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Abstract: Cottonseed is rich in oil and protein. However, its antinutritional factor content, of phytic
acid (PA), has limited its utilization. Near-infrared (NIR) spectroscopy, combined with chemometrics,
is an efficient and eco-friendly analytical technique for crop quality analysis. Despite its potential,
there are currently no established NIR models for measuring the PA content in fuzzy cottonseeds.
In this research, a total of 456 samples of fuzzy cottonseed were used as the experimental materials.
Spectral pre-treatments, including first derivative (1D) and standard normal variable transformation
(SNV), were applied, and the linear partial least squares (PLS), nonlinear support vector machine
(SVM), and random forest (RF) methods were utilized to develop accurate calibration models for
predicting the content of PA in fuzzy cottonseed. The results showed that the spectral pre-treatment
significantly improved the prediction performance of the models, with the RF model exhibiting the
best prediction performance. The RF model had a coefficient of determination in prediction (R2

p)
of 0.9114, and its residual predictive deviation (RPD) was 3.9828, which indicates its high accuracy
in measuring the PA content in fuzzy cottonseed. Additionally, this method avoids the costly and
time-consuming delinting and crushing of cottonseeds, making it an economical and environmentally
friendly alternative.

Keywords: near-infrared spectroscopy; fuzzy cottonseed; phytic acid; models

1. Introduction

Cottonseed is a widely available by-product of cotton processing with high yield
potential [1]. Cottonseed contains an array of essential nutrients, such as proteins, oils,
fatty acids, and amino acids, making it a valuable raw material for various industrial
applications [2]. Through processing, cottonseed can yield valuable products, including
cottonseed oil, cottonseed protein, and other derivatives [3]. Cottonseed oil contains
essential fatty acids such as linoleic acid and vitamin E. It has good effects in reducing
blood cholesterol and antioxidation, making it a high-quality edible oil. It is also one of
the main sources of vegetable oil for residents in cotton-producing areas in China. And
due to its good stability and crispness, cottonseed oil can be used to make frying oil,
shortening, and margarine, and it is used as a substitute for hydrogenated vegetable oil,
containing trans fatty acids, in multiple countries. In the industrial sector, cottonseed
oil serves as starting material for the synthesis of stearic acid, soft fatty acids, glycerol,
and malonic acid, among others [4,5]. Cottonseed is not only a high-quality oil source
but also a great protein resource. Many countries have conducted early research on the
application of cottonseed protein in food and have developed several edible products. For
example, defatted cottonseed protein powder has been added to dried pancakes, donuts,
and chocolate candies, and cottonseed protein powder has been widely used as a food
additive and flour mixture in cooking [6]. Cottonseed soup is considered a delicacy on
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the cooking table in some countries on the Asian continent, such as India, Pakistan, and
Bangladesh, and the African continent [7]. In addition, the residue of cottonseed after oil
extraction, known as cottonseed meal, is used as a fertilizer or a protein source in ruminant
animal nutrition. With the research and development of detoxification techniques for
cottonseed meal, it has been widely utilized in poultry and monogastric animal feeding,
serving as a protein source in feed for chickens, ducks, geese, pigs, and aquaculture [8].
In summary, cottonseed is a by-product with immense potential in various industries,
including the food and industrial sectors.

However, cotton itself carries an anti-nutritional factor, phytic acid (PA) [9]. PA is the
primary phosphorus (P) storage compound in seeds [10]. The molecular formula of PA is
C6H18O24P6, and it consists of six phosphate groups and an inositol ring. PA is a valuable
raw material used in various industries, including the food, medicine, polymer, metal
processing, and fuel industries. However, monogastric animals (such as poultry, swine, and
fish) cannot digest phytic acid due to the limited presence or absence of phytase activity in
their digestive tract. As a result, these animals release a significant amount of phosphorus
into the environment, leading to water pollution through eutrophication [11–13]. Further-
more, PA is considered to inhibit the uptake of several essential minerals (especially Fe and
Zn), and macro-nutrients like protein, starch, and lipids [14,15].

“Low PA” content as a trait of seeds can provide many potential benefits [13]. Re-
searchers have devoted themselves to reducing their PA content, including using genetic
improvements, as well as various pre-treatment methods, such as fermentation, soaking,
germination, and the enzymatic treatment of grains with phytase. The rapid and accurate
determination of the PA content in a large number of samples is often needed [16]. Cur-
rently, the conventional method of high-performance liquid chromatography (HPLC) is
the most commonly used technique for measuring PA content [17]. Unfortunately, this
method is time-consuming and costly. Furthermore, when preparing cottonseed samples
for analysis using this method, the fuzzy cottonseed needs to be delinted with concentrated
sulfuric acid, which damages part of the sample, increasing the costs. The discharge of con-
centrated sulfuric acid waste liquor after depilation also causes the corrosion of pipelines,
soil acidification, and other environmental problems.

Rapid and non-destructive near-infrared (NIR) spectroscopy can effectively solve the
above problems. NIR spectroscopy is a non-invasive technique used for the analysis of one
or more chemical components present in a sample. It entails the utilization of the absorption
spectra generated by the combination and overtone bands of select chemical bonds, such
as C-H, N-H, O-H, and S-H. This analysis occurs within the near-infrared (NIR) spectral
region, ranging between 780 and 2526 nm [18]. However, analyzing NIR spectra can be
time-consuming and difficult for researchers to accurately interpret. This is where machine
learning comes in. Machine learning algorithms can be trained to map the NIR absorption
values to a desired output, such as the concentration of a particular compound in a sample.
This process involves both a training phase and a testing phase. During the training phase,
the algorithm learns the model parameters by using the recorded NIR spectra as inputs
and the desired output as outputs. It can be used during the testing phase to predict the
desired output based on new NIR spectra. The accuracy of the model in predicting the
desired output for these new spectra can then be evaluated [19]. Overall, machine learning
can greatly improve the efficiency and accuracy of NIR spectroscopy analysis, making it a
valuable tool.

