Quality Evaluation of Polygonatum cyrtonema Hua Based on UPLC-Q-Exactive Orbitrap MS and Electronic Sensory Techniques with Different Numbers of Steaming Cycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. PCH Samples
2.2. Sensory Technique Samples and Methods
2.2.1. Appearance Traits and Sensory Evaluation
2.2.2. Electronic Eye Detection
2.2.3. Electronic Nose Detection
2.2.4. Electronic Tongue Detection
2.3. UHPLC-Q-Exactive-MS Sample Preparation and Methods
2.4. Data Statistics and Analysis
3. Results and Discussion
3.1. Sensory Quality Analysis
3.1.1. Appearance Properties and Organoleptic Evaluation of PCH with Different Numbers of Steaming Cycles
3.1.2. Variation in Colour Parameters of PCH with Different Numbers of Steaming Cycles
3.1.3. Changes in Odour of PCH with Different Numbers of Steaming Cycles
3.1.4. Changes in Flavour of PCH with Different Numbers of Steaming Cycles
3.1.5. Statistical Analyses
3.2. UHPLC-Q-Exactive-MS Chemical Composition Analysis
3.2.1. Identification of Chemical Constituents of PCH with Different Numbers of Steaming Cycles
3.2.2. Changes in Chemical Composition of PCH during Steaming Process
4. Association Analysis
4.1. Correlation between Odour and HPLC Analysis
4.2. Correlation between Flavour and HPLC Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Dong, Q.; Dong, X.; Fang, J.; Ding, K. Structural Investigation of Two Neutral Polysaccharides Isolated from Rhizome of Polygonatum sibiricum. Carbohydr. Polym. 2007, 70, 304–309. [Google Scholar] [CrossRef]
- Xie, S.-Z.; Yang, G.; Jiang, X.-M.; Qin, D.-Y.; Li, Q.-M.; Zha, X.-Q.; Pan, L.-H.; Jin, C.-S.; Luo, J.-P. Polygonatum cyrtonema Hua Polysaccharide Promotes GLP-1 Secretion from Enteroendocrine L-Cells through Sweet Taste Receptor-Mediated cAMP Signaling. J. Agric. Food Chem. 2020, 68, 6864–6872. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.-D.; Li, X.-Y.; Deng, Y.-Y.; Zha, X.-Q.; Pan, L.-H.; Li, Q.-M.; Luo, J.-P. Polygonatum cyrtonema Hua Polysaccharide Exhibits Anti-Fatigue Activity via Regulating Osteocalcin Signaling. Int. J. Biol. Macromol. 2021, 175, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Jiang, C.-L.; Zheng, C.; Hong, C.-Z.; Pan, L.-H.; Li, Q.-M.; Luo, J.-P.; Zha, X.-Q. Polygonatum cyrtonema Hua Polysaccharide Alleviates Fatigue by Modulating Osteocalcin-Mediated Crosstalk between Bones and Muscles. J. Agric. Food Chem. 2023, 71, 6468–6479. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Feng, S.; Sui, M.; Chen, B.; Sun, P. Extraction and Identification of Steroidal Saponins from Polygonatum cyrtonema Hua Using Natural Deep Eutectic Solvent-Synergistic Quartz Sand-Assisted Extraction Method. J. Sep. Sci. 2023, 46, e2200823. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ban, J.; Cai, R.; Zhang, X.; Lai, C.; Chen, Y.; Li, X.; Chen, C.; Chen, Y.; Zhang, Z.; et al. Metabolic Composition and Quality Traits of Polygonatum cyrtonema Hua from Different Germplasms and Age Sections Based on Widely Targeted Metabolomics Analysis. Int. J. Mol. Sci. 2023, 24, 6077. [Google Scholar] [CrossRef]
