali, M.; Ziyadi, H.; Faridi-Majidi, R. Fabrication and characterization of core–shell tio2-containing nanofibers of pcl-zein by coaxial electrospinning method as an erythromycin drug carrier. Polym. Bull. 2021, 79, 1729–1749. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Yu, D.G.; Wang, G.; Williams, G.R.; Zhang, Z. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning. Carbohydr. Polym. 2019, 203, 228–237. [Google Scholar] [CrossRef]
- Chou, S.F.; Carson, D.; Woodrow, K.A. Current strategies for sustaining drug release from electrospun nanofibers. J. Control. Release 2015, 220 Pt B, 584–591. [Google Scholar] [CrossRef]
- Dehnad, D.; Emadzadeh, B.; Ghorani, B.; Rajabzadeh, G.; Tucker, N.; Jafari, S.M. Bioactive-loaded nanovesicles embedded within electrospun plant protein nanofibers; a double encapsulation technique. Food Hydrocoll. 2023, 141, 108683. [Google Scholar] [CrossRef]
- Huo, P.; Han, X.; Zhang, W.; Zhang, J.; Kumar, P.; Liu, B. Electrospun nanofibers of polycaprolactone/collagen as a sustained-release drug delivery system for artemisinin. Pharmaceutics 2021, 13, 1228–1242. [Google Scholar] [CrossRef] [PubMed]
- Abdul Hameed, M.M.; Mohamed Khan, S.A.P.; Thamer, B.M.; Rajkumar, N.; El-Hamshary, H.; El-Newehy, M. Electrospun nanofibers for drug delivery applications: Methods and mechanism. Polym. Adv. Technol. 2022, 34, 6–23. [Google Scholar] [CrossRef]
- Zupancic, S.; Sinha-Ray, S.; Sinha-Ray, S.; Kristl, J.; Yarin, A.L. Long-term sustained ciprofloxacin release from pmma and hydrophilic polymer blended nanofibers. Mol. Pharm. 2016, 13, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Xing, G.; Shao, L.; Du, Y.; Tao, H.; Qi, C. Citric acid crosslinked chitosan/poly(ethylene oxide) composite nanofibers fabricated by electrospinning and thermal treatment for controlled drug release. Cellulose 2020, 28, 961–971. [Google Scholar] [CrossRef]
- Erdogan, I.; Demir, M.; Bayraktar, O. Olive leaf extract as a crosslinking agent for the preparation of electrospun zein fibers. J. Appl. Polym. Sci. 2015, 132, 41338–41347. [Google Scholar] [CrossRef]
- Hosseini, A.; Ramezani, S.; Tabibiazar, M.; Ghorbani, M.; Samadi Kafil, H. Fabrication of cumin seed oil loaded gliadin-ethyl cellulose nanofibers reinforced with adipic acid for food packaging application. Food Packag. Shelf 2021, 30, 100754. [Google Scholar] [CrossRef]
- Laha, A.; Sharma, C.S.; Majumdar, S. Sustained drug release from multi-layered sequentially crosslinked electrospun gelatin nanofiber mesh. Mat. Sci. Eng. C 2017, 76, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Ramires, P.A.; Milella, E. Biocompatibility of poly (vinyl alcohol)-hyaluronic acid and poly (vinyl alcohol)-gellan membranes crosslinked by glutaraldehyde vapors. J. Mater. Sci. Mater. Med. 2002, 13, 119–123. [Google Scholar] [CrossRef]
- Miras, J.; Liu, C.; Blomberg, E.; Thormann, E.; Vílchez, S.; Esquena, J. Ph-responsive chitosan nanofilms crosslinked with genipin. Colloids Surf. A Physicochem. Eng. Asp. 2021, 616, 126229. [Google Scholar] [CrossRef]
- Chen, W.; Gao, Z.; He, M.; Dou, Y.; Yin, G.; Ding, J. Vapor-phase glutaraldehyde crosslinked waste protein-based nanofiber nonwovens as an environmentally friendly wound dressing. React. Funct. Polym. 2022, 172, 105203. [Google Scholar] [CrossRef]