The combination of NIR spectroscopy and machine learning has broad application
prospects in the field of agriculture, the chemical industry, the food industry, and other
industries. The combination of NIR spectroscopy and machine learning facilitates rapid,
non-destructive inspection of the quality of agricultural products such as crops [20–25],
fruits [26–28], and tea [29,30], allowing for the prediction of various indexes, like mois-
ture, protein, sugar, etc. It can also be applied to classifying, identifying, and evaluating
drugs [31]. As a low-cost and rapid method for disease identification, it has also been used
for health applications [32]. It can be employed to detect and classify the properties of
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chemicals [33]. Moreover, it enables the assessment of water contamination and determines
the content of organic matter in the soil [34,35]. It is expected that there will be more
research on and applications of this technology in the future.

In previous studies, two models for determining the content of phytic acid (PA)
in cottonseeds were developed using different calibration methods [36,37]. The studies
determined that a least squares support vector machine (LS-SVM) [38] is the most optimal
near-infrared calibration model for the prediction of the PA content in cottonseed meal. The
LS-SVM model produced a high coefficient of determination in prediction (R2

p) of 0.97 and
a residual predictive deviation (RPD) of 5.53, indicating that the model is highly accurate in
predicting the PA content in cottonseed meal. But the samples in these models are subjected
to complex processing, which causes damage to them. To address these limitations, a
new study was conducted using NIR spectroscopy to measure the PA content in fuzzy
cottonseed. This study aimed to develop a more reliable and robust calibration model using
NIR spectroscopy combined with different pre-processing and machine learning algorithms,
providing an alternative method for detecting the PA content in fuzzy cottonseeds that
can replace traditional methods. This study provided insights into the potential of NIR
spectroscopy for measuring the PA content in fuzzy cottonseeds.

2. Materials and Methods
2.1. Samples and Preparation

A total of 456 samples of cottonseeds were gathered from Sanya (18.25◦ N, 109.30◦ E),
Hainan province, China, in 2020. The cottonseeds we used had a length between 9.5 and
11.0 mm and a width between 4.5 and 6.0 mm, with short fibers left on the surface after
cotton shedding.

To ensure the uniformity and stability of the samples, the samples were selected
according to the scalding method. After scalding, the samples that were dark brown were
gently dried at 37 ◦C and then moisture-balanced for 2 days.

2.2. Near-Infrared Spectroscopy Acquisition
2.2.1. Collection of the NIR Spectra of Fuzzy Cottonseeds

The fuzzy cottonseed samples were scanned for their original spectra using a Büchi
NIRFlex-N500 spectrometer (Büchi, Flawil, Switzerland). The samples of fuzzy cottonseed
were packed into the solid measuring cell of the apparatus, and the samples were arranged
closely in the measuring cell. Each cottonseed sample was placed in the measurement cell
three times for scanning, ensuring a similar compactness for each loading to reduce errors.
The wavelength range of the near-infrared spectrometer is 1000–2500 nm, and the reflection
(R) is collected every 1 nm, with a total of 1501 spectral points. Each sample was measured
three times with 64 scans at 25 ± 0.5 ◦C. After scanning, the spectral data were obtained,
the average spectral value of 3 times the spectral data of each sample was calculated, and
all the spectra were transformed into absorbance values (log (1/R)).

2.2.2. Collection of the NIR Spectra of the Delinted Cottonseeds

The scanned fuzzy cottonseed samples were delinted using concentrated sulfuric acid,
neutralized using NaOH, washed with water, and dried at 37 ◦C. After water balancing
for 2 days, the delinted cottonseed samples were obtained. We repeated the steps in
Section 2.2.1 to obtain the NIR spectral data of the delinted seeds.

2.3. Determination of the PA Content in the Samples

The weighted least squares support vector machine (WLS-SVM) model established by
Zhao [39] was used to determine the content of PA in the samples. The spectral preprocess-
ing method is a combination of three methods in this model: Savitzky–Golay smoothing,
standard normal variable transformation, and first derivative transformation. The original
spectral data of the delinted cottonseeds were preprocessed using the same method, and
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then the spectral data were brought into the WLS-SVM model to obtain the PA content (%)
of the 456 samples instead of using the traditional determination method.

2.4. Construction and Evaluation of the Calibration Model

The Unscrambler v9.7 (CAMOAS, Oslo, Norway) was used to preprocess the spectra,
and MATLAB R2021b (MathWorks, Natick, MA, USA) was used to construct and verify
the model. Due to the vulnerability of the near-infrared spectrum to non-target factors,
such as the sample particle size, baseline drift and offset, light scattering, instrument noise,
and ambient environmental factors, various preprocessing techniques were applied to
the original spectral data before calibration. These methods included the first derivative
(1D) [40], SNV [41], Savitzky–Golay [42] (SG) smoothing, and multivariate scattering
correction [43] (MSC) methods. The samples were divided into calibration and prediction
sets at a ratio of 3:1 using the Kennard–Stone (KS) algorithm [44]. To build the NIR
calibration model for the PA contents in the fuzzy cottonseed samples, the 10-fold cross-
validation method was used in combination with linear partial least squares [45] (PLS),
support vector machine [46] (SVM), and random forest [47] (RF) modeling methods. The
models were evaluated and analyzed according to R2

p, the RPD, the cross-validation root
mean square error (RMSECV), and the root mean square error of prediction (RMSEP).
The smaller the RMSECV and the RMSEP, the better the prediction performance and
robustness of the model. RPD, defined as the ratio between the standard deviation (SD) of
the prediction and the RMSEP, was used to verify the accuracy of the developed calibration
models. The higher the value of the RPD, the greater the probability of the model accurately
predicting the chemical or physical indices of the sample set. An RPD value greater than 3
can be considered good for predictive purposes. The RPD is commonly used to assess the
accuracy of models based on near-infrared spectroscopy.