- Huang, L.; Wu, Y.; Yin, H.; Yang, X.; Yuan, M.; Ning, H. Two New Compounds from the Stewed Polygonatum cyrtonema Hua and Their Protective Effect against Aβ25-35 Induced Cytotoxicity and Oxidative Stress Damage. Nat. Prod. Res. 2021, 35, 4945–4952. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Yuan, W.; Lu, T.; Jiang, C. History evolution on processing technology and modern research of Polygonatum cyrtonema in Jiuhua Mountain. Chin. Tradit. Herb. Drugs 2018, 49, 4432–4438. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, P.; Yang, Q.; Zhang, Q.; Xiao, W.; Huang, Y.; Ouyang, L. Operation and Precautions of Chinese Medicine “Steamed for Nine Times and Shined for Nine Times”. Liaoning J. Tradit. Chin. Med. 2022, 49, 160–162. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, T.; Yan, T.; Yang, M.; Wang, P.; Shi, L. “Nine Steaming Nine Sun-Drying” Processing Enhanced Properties of Polygonatum kingianum against Inflammation, Oxidative Stress and Hyperglycemia. J. Sci. Food Agric. 2023, 104, 3123–3138. [Google Scholar] [CrossRef]
- Su, L.-L.; Li, X.; Guo, Z.-J.; Xiao, X.-Y.; Chen, P.; Zhang, J.-B.; Mao, C.-Q.; Ji, D.; Mao, J.; Gao, B.; et al. Effects of Different Steaming Times on the Composition, Structure and Immune Activity of Polygonatum Polysaccharide. J. Ethnopharmacol. 2023, 310, 116351. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Xu, C.; Jin, C.; Liu, J.; Liu, C.; Li, L. Research on relationship between processing degree and internal and external quality of Polygonatum cyrtonema processed by “nine-steaming and nine-suncuring” based on color chang. Chin. Tradit. Herb. Drugs 2022, 53, 1719–1729. [Google Scholar]
- Ruiz, F.J.; Agell, N.; Angulo, C.; Sánchez, M. A Learning System for Adjustment Processes Based on Human Sensory Perceptions. Cogn. Syst. Res. 2018, 52, 58–66. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Xiao, X.; Liu, T.; Chu, X.; Zhou, C.; Jin, C. Necessity of quantitative experimental identification in controlling quality of traditional medicinal materials based on commercial specification status of Rhei Radix et Rhizoma. Chin. Tradit. Herb. Drugs 2010, 41, 1225–1230. [Google Scholar]
- Steinmann, D.; Ganzera, M. Recent Advances on HPLC/MS in Medicinal Plant Analysis. J. Pharm. Biomed. Anal. 2011, 55, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guo, J.; Chen, S.; Liu, X.; Zhou, Y.; Zhang, X.; Xu, X. Recent Developments in Qualitative and Quantitative Analysis of Phytochemical Constituents and Their Metabolites Using Liquid Chromatography-Mass Spectrometry. J. Pharm. Biomed. Anal. 2013, 72, 267–291. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Zhang, Z.; Chen, Y.; Sun, M.; Qiao, J.; Du, Z. Analysis of Chemical Constituents of Traditional Chinese Medicine Jianqu before and after Fermentation Based on LC-MS/MS. Molecules 2022, 28, 53. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, K.; Xue, R.; Turghun, C.; Han, B. Identification of the Chemical Constituents in Cullen corylifolium Ethanolic Extract by LC-MS/MS and GC-MS. Nat. Prod. Res. 2023, 37, 1392–1396. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Li, T.; Wei, Y.; Ning, J.; Zhang, Z. Estimation of Congou Black Tea Quality by an Electronic Tongue Technology Combined with Multivariate Analysis. Microchem. J. 2021, 163, 105899. [Google Scholar] [CrossRef]