- Canbolat, M.F.; Gera, N.; Tang, C.; Monian, B.; Rao, B.M.; Pourdeyhimi, B.; Khan, S.A. Preservation of cell viability and protein conformation on immobilization within nanofibers via electrospinning functionalized yeast. ACS Appl. Mater. Interfaces 2013, 5, 9349–9354. [Google Scholar] [CrossRef] [PubMed]
- Abd El Hady, W.E.; Soliman, O.A.E.; El Sabbagh, H.M.; Mohamed, E.A. Glutaraldehyde-crosslinked chitosan-polyethylene oxide nanofibers as a potential gastroretentive delivery system of nizatidine for augmented gastroprotective activity. Drug Deliv. 2021, 28, 1795–1809. [Google Scholar] [CrossRef] [PubMed]
- Mirzaeei, S.; Taghe, S.; Asare-Addo, K.; Nokhodchi, A. Polyvinyl alcohol/chitosan single-layered and polyvinyl alcohol/chitosan/eudragit rl100 multi-layered electrospun nanofibers as an ocular matrix for the controlled release of ofloxacin: An in vitro and in vivo evaluation. AAPS PharmSciTech 2021, 22, 170–183. [Google Scholar] [CrossRef]
- Baykara, D.; Pilavci, E.; Cesur, S.; Ilhan, E.; Ulag, S.; Sengor, M.; Kijeńska-Gawrońska, E.; Gunduz, O. Controlled release of gentamicin from electrospun poly(vinyl alcohol)/gelatin nanofibers: The effect of crosslinking time using glutaraldehyde vapor. ChemistrySelect 2023, 8, e202203681. [Google Scholar] [CrossRef]
- Rezazadeh, A.; Moghaddas Kia, E.; Hamishehkar, H.; Kafil Gazi Jahani, B.; Ghasempour, Z. Capsaicin-incorporated zein electrospun nanofibers: Characterization and release behavior. Food Biosci. 2022, 49, 101843. [Google Scholar] [CrossRef]
- Kasaai, M.R. Zein and zein -based nano-materials for food and nutrition applications: A review. Trends Food Sci. Technol. 2018, 79, 184–197. [Google Scholar] [CrossRef]
- Aytac, Z.; Huang, R.; Vaze, N.; Xu, T.; Eitzer, B.D.; Krol, W.; MacQueen, L.A.; Chang, H.; Bousfield, D.W.; Chan-Park, M.B.; et al. Development of biodegradable and antimicrobial electrospun zein fibers for food packaging. ACS Sustain. Chem. Eng. 2020, 8, 15354–15365. [Google Scholar] [CrossRef]
- Qureshi, U.A.; Khatri, Z.; Ahmed, F.; Khatri, M.; Kim, I.-S. Electrospun zein nanofiber as a green and recyclable adsorbent for the removal of reactive black 5 from the aqueous phase. ACS Sustain. Chem. Eng. 2017, 5, 4340–4351. [Google Scholar] [CrossRef]
- Maria Leena, M.; Yoha, K.S.; Moses, J.A.; Anandharamakrishnan, C. Edible coating with resveratrol loaded electrospun zein nanofibers with enhanced bioaccessibility. Food Biosci. 2020, 36, 100669. [Google Scholar] [CrossRef]
- Charpashlo, E.; Ghorani, B.; Mohebbi, M. Multilayered electrospinning strategy for increasing the bioaccessibility of lycopene in gelatin-based sub-micron fiber structures. Food Hydrocoll. 2021, 113, 106411. [Google Scholar] [CrossRef]
- Fernandez, A.; Torres-Giner, S.; Lagaron, J.M. Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocoll. 2009, 23, 1427–1432. [Google Scholar] [CrossRef]
- Heydari-Majd, M.; Rezaeinia, H.; Shadan, M.R.; Ghorani, B.; Tucker, N. Enrichment of zein nanofibre assemblies for therapeutic delivery of barije (ferula gummosa boiss) essential oil. J. Drug Deliv. Sci. Technol. 2019, 54, 101290. [Google Scholar] [CrossRef]
- Zhong, Q.; Jin, M.; Davidson, P.M.; Zivanovic, S. Sustained release of lysozyme from zein microcapsules produced by a supercritical anti-solvent process. Food Chem. 2009, 115, 697–700. [Google Scholar] [CrossRef]