3. Results
3.1. Statistical Analysis of the PA Content

Different from the traditional chemical determination methods, the WLS-SVM model
uses spectral data from a combination of pre-processing methods to predict the value of the
phytic acid content in the samples. Overall, this study highlights the potential for machine
learning approaches to be used in analytical chemistry for the accurate and efficient analysis
of samples.

The analysis of the PA content in the 456 cottonseed samples is shown in Table 1.
Most of the data fell within the range of 0.8% to 1.8%. Fitting with the Gaussian function,
the content of PA in the cottonseeds was normally distributed (Figure 1). The average
PA content in the samples was found to be 1.92%, with the highest and lowest values at
3.33% and 0.70%, respectively. This indicates a significant 5-fold difference between the
maximum and minimum values, with a relatively large standard deviation and a wide
content distribution range, providing good representativeness and suggesting significant
variation in the PA content among the samples. The Kennard–Stone (KS) algorithm proved
to be effective in selecting representative sample subsets, with the calibration set chosen via
KS selection providing a better predictive capability compared to the other data selection
methods [48]. The KS algorithm was used to divide the samples at a ratio of 3:1, that is,
456 samples were divided into 342 sample correction sets and 114 sample prediction sets. In
the NIR models, the calibration set samples covered the PA content range of the prediction
set samples, with the mean and standard deviation differences between the two sets being
minimal. That is to say, the range of PA content in the calibration set will be wider, and
the range of sample PA content in the test set will be fully included in the calibration set,
which is sufficient to support the establishment of accurate and robust models.
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Table 1. PA contents in the cottonseeds (%).

Datasets Min Max Average SD

All samples 0.7029 3.3267 1.9188 0.5473
Calibration 0.7029 3.3267 1.9390 0.5642
Prediction 0.8825 3.1411 1.8582 0.4930
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3.2. NIR Spectra and Pre-Treatment

Figure 2a presents the raw spectral curves gathered through the NIR scanning. The
chemical bonds of the PA structure for NIR measurement are mainly C-H, P-OH, and
O-H bonds [37]. Subsequently, Batten [49] found that the absorption peak attributed to
P-OH bonds occurred dominantly at a wavelength of 1908 nm. The spectra showed six
dominant absorption peaks around 1613, 1715, 1837, 1964, 2129, and 2356 nm. Notably, the
peaks observed at 2129 nm, 1837 nm, and 1964 nm were associated with the combination
bands of O-H and P-OH, respectively. Moreover, as NIR detection boasts enhanced spectral
stability, hydrogen bonds can substantially facilitate chemical bond analysis of PA in
cottonseeds [50].
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Throughout the entire spectral range, the absorption peaks and their positions in
the spectra of the 456 cottonseed samples remain consistent. However, some notable
baseline drift and shift can be observed in the raw spectra. To optimize the processing and
construction of calibration models for spectral data, pre-treatment is crucial. Consequently,
ten distinct pre-treatment methods were employed to pre-process the fuzzy cottonseed
spectra data, and the effects of each method on the raw spectra and PLS models were
studied. Model reference indexes for ten representative strategies were evaluated, as shown
in Table 2. While not all the pre-treatment methods enhanced the model’s predictive ability,
four methods, SG+MSC, SNV+1D, SG+SNV+1D, and SG+MSC+1D, instead diminished
the prediction performance of the model. Figure 2b shows the NIR spectra processed using
SNV. The parameters show that the pre-treatment methods using a combination of SNV
and 1D have the best model parameters, with high R2

p and RPD values of 0.7865 and 2.1276
and a low RMSEP value of 0.2409. These methods were highly effective in eliminating the
effects of baseline, noise, surface scattering, and solid particle size, resulting in significantly
enhanced absorption characteristics of the spectra. Figure 2c shows the best combination of
pre-treatment results.

Table 2. Parameters of the PLS model established by different pre-treatment methods.

Methods
Model Parameter

RMSECV RMSEP RPD R2
p

CK 0.324 0.2785 1.7143 0.6886
SG 0.3203 0.2753 1.7457 0.6968
1D 0.3252 0.256 1.7825 0.7426

SNV 0.3433 0.2456 1.8839 0.746
MSC 0.3316 0.2614 1.7999 0.7017

SG+1D 0.3394 0.2549 1.8261 0.7326
SG+SNV 0.3369 0.2652 1.7952 0.7139
SG+MSC 0.34 0.282 1.7139 0.6794
SNV+1D 0.3637 0.2409 2.1276 0.7865

SG+SNV+1D 0.3198 0.3049 1.4833 0.6353
SG+MSC+1D 0.3304 0.3046 1.4848 0.6309

3.3. Development and Interpretation of Full-Spectrum Models

In this current investigation, a combination of SNV and 1D was applied to construct
the linear PLS model, the nonlinear SVM model, and the RF model for predicting the PA
content in the cottonseed samples. The results of Table 3 exhibit the parameters of the three
models on the PA content in the cottonseed samples. It was observed that the prediction
performance of the SVM model and the RF model surpassed that of the PLS model. Among
the three models, the RF model was found to be the best NIR-corrected model for predicting
the PA content in the cottonseed samples. The RF model produced the highest R2

p and
RPD values of 0.9114 and 3.9828 and the lowest RMSECV and RMSEP values of 0.0747 and
0.1294, respectively.