- Zhu, X.; Lei, W.; Huang, Y.; Liu, L.; Zhu, Y. Research progress in changes of 5-hydroxymethylfurfural in food and its safety. J. Food Saf. Qual. 2022, 13, 4983–4991. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) for Multivariate Association between Bioactive Compounds and Functional Properties in Foods: A Critical Perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Chang, W.C.-W.; Chen, Y.-T.; Chen, H.-J.; Hsieh, C.-W.; Liao, P.-C. Comparative UHPLC-Q-Orbitrap HRMS-Based Metabolomics Unveils Biochemical Changes of Black Garlic during Aging Process. J. Agric. Food Chem. 2020, 68, 14049–14058. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.-L.; Fan, J.-T.; Dong, H.-M.; Chen, X.-Q.; Xu, J.; Huo, J.-G.; Ju, J.-M. UPLC-Q-TOF-MS analysis on chemical constituents of classical prescription Huangqi Guizhi Wuwu Tang standard decoction. Zhongguo Zhong Yao Za Zhi 2020, 45, 5614–5630. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Y.; Zhang, Q.; Li, N.; Wang, Z.-J.; Lu, J.-Q.; Qiao, Y.-J. Diagnostic Fragment-Ion-Based and Extension Strategy Coupled to DFIs Intensity Analysis for Identification of Chlorogenic Acids Isomers in Flos Lonicerae Japonicae by HPLC-ESI-MS(n). Talanta 2013, 104, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Du, H.; Yi, H.; Wu, X.; Feng, T.; Jiang, G.; Fan, G. Selection of indicative components for identification of different species of Berberidis Cortex based on UPLC-Q-Exactive Orbitrap MS metabolomics. Chin. Tradit. Herb. Drugs 2022, 53, 7524–7531. [Google Scholar]
- Yang, Q.; Mei, X.; Wang, Z.; Chen, X.; Zhang, R.; Chen, Q.; Kan, J. Comprehensive Identification of Non-Volatile Bitter-Tasting Compounds in Zanthoxylum bungeanum Maxim. by Untargeted Metabolomics Combined with Sensory-Guided Fractionation Technique. Food Chem. 2021, 347, 129085. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-H.; Tong, X.; Wang, J.-X.; Zou, W.; Cao, H.; Su, W.-W. Rapid Separation and Identification of Multiple Constituents in Traditional Chinese Medicine Formula Shenqi Fuzheng Injection by Ultra-Fast Liquid Chromatography Combined with Quadrupole-Time-of-Flight Mass Spectrometry. J. Pharm. Biomed. Anal. 2013, 74, 141–155. [Google Scholar] [CrossRef]
- Huang, Z.-Z.; Du, X.; Ma, C.; Zhang, R.-R.; Gong, W.-L.; Liu, F. Identification of Antitumor Active Constituents in Polygonatum sibiricum Flower by UPLC-Q-TOF-MSE and Network Pharmacology. ACS Omega 2020, 5, 29755–29764. [Google Scholar] [CrossRef] [PubMed]
- Ning, H.; Yuan, M.; Wu, Q.; Ping, Y.; Zhou, Z.; Xu, Y.; Wu, Y.; Yin, H. Identification of Chemical Constituents from Polygonatum cyrtonema. Chin. J. Exp. Tradit. Med. Formula 2018, 24, 77–82. [Google Scholar] [CrossRef]
- Stefanakis, M.K.; Tsiftsoglou, O.S.; Mašković, P.Z.; Lazari, D.; Katerinopoulos, H.E. Chemical Constituents and Anticancer Activities of the Extracts from Phlomis × Commixta Rech. f. (P. Cretica × P. Lanata). Int. J. Mol. Sci. 2024, 25, 816. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, Y.; Wang, L.; Cheng, P.; Sun, Y.; Cao, H.; Wang, S.; Wu, L.; Meng, J. UPLC-Q-Exactive/MS-Based Metabonomics Revealed Protective Effect of Zingiberis rhizome and Its Processed Product on Deficiency-Cold and Hemorrhagic Syndrome Rats. Biomed. Chromatogr. 2022, 36, e5412. [Google Scholar] [CrossRef] [PubMed]