- Silva, S.C.M.; Fuzatto, R.H.S.; Botrel, D.A.; Ugucioni, J.C.; Oliveira, J.E. Development of zein nanofibers for the controlled delivery of essential amino acids for fish nutrition. SN Appl. Sci. 2020, 2, 1783. [Google Scholar] [CrossRef]
- DeFrates, K.; Markiewicz, T.; Xue, Y.; Callaway, K.; Gough, C.; Moore, R.; Bessette, K.; Mou, X.; Hu, X. Air-jet spinning corn zein protein nanofibers for drug delivery: Effect of biomaterial structure and shape on release properties. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111419. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wang, Q.; Li, G.; Qiu, Y.; Wei, Q. Electrospun water-stable zein/ethyl cellulose composite nanofiber and its drug release properties. Mat. Sci. Eng. C 2017, 74, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Kabaoglu, I.; Guler, E.; Topal, F.; Hazar-Yavuz, A.N.; Ekentok, C.; Tatar, E.; Gurbuz, F.; Gunduz, O.; Cam, M.E. A comparison study of fiber diameter’s effect on characteristic features of donepezil/curcumin-loaded polycaprolactone/polylactic acid nanofibers. Macromol. Mater. Eng. 2022, 307, 2100855. [Google Scholar] [CrossRef]
- Martin, A.; Cai, J.; Schaedel, A.L.; van der Plas, M.; Malmsten, M.; Rades, T.; Heinz, A. Zein-polycaprolactone core-shell nanofibers for wound healing. Int. J. Pharm. 2022, 621, 121809. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, Q.; Huang, J.; Luo, X.; Huang, Y.; Wu, Y.; Chen, P.; Zheng, Y. Curcumin-loaded bamboo shoot cellulose nanofibers: Characterization and in vitro studies. Foods 2023, 12, 3512–3524. [Google Scholar] [CrossRef]
- Bahrami, Z.; Pedram-Nia, A.; Saeidi-Asl, M.; Armin, M.; Heydari-Majd, M. Bioactive gliadin electrospinning loaded with zataria multiflora boiss essential oil: Improves antimicrobial activity and release modeling behavior. Food Sci. Nutr. 2023, 11, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jin, X.; Zhu, Y.; Zhu, C.; Yang, J.; Wang, H.; Lin, T. Effect of vapor-phase glutaraldehyde crosslinking on electrospun starch fibers. Carbohyd. Polym. 2016, 140, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, P.; Li, J.; Zhang, H.; Weiss, J. Characterization of core-shell nanofibers electrospun from bilayer gelatin/gum arabic o/w emulsions crosslinked by genipin. Food Hydrocoll. 2021, 119, 106854. [Google Scholar] [CrossRef]
- Surendranath, M.; Ramesan, R.M.; Nair, P.; Parameswaran, R. Electrospun mucoadhesive zein/pvp fibroporous membrane for transepithelial delivery of propranolol hydrochloride. Mol. Pharm. 2023, 20, 508–523. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Chen, X.; Yi, M.; Ge, J.; Yin, G.; Li, X. Improving the water resistance and mechanical properties of feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane blend films by cross-linking with transglutaminase, cacl2, and genipin. Materials 2018, 11, 2203–2218. [Google Scholar] [CrossRef] [PubMed]
- Miri, M.A.; Habibi Najafi, M.B.; Movaffagh, J.; Ghorani, B. Encapsulation of ascorbyl palmitate in zein by electrospinning technique. J. Polym. Environ. 2020, 29, 1089–1098. [Google Scholar] [CrossRef]
- Yu, X.; Li, C.; Tian, H.; Yuan, L.; Xiang, A.; Li, J.; Wang, C.; Rajulu, A.V. Hydrophobic cross-linked zein-based nanofibers with efficient air filtration and improved moisture stability. Chem. Eng. J. 2020, 396, 125373. [Google Scholar]