Table 3. Parameters of three models established by PLS, SVM, RF.

Models
Model Parameter

RMSECV RMSEP RPD R2
p

PLS 0.3637 0.2409 2.1276 0.7865
SVM 0.1274 0.2207 2.3141 0.8142
RF 0.0747 0.1294 3.9828 0.9114

Furthermore, the study employed the RBF kernel function for SVM modeling, which
required fewer parameters, particularly the regularization parameter c and gamma. The
complexity of the model was influenced by c and gamma, where higher values of c resulted
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in more complex models but increased the risk of overfitting. Conversely, lower values of c
could lead to underfitting. In addition, the gamma value affected the number of support
vectors and the training speed of the model. Specifically, higher gamma values resulted in
smaller numbers of support vectors and vice versa. Figure 3 presented the results of the
selection of c and gamma parameters using the mean squared error (MSE), where c was
found to be 1, and gamma was observed to be 0.0039, giving the best performance.
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The regression plots of the predicted and reference values are demonstrated in Figure 4,
which showed that the three models represented an acceptable correlation between the
predicted and reference values. The diagonal represents the best predicted result, that is, the
true value = the predicted value. The closer the sample point is to the diagonal, the better
the performance of the model. From Figure 4, it can be seen that the sample distribution of
the RF model and the SVM model is closer to the diagonal than the PLS model, indicating
that these two models have good predictive performance. The 17 characteristic wavelengths
with an importance greater than 0.1 are shown in Figure 5.
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4. Discussion

Recent research has shown that low-phytate genetics can contribute to mitigating the
global eutrophication problem. But this trait can also potentially reduced yields and field
performance [15,51]. Developing high-yielding, stress-tolerant crops with a low PA content
has become a new challenge for researchers. Because of the low costs and a significant
reduction in toxic chemicals, the application of the NIR method could be encouraged and
popularized for quantitative determination in agricultural products [48].

In our study, it was feasible to determine the content of PA in the samples using
the near-infrared spectroscopy model established by Zhao [37]. In the WLS-SVM model
established by Zhao, the phytic acid content of the sample was determined accurately
according to HPIC method, and the model established by Zhao was quite accurate. The
predictive determination coefficient of the established model reached 0.9768, which means
it can completely replace the traditional method of phytic acid content determination. It is
feasible to use the established model to determine the phytic acid content of cottonseed
instead of the reference method. And other researchers have also used this model to map
the QTLs for some traits, which confirms the reliability of this model. Zhao (2020) [52] used
this model to determine 13 quality traits, such as the phytic acid content in cottonseed, and
to map QTLs for the phytic acid content in cottonseed. The total variation of 22.82–90.44%
could be explained by 8 m-QTLs and two pairs of e-QTLs for the phytic acid content.

The delinting process is the separation of the seed from the fiber, and this process
does not affect the content of phytic acid in cottonseed because phytic acid is a natural
component of the cottonseed, mainly in the endosperm and oil tissue. We established an
RF model for fuzzy cottonseed, and the result was also reliable. R2

p reached 0.9114, also
indirectly showing that the model of delinted cottonseed was reliable.

Due to the large particles in the fuzzy cottonseed samples, there were greater gaps
between adjacent samples, which caused a large amount of invalid information in the
spectra, thus affecting the prediction accuracy and robustness of the model. Furthermore,
since the cottonseed samples were not delinted, their surface was covered with dense fuzz
and hard seed shells, which hinder the penetration of NIR light. This, in turn, leads to
weakened NIR spectra information and a lower signal-to-noise ratio, thus posing difficulties
in processing their feature information. To address these problems, we pre-processed
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the spectra using 10 strategies to eliminate some invalid information and constructed
calibration models. According to the results obtained, it was found that the SNV+1D
method had the most favorable pre-treatment effect during the experiment. Selecting
the most appropriate pre-processing method presents a challenging task, as almost all
of them come with certain drawbacks. The commonly used preprocessing methods in
near-infrared spectroscopy include SG, SNV, 1D, MSC, etc. Among them, the SG method is
the most commonly used method for eliminating noise, which is used to remove random
noise in the near-infrared spectrum and effectively improve the signal-to-noise ratio of the
spectrum [42]. SNV transformation is mainly used to eliminate the influence of factors
such as light scattering and optical path changes caused by different solid particle sizes and
an uneven particle distribution on the spectrum [41]. First-derivative transformation can
deduct the influence of the instrument background or drift on the signal and is commonly
used to remove baseline offset and superimposed peaks [40]. MSC is commonly used to
compensate for additive (baseline shift) and multiplicative effects in the spectral data which
are caused by physical effects. For example, non-uniform scattering of the entire spectrum
caused by radiation wavelength, particle size, and refractive index [43]. The cotton wool
seed samples used in this study have large particles and a dense layer of short fibers on
them, which creates certain gaps between the samples and increases the degree of baseline
drift. At the same time, the size of the cottonseeds themselves also has a certain impact on
the spectrum. These problems can be solved by using SNV and 1D preprocessing. This may
be one of the reasons why the most suitable preprocessing method after screening is the
combination of SNV+1D [53]. Notwithstanding, there are four techniques that reduced the
predictive performance of the model, and there are possible reasons behind it. One of these
reasons is the inappropriate adjustment of the pre-treatment parameters. The window size
selection in smoothing techniques may affect the size and position of the peaks, thus causing
a disturbance to the later quantitative analysis. In this particular experiment, an 11-point
window size was used. The second reason for this reduction is excessive pre-treatment.
Although the pre-processing step can eliminate noise and impurities, overdosage may lead
to the loss of useful information, resulting in a decrease in the model’s effectiveness. The
effectiveness of utilizing SG smoothing in pre-processing near-infrared spectra remains
a subject of debate, owing to the possibility of losing ambiguous information during this
stage [54]. Therefore, it is fundamental to pay attention to the degree of pre-processing
to avoid over-pre-treatment. In future experiments, it is necessary to adopt appropriate
approaches to selecting and adjusting the pre-treatment techniques and parameters to
prevent excessive pre-treatment of the data.

There is inevitably some nonlinear and invalid information in the spectral data of fuzzy
cottonseeds. As a powerful approach to eliminating irrelevant variables, pre-treatment
could improve the predictive ability and simplify the complexity of the NIR model. The
SVM and RF methods are machine learning algorithms that can effectively utilize both
linear and nonlinear information for modeling with better robustness. Moreover, the
variable importance measure in the RF algorithm can be utilized for the selection of high-
dimensional data features. RFs have several advantages, such as their ability to handle
both randomized and non-randomized data without overfitting, a fast learning process,
and efficient handling of large datasets. Additionally, RFs can manage high-dimensional
data without any variable deletion while extracting variable importance information from
the data, making them a popular algorithm [55].

NIR spectroscopy has demonstrated the capability to effectively quantify the PA con-
tent present in fuzzy cottonseeds. However, it is crucial to acknowledge that additional
components, particularly in fuzzy cottonseeds, possess C-H, P-OH, and O-H bonds which
may have influenced the modeling results. To address this, it is imperative to enhance the
accuracy of the NIR model through the application of various machine learning algorithms
and other advanced methodologies. At the same time, in actual production, there are also
some issues with using NIR technology to measure phytic acid and other components.
NIR technology is susceptible to environmental factors such as the sample status and
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temperature, as well as the influence of operators and instruments. Therefore, if applied in
actual production, it is necessary to control environmental factors, and it also requires cer-
tain technical requirements for operators. Meanwhile, the models established by different
near-infrared machines are not interconnected, which limits the generalization ability of
the models. In practical applications, it is necessary to achieve the transfer of calibration
models between different near-infrared instruments so that the established calibration
models can be applied more widely. At present, although research on NIR technology
for the detection of substance content in agricultural products is gradually increasing, the
conventional and commercial implementation of this technology is still under development.
How to further solve these problems will be important research content in related fields in
the future [56–58].

5. Conclusions

The PA content in fuzzy cottonseed could be rapidly and accurately determined using
NIR spectroscopy. The random forest (RF) model, which was designed and optimized based
on the spectral pre-processing method of SNV combined with 1D transformation, had the
best results. The model showed RMSECV, RMSEP, R2

p, and RPD values of 0.0747, 0.1294,
0.9114, and 3.9828, respectively, indicating its high accuracy and robustness. Therefore,
this approach provides a feasible and effective method for determining the PA content in
fuzzy cottonseed. For a long time, people have been committed to reducing the content of
phytic acid through breeding and processing. In this process, it is often necessary to quickly
and accurately measure the phytic acid content in a large number of samples. The method
established in this study also provides a reference for the determination of the phytic
acid content in other crops, which will help promote the cultivation of low-phytic-acid
crop varieties.

Author Contributions: H.Y. and W.M.: validation, writing—original draft; L.L. and Y.M.: visualiza-
tion, validation; T.Z.: writing—review and editing; J.C.: supervision.; S.Z.: resources, conceptualiza-
tion. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key Technology R&D Program of China
(2022YFF1001403), the Jiangsu Collaborative Innovation Center for Modern Crop Production, and the
National Science Foundation of China (32101764).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to the raw/processed data required to reproduce these findings cannot be
shared at this time, as the data also form part of an ongoing study.

Acknowledgments: The authors wish to thank Ping Yang, Deli Sun, and Chun Feng Ma from
the Agricultural Experiment Station of Zhejiang University for their kind assistance during the
investigation.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Alford, B.B.; Liepa, G.U.; Vanbeber, A.D. Cottonseed protein: What does the future hold? Plant Foods Hum. Nutr. 1996, 49, 1–11.

[CrossRef]
2. Sawan, Z.M.; Elfarra, A.A.; Ellatif, S.A. Cottonseed, protein and oil yields, and oil properties as affected by nitrogen and

phosphorus fertilization and growth-regulators. J. Agron. Crop Sci.-Z. Acker Pflanzenbau 1988, 161, 50–56. [CrossRef]
3. Ahmad, B.; Hussain, S.M.; Ali, S.; Arsalan , M.Z.-U.-H.; Tabassum, S.; Sharif, A. Efficacy of acidified phytase supplemented

cottonseed meal based diets on growth performance and proximate composition of Labeo rohita fingerlings. Braz. J. Biol. 2023,
83, e247791. [CrossRef]

4. Kumar, M.; Zhang, B.; Potkule, J.; Sharma, K.; Radha; Hano, C.; Sheri, V.; Chandran, D.; Dhumal, S.; Dey, A.; et al. Cottonseed Oil:
Extraction, Characterization, Health Benefits, Safety Profile, and Application. Food Anal. Methods 2023, 16, 266–280. [CrossRef]

https://doi.org/10.1007/BF01092517
https://doi.org/10.1111/j.1439-037X.1988.tb00643.x
https://doi.org/10.1590/1519-6984.247791
https://doi.org/10.1007/s12161-022-02410-3