- Selling, G.W.; Woods, K.K.; Sessa, D.; Biswas, A. Electrospun zein fibers using glutaraldehyde as the crosslinking reagent: Effect of time and temperature. Macromol. Chem. Phys. 2008, 209, 1003–1011. [Google Scholar] [CrossRef]
- Chen, W.; Ding, J.; Yan, X.; Yan, W.; He, M.; Yin, G. Plasticization of cottonseed protein/polyvinyl alcohol blend films. Polymers 2019, 11, 2096–2110. [Google Scholar] [CrossRef]
- Dias, J.R.; Baptista-Silva, S.; Oliveira, C.M.T.d.; Sousa, A.; Oliveira, A.L.; Bártolo, P.J.; Granja, P.L. In situ crosslinked electrospun gelatin nanofibers for skin regeneration. Eur. Polym. J. 2017, 95, 161–173. [Google Scholar] [CrossRef]
- Shao, P.; Liu, Y.; Ritzoulis, C.; Niu, B. Preparation of zein nanofibers with cinnamaldehyde encapsulated in surfactants at critical micelle concentration for active food packaging. Food Packag. Shelf 2019, 22, 100385. [Google Scholar] [CrossRef]
- Zahabi, N.; Golmakani, M.T.; Fazaeli, M.; Ghiasi, F.; Khalesi, M. Electrospinning of glutelin-hordein incorporated with oliveria decumbens essential oil: Characterization of nanofibers. Colloids Surf. B 2021, 208, 112058. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Zhao, M.; Barker, S.A.; Belton, P.S.; Craig, D.Q.M. A spectroscopic and thermal investigation into the relationship between composition, secondary structure and physical characteristics of electrospun zein nanofibers. Mat. Sci. Eng. C 2019, 98, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Torkamani, A.E.; Syahariza, Z.A.; Norziah, M.H.; Wan, A.K.M.; Juliano, P. Encapsulation of polyphenolic antioxidants obtained from momordica charantia fruit within zein/gelatin shell core fibers via coaxial electrospinning. Food Biosci. 2018, 21, 60–71. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L. Electrospinning of prolamin proteins in acetic acid: The effects of protein conformation and aggregation in solution. Macromol. Mater. Eng. 2012, 297, 902–913. [Google Scholar] [CrossRef]
- Mattice, K.D.; Marangoni, A.G. Functionalizing zein through antisolvent precipitation from ethanol or aetic acid. Food Chem. 2020, 313, 126127. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, L. Fabrication and characterization of novel assembled prolamin protein nanofabrics with improved stability, mechanical property and release profiles. J. Mater. Chem. 2012, 22, 21592–21601. [Google Scholar] [CrossRef]
- Fajardo, P.; Balaguer, M.P.; Gomez-Estaca, J.; Gavara, R.; Hernandez-Munoz, P. Chemically modified gliadins as sustained release systems for lysozyme. Food Hydrocoll. 2014, 41, 53–59. [Google Scholar] [CrossRef]
- Tayebi-Moghaddam, S.; Khatibi, R.; Taklavi, S.; Hosseini-Isfahani, M.; Rezaeinia, H. Sustained-release modeling of clove essential oil in brine to improve the shelf life of iranian white cheese by bioactive electrospun zein. Int. J. Food Microbial. 2021, 355, 109337. [Google Scholar] [CrossRef]
- Uhrich, K.E.; Cannizzaro, S.M.; Langer, R.S.; Shakesheff, K.M. Polymeric systems for controlled drug release. Chem. Rev. 1999, 99, 3181–3198. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ghosh, C.; Hwang, S.G.; Chanunpanich, N.; Park, J.S. Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int. J. Pharm. 2012, 439, 296–306. [Google Scholar] [CrossRef]