Foods 2024, 13, 1584 11 of 12

5. Riaz, T.; Iqbal, M.W.; Mahmood, S.; Yasmin, I.; Leghari, A.A.; Rehman, A.; Mushtaq, A.; Ali, K.; Azam, M.; Bilal, M. Cottonseed
oil: A review of extraction techniques, physicochemical, functional, and nutritional properties. Crit. Rev. Food Sci. Nutr. 2021, 63,
1219–1237. [CrossRef]

6. Zhou, J.-Z.; Zhang, H.; Gao, L.; Wang, L.; Qian, H.-F. Influence of pH and ionic strength on heat-induced formation and rheological
properties of cottonseed protein gels. Food Bioprod. Process. 2015, 96, 27–34. [CrossRef]

7. Kumar, M.; Tomar, M.; Punia, S.; Grasso, S.; Arrutia, F.; Choudhary, J.; Singh, S.; Verma, P.; Mahapatra, A.; Patil, S.; et al.
Cottonseed: A sustainable contributor to globalprotein requirements. Trends Food Sci. Technol. 2021, 111, 100–113. [CrossRef]

8. Swiatkiewicz, S.; Arczewska-Wlosek, A.; Jozefiak, D. The use of cottonseed meal as aprotein source for poultry: An updated
review. World’s Poult. Sci. J. 2016, 72, 473–483. [CrossRef]

9. Wang, H.; Hu, X.; Zheng, Y.; Chen, J.; Tan, B.; Shi, L.; Zhang, S. Effects of replacing fish meal with cottonseed protein concentrate
on the growth, immune responses, digestive ability and intestinal microbial flora in Litopenaeus vannamei. Fish Shellfish Immunol.
2022, 128, 91–100. [CrossRef]

10. Silva, V.M.; Ferrari Putti, F.; White, P.J.; dos Reis, A.R. Phytic acid accumulation in plants: Biosynthesis pathway regulation and
role in human diet. Plant Physiol. Biochem. 2021, 164, 132–146. [CrossRef]

11. Raboy, V. Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci. 2009, 177, 281–296. [CrossRef]
12. Handa, V.; Sharma, D.; Kaur, A.; Arya, S.K. Biotechnological applications of microbial phytase and phytic acid in food and feed

industries. Biocatal. Agric. Biotechnol. 2020, 25, 101600. [CrossRef]
13. Raboy, V. Low phytic acid crops: Observations based on four decades of research. Plants 2020, 9, 140. [CrossRef] [PubMed]
14. Brinch-Pedersen, H.; Sorensen, L.D.; Holm, P.B. Engineering crop plants: Getting a handle on phosphate. Trends Plant Sci. 2002, 7,

118–125. [CrossRef]
15. Humer, E.; Schwarz, C.; Schedle, K. Phytate in pig and poultry nutrition. J. Anim. Physiol. Anim. Nutr. 2015, 99, 605–625.

[CrossRef] [PubMed]
16. Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains.

J. Food Sci. Technol. 2015, 52, 676–684. [CrossRef] [PubMed]
17. Tangendjaja, B.; Buckle, K.A.; Wootton, M. Analysis of phytic acid by high-performance liquid-chromatography. J. Chromatogr.

1980, 197, 274–277. [CrossRef]
18. Macho, S.; Larrechi, M.S. Near-infrared spectroscopy and multivariate calibration for the quantitative determination of certain

properties in the petrochemical industry. Trac Trends Anal. Chem. (Regul. Ed.) 2002, 21, 799–806. [CrossRef]
19. Zhang, W.; Kasun, L.C.; Wang, Q.J.; Zheng, Y.; Lin, Z. A Review of Machine Learning for Near-Infrared Spectroscopy. Sensors

2022, 22, 9764. [CrossRef]
20. Chen, Y.; Bin, J.; Zou, C.; Ding, M. Discrimination of Fresh Tobacco Leaves with Different Maturity Levels by Near-Infrared (NIR)

Spectroscopy and Deep Learning. J. Anal. Methods Chem. 2021, 2021, 1–11. [CrossRef]
21. Li, C.; Zhao, T.; Li, C.; Mei, L.; Yu, E.; Dong, Y.; Chen, J.; Zhu, S. Determination of gossypol content in cottonseeds by near infrared

spectroscopy based on Monte Carlo uninformative variable elimination and nonlinear calibration methods. Food Chem. 2017, 221,
990–996. [CrossRef] [PubMed]

22. Quampah, A.; Huang, Z.R.; Wu, J.G.; Liu, H.Y.; Li, J.R.; Zhu, S.J.; Shi, C.H. Estimation of oil content and fatty acid composition in
cottonseed kernel powder using near infrared reflectance spectroscopy. J. Am. Oil Chem. Soc. 2012, 89, 567–575. [CrossRef]

23. Tian, J.; Chen, X.; Liang, Z.; Qi, W.; Zheng, X.; Lu, D.; Chen, B. Application of nir spectral standardization based on principal
component score evaluation in wheat flour crude protein model sharing. J. Food Qual. 2022, 2022, 1–10. [CrossRef]

24. Hu, M.L.; Zhi, C.Y.; Xue, X.M.; Wu, J.; Wang, J.; Yan, L.Y.; Wang, X.; Chen, Y.N.; Kang, Y.P.; Wang, Z.H.; et al. Establishment of
near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut. Acta Agron. Sin. 2023, 49,
2498–2504.

25. Daba, S.D.; Honigs, D.; McGee, R.J.; Kiszonas, A.M. Prediction of Protein Concentration in Pea (Pisum sativum L.) Using
Near-Infrared Spectroscopy (NIRS) Systems. Foods 2022, 11, 3701. [CrossRef]

26. Jiang, X.; Zhu, M.; Yao, J.; Zhang, Y.; Liu, Y. Study on the effect of apple size difference on soluble solids content model based on
near-infrared (nir) spectroscopy. J. Spectrosc. 2022, 2022, 1–10. [CrossRef]

27. Amuah, C.L.Y.; Teye, E.; Lamptey, F.P.; Nyandey, K.; Opoku-Ansah, J.; Adueming, P.O.-W. Feasibility study of the use of handheld
nir spectrometer for simultaneous authentication and quantification of quality parameters in intact pineapple fruits. J. Spectrosc.
2019, 2019, 1–9. [CrossRef]

28. Mishra, P.; Passos, D. A synergistic use of chemometrics and deep learning improved the predictive performance of near-infrared
spectroscopy models for dry matter prediction in mango fruit. Chemom. Intell. Lab. Syst. 2021, 212, 104287. [CrossRef]

29. Zhu, M.-Z.; Wen, B.; Wu, H.; Li, J.; Lin, H.; Li, Q.; Li, Y.; Huang, J.; Liu, Z. The Quality Control of Tea by Near-Infrared Reflectance
(NIR) Spectroscopy and Chemometrics. J. Spectrosc. 2019, 2019, 1–11. [CrossRef]

30. Yang, J.; Wang, J.; Lu, G.; Fei, S.; Yan, T.; Zhang, C.; Lu, X.; Yu, Z.; Li, W.; Tang, X. TeaNet: Deep learning on near-infrared
spectroscopy (nir) data for the assurance of tea quality. Comput. Electron. Agric. 2021, 190, 106431. [CrossRef]

31. Zhang, Z.-Y.; Wang, Y.-J.; Yan, H.; Chang, X.-W.; Zhou, G.-S.; Zhu, L.; Liu, P.; Guo, S.; Dong, T.T.X.; Duan, J.-A. Rapid geographical
origin identification and quality assessment of angelicae sinensis radix by ft-nir spectroscopy. J. Anal. Methods Chem. 2021, 2021,
1–12. [CrossRef] [PubMed]

https://doi.org/10.1080/10408398.2021.1963206
https://doi.org/10.1016/j.fbp.2015.06.004
https://doi.org/10.1016/j.tifs.2021.02.058
https://doi.org/10.1017/S0043933916000258
https://doi.org/10.1016/j.fsi.2022.07.067
https://doi.org/10.1016/j.plaphy.2021.04.035
https://doi.org/10.1016/j.plantsci.2009.06.012
https://doi.org/10.1016/j.bcab.2020.101600
https://doi.org/10.3390/plants9020140
https://www.ncbi.nlm.nih.gov/pubmed/31979164
https://doi.org/10.1016/S1360-1385(01)02222-1
https://doi.org/10.1111/jpn.12258
https://www.ncbi.nlm.nih.gov/pubmed/25405653
https://doi.org/10.1007/s13197-013-0978-y
https://www.ncbi.nlm.nih.gov/pubmed/25694676
https://doi.org/10.1016/S0021-9673(00)81249-2
https://doi.org/10.1016/S0165-9936(02)01202-5
https://doi.org/10.3390/s22249764
https://doi.org/10.1155/2021/9912589
https://doi.org/10.1016/j.foodchem.2016.11.064
https://www.ncbi.nlm.nih.gov/pubmed/27979304
https://doi.org/10.1007/s11746-011-1945-2
https://doi.org/10.1155/2022/9009756
https://doi.org/10.3390/foods11223701
https://doi.org/10.1155/2022/3740527
https://doi.org/10.1155/2019/5975461
https://doi.org/10.1016/j.chemolab.2021.104287
https://doi.org/10.1155/2019/8129648
https://doi.org/10.1016/j.compag.2021.106431
https://doi.org/10.1155/2021/8875876
https://www.ncbi.nlm.nih.gov/pubmed/33505766


Foods 2024, 13, 1584 12 of 12

32. Wang, K.; Bian, X.; Zheng, M.; Liu, P.; Lin, L.; Tan, X. Rapid determination of hemoglobin concentration by a novel ensemble
extreme learning machine method combined with near-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
2021, 263, 120138. [CrossRef]

33. Yang, Y.; Zhang, X.; Yin, J.; Yu, X. Rapid and nondestructive on-site classification method for consumer-grade plastics based on
portable nir spectrometer and machine learning. J. Spectrosc. 2020, 2020, 6631234. [CrossRef]

34. Chen, H.; Xu, L.; Ai, W.; Lin, B.; Feng, Q.; Cai, K. Kernel functions embedded in support vector machine learning models for
rapid water pollution assessment via near-infrared spectroscopy. Sci. Total Environ. 2020, 714, 136765. [CrossRef] [PubMed]

35. Xu, Z.; Zhao, X.; Guo, X.; Guo, J. Deep Learning Application for Predicting Soil Organic Matter Content by VIS-NIR Spectroscopy.
Comput. Intell. Neurosci. 2019, 2019, 3563761. [CrossRef]

36. Parrish, F.W.; Madacsi, J.P.; Phillippy, B.Q.; Wilfred, A.G.; Buco, S.M. Determination of phytic acid in cottonseed by near-infrared
reflectance spectroscopy. J. Agric. Food Chem. 1990, 38, 407–409. [CrossRef]

37. Zhao, R.; Xu, X.; Li, J.; Li, C.; Chen, J.; Liu, Y.; Zhu, S. Rapid determination of phytic acid content in cottonseed meal via near
infrared spectroscopy. J. Near Infrared Spectrosc. 2017, 25, 188–195. [CrossRef]

38. Suykens, J.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [CrossRef]
39. Zhao, R. Optimization of Near Infrared Spectroscopy Nondestructive Analysis Technology for Phytic Acid Contents in Cotton-

seeds and Its Application in the Researches of Their Genotypic and Environmental Effects. Ph.D. Thesis, Zhejiang University,
Hangzhou, China, 2017.