Model | Equation | Parameter |
---|---|---|
Zero-order | y = a + b × x | - |
First-order | y = a × (1 − exp(−b × x)) | - |
Higuchi | y = k × x0.5 | k: release constant; x: time |
Ritger–Peppas | y = k × xn | k: release constant; x: time; n: release exponent (n ≤ 0.45: Fickian diffusion; 0.45 < n < 0.89: non-Fickian diffusion; n ≥ 0.89: erosion). |
Peppas–Sahlin | y = k1 × xm + k2 × x(2×m) | k1: diffusion constant; k2: erosion constant; x: time; m: Fickian diffusion exponent; k1/k2 > 1: mainly Fickian diffusion; k1/k2 < 1: mainly erosion; k1/k2 = 1: Fickian diffusion and erosion. |
Kopcha | y = a × x0.5 + b × x | a/b > 1: mainly Fickian diffusion; a/b < 1: mainly erosion; a/b = 1: Fickian diffusion and erosion. |
Model | Parameter | EU/ZNF | EU/ZNF_3h | EU/ZNF_6h | EU/ZNF_9h | EU/ZNF_12h |
---|---|---|---|---|---|---|
Zero-order | a | 37.56 ± 5.29 | 30.38 ± 4.79 | 30.34 ± 4.48 | 31.30 ± 4.27 | 29.72 ± 3.78 |
b | 2.19 ± 0.40 | 2.23 ± 0.36 | 1.84 ± 0.34 | 1.43 ± 0.32 | 1.30 ± 0.29 | |
R2 | 0.73 | 0.77 | 0.73 | 0.64 | 0.65 | |
First-order | a | 83.78 ± 2.16 | 79.69 ± 1.81 | 69.75 ± 1.46 | 60.08 ± 1.14 | 55.50 ± 1.29 |
b | 0.24 ± 0.02 | 0.19 ± 0.01 | 0.23 ± 0.01 | 0.31 ± 0.02 | 0.33 ± 0.03 | |
R2 | 0.97 | 0.98 | 0.98 | 0.98 | 0.97 | |
Higuchi | K | 20.03 ± 0.99 | 18.09 ± 0.71 | 16.46 ± 0.80 | 15.05 ± 0.96 | 14.04 ± 0.90 |
R2 | 0.79 | 0.89 | 0.81 | 0.59 | 0.55 | |
Ritger–Peppas | k | 30.93 ± 2.42 | 24.81 ± 2.04 | 24.90 ± 2.06 | 26.02 ± 2.30 | 24.81 ± 1.98 |
n | 0.34 ± 0.03 | 0.38 ± 0.03 | 0.34 ± 0.03 | 0.29 ± 0.03 | 0.28 ± 0.03 | |
R2 | 0.94 | 0.95 | 0.94 | 0.9 | 0.91 | |
Peppas–Sahlin | k1 | 27.86 ± 1.72 | 21.32 ± 1.30 | 21.63 ± 1.11 | 23.82 ± 1.75 | 23.31 ± 1.56 |
k2 | −2.21 ± 0.28 | −1.38 ± 0.17 | −1.61 ± 0.17 | −2.23 ± 0.35 | −2.30 ± 0.32 | |
m | 0.56 ± 0.03 | 0.62 ± 0.03 | 0.59 ± 0.03 | 0.54 ± 0.04 | 0.51 ± 0.04 | |
R2 | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | |
Kopcha | a | 30.63 ± 1.02 | 25.23 ± 1.09 | 24.94 ± 0.87 | 25.37 ± 0.87 | 23.86 ± 0.72 |
b | −2.61 ± 0.24 | −1.76 ± 0.26 | −2.08 ± 0.20 | −2.54 ± 0.20 | −2.41 ± 0.17 | |
R2 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Li, J.; Wang, P.; Zhang, M.; Liu, S.; Wang, R.; Li, Y.; Ren, F.; Fang, B. Improvement in the Sustained-Release Performance of Electrospun Zein Nanofibers via Crosslinking Using Glutaraldehyde Vapors. Foods 2024, 13, 1583. https://doi.org/10.3390/foods13101583
Wang S, Li J, Wang P, Zhang M, Liu S, Wang R, Li Y, Ren F, Fang B. Improvement in the Sustained-Release Performance of Electrospun Zein Nanofibers via Crosslinking Using Glutaraldehyde Vapors. Foods. 2024; 13(10):1583. https://doi.org/10.3390/foods13101583
Chicago/Turabian StyleWang, Shumin, Jingyu Li, Pengjie Wang, Ming Zhang, Siyuan Liu, Ran Wang, Yixuan Li, Fazheng Ren, and Bing Fang. 2024. "Improvement in the Sustained-Release Performance of Electrospun Zein Nanofibers via Crosslinking Using Glutaraldehyde Vapors" Foods 13, no. 10: 1583. https://doi.org/10.3390/foods13101583
APA StyleWang, S., Li, J., Wang, P., Zhang, M., Liu, S., Wang, R., Li, Y., Ren, F., & Fang, B. (2024). Improvement in the Sustained-Release Performance of Electrospun Zein Nanofibers via Crosslinking Using Glutaraldehyde Vapors. Foods, 13(10), 1583. https://doi.org/10.3390/foods13101583