40. Rinnan, A.; Berg FV, D.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC
Trends Anal. Chem. 2009, 28, 1201–1222. [CrossRef]

41. Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance
spectra. Appl. Spectrosc. 1989, 43, 772–777. [CrossRef]

42. Savitzky, A.; Golay, M. Smoothing + differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627.
[CrossRef]

43. Hopke, P.K. The evolution of chemometrics. Anal. Chim. Acta 2003, 500, 365–377. [CrossRef]
44. Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics 1969, 11, 137. [CrossRef]
45. Haaland, D.M.; Thomas, E.V. Partial least-squares methods for spectral analyses.1. Relation to other quantitative calibration

methods and the extraction of qualitative information. Anal. Chem. 1988, 60, 1193–1202. [CrossRef]
46. Nie, Z.; Han, J.; Liu, T.; Liu, X. Hot topic: Application of support vector machine method in prediction of alfalfa protein fractions

by near infrared reflectance spectroscopy. J. Dairy Sci. 2008, 91, 2361–2369. [CrossRef]
47. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
48. Li, C.; Su, B.; Zhao, T.; Li, C.; Chen, J.; Zhu, S. Feasibility study on the use of near-infrared spectroscopy for rapid and

nondestructive determination of gossypol content in intact cottonseeds. J. Cotton Res. 2021, 4, 13. [CrossRef]
49. Batten, G.D. Phosphorus fractions in the grain of diploid, tetraploid, and hexaploid wheat grown with contrasting phosphorus

supplies. Cereal Chem. 1986, 63, 384–387.
50. Zagorodni, A.A.; Kotova, D.L.; Selemenev, V.F. Infrared spectroscopy of ion exchange resins: Chemical deterioration of the resins.

React. Funct. Polym. 2002, 53, 157–171. [CrossRef]
51. Rose, T.J.; Liu, L.; Wissuwa, M. Improving phosphorus efficiency in cereal crops: Is breeding for reduced grain phosphorus

concentration part of the solution? Front. Plant Sci. 2013, 4, 444. [CrossRef]
52. Zhao, Y. QTL Mapping and Genetic Analysis of Main Components in Upland Cottonseeds. Ph.D. Thesis, Zhejiang University,

Hangzhou, China, 2020.
53. Zhuang, T.; Xin, M.; Wang, Q.K.; Wang, Y.M.; Saeed, M.; Xing, H.X.; Zhang, H.J.; Zhang, Y.A.; Deng, Y.Y.; Zhang, G.H.; et al.

Determination of protein and fatty acid composition of shell-intact upland cottonseed using near-infrared reflectance spectroscopy.
Ind. Crops Prod. 2023, 191, 115909. [CrossRef]

54. Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and
vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [CrossRef]

55. Breiman, L. Statistical modeling: The two cultures. Stat. Sci. 2001, 16, 199–215. [CrossRef]
56. Hu, C.; Xu, H.; Fu, Z.; Wu, B.; Zhang, R.; Zhi, C. Non-destructive Identification of the geographical origin of red jujube by

near-infrared spectroscopy and fuzzy clustering methods. Int. J. Food Prop. 2023, 26, 3275–3290. [CrossRef]
57. Cozzolino, D. Advantages and limitations of using near infrared spectroscopy in plant phenomics applications. Comput. Electron.

Agric. 2023, 212, 108078. [CrossRef]
58. Anjali; Jena, A.; Bamola, A.; Mishra, S.; Jain, I.; Pathak, N.; Sharma, N.; Joshi, N.; Pandey, R.; Kaparwal, S.; et al. State-of-the-art

non-destructive approaches for maturity index determination in fruits and vegetables: Principles, applications, and future
directions. Food Prod. Process. Nutr. 2024, 6, 56. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.saa.2021.120138
https://doi.org/10.1155/2020/6631234
https://doi.org/10.1016/j.scitotenv.2020.136765
https://www.ncbi.nlm.nih.gov/pubmed/31982759
https://doi.org/10.1155/2019/3563761
https://doi.org/10.1021/jf00092a014
https://doi.org/10.1177/0967033517708119
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1016/j.trac.2009.07.007
https://doi.org/10.1366/0003702894202201
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1016/S0003-2670(03)00944-9
https://doi.org/10.1080/00401706.1969.10490666
https://doi.org/10.1021/ac00162a020
https://doi.org/10.3168/jds.2008-0985
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1186/s42397-021-00088-2
https://doi.org/10.1016/S1381-5148(02)00170-0
https://doi.org/10.3389/fpls.2013.00444
https://doi.org/10.1016/j.indcrop.2022.115909
https://doi.org/10.1016/j.postharvbio.2007.06.024
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1080/10942912.2023.2281883
https://doi.org/10.1016/j.compag.2023.108078
https://doi.org/10.1186/s43014-023-00205-5

	Introduction 
	Materials and Methods 
	Samples and Preparation 
	Near-Infrared Spectroscopy Acquisition 
	Collection of the NIR Spectra of Fuzzy Cottonseeds 
	Collection of the NIR Spectra of the Delinted Cottonseeds 

	Determination of the PA Content in the Samples 
	Construction and Evaluation of the Calibration Model 

	Results 
	Statistical Analysis of the PA Content 
	NIR Spectra and Pre-Treatment 
	Development and Interpretation of Full-Spectrum Models 

	Discussion 
	Conclusions 
	References