- Villagrasa, M.; Guillamón, M.; Navarro, A.; Eljarrat, E.; Barceló, D. Development of a Pressurized Liquid Extraction-Solid-Phase Extraction Followed by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry Method for the Quantitative Determination of Benzoxazolinones and Their Degradation Products in Agricultural Soil. J. Chromatogr. A 2008, 1179, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Prakash, O.; Baskaran, R.; Chauhan, A.S.; Kudachikar, V.B. Effect of Heat Processing on Phenolics and Their Possible Transformation in Low-Sugar High-Moisture (LSHM) Fruit Products from Kainth (Pyrus Pashia Buch.-Ham Ex D. Don) Fruit. Food Chem. 2022, 370, 130988. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W. Box–Behenken-Supported Development and Validation of UPLC Method for the Estimation of Eugenol in Syzygium aromaticum, Cinnamomum tamala, and Myristica fragrance. Separations 2023, 10, 248. [Google Scholar] [CrossRef]
- Yang, X.-D.; Zhu, J.; Yang, R.; Liu, J.-P.; Li, L.; Zhang, H.-B. Phenolic Constituents from the Rhizomes of Gastrodia elata. Nat. Prod. Res. 2007, 21, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Feliciano, R.P.; Boeres, A.; Massacessi, L.; Istas, G.; Ventura, M.R.; Nunes Dos Santos, C.; Heiss, C.; Rodriguez-Mateos, A. Identification and Quantification of Novel Cranberry-Derived Plasma and Urinary (Poly)Phenols. Arch. Biochem. Biophys. 2016, 599, 31–41. [Google Scholar] [CrossRef]
- Song, X.; Porter, M.E.; Whitaker, V.M.; Lee, S.; Wang, Y. Identification of Ethyl Vanillin in Strawberry (Fragaria × Ananassa) Using a Targeted Metabolomics Strategy: From Artificial to Natural. Food Chem. X 2023, 20, 100944. [Google Scholar] [CrossRef]
- Hou, J.-P.; Wu, H.; Wang, Y.; Weng, X.-C. Isolation of Some Compounds from Nutmeg and Their Antioxidant Activities. Czech J. Food Sci. 2012, 30, 164–170. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, S.; Chai, Z.; Chen, X.; Zhang, W. Analysis of Chemical Constituents in Qizhi Jiangtang Capsules Based on UPLC-QE-Orbitrap-MS. Chin. J. Exp. Tradit. Med. Formulae 2021, 27, 116–123. [Google Scholar] [CrossRef]
- Sun, S.; Liu, X.; Zhao, D.; Zheng, L.; Han, X.; Tian, Y.; Feng, S. Discovery of the Active Compounds of the Ethyl Acetate Extract Site of Ardisia japonica (Thunb.) Blume for the Treatment of Acute Lung Injury. Molecules 2024, 29, 770. [Google Scholar] [CrossRef]
- Zhou, Y.-H.; Zhang, S.-Y.; Guo, Q.; Chai, X.-Y.; Jiang, Y.; Tu, P.-F. Chemical Investigation of the Roots of Polygala sibirica L. Chin. J. Nat. Med. 2014, 12, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhao, H.; Shi, S.; Li, H.; Zhou, X.; Jiao, F.; Jiang, X.; Peng, D.; Chen, X. Sensitive Characterization of Polyphenolic Antioxidants in Polygonatum odoratum by Selective Solid Phase Extraction and High Performance Liquid Chromatography-Diode Array Detector-Quadrupole Time-of-Flight Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2015, 112, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.; Lv, Q. Density functional theory calculations on antioxidation activity of the isoflavone compounds from astragalus. Chem. Res. Appl. 2012, 24, 1662–1669. [Google Scholar]
- Yao, L.; Lu, Y.; Chen, Z. Studies on chemical constituents of Hibiscus mutabilis. Chin. Tradit. Herb. Drugs 2003, 3, 12–14. [Google Scholar]
- Luo, G.; Lin, J.; Cheng, W.; Liu, Z.; Yu, T.; Yang, B. UHPLC-Q-Orbitrap-MS-Based Metabolomics Reveals Chemical Variations of Two Types of Rhizomes of Polygonatum sibiricum. Molecules 2022, 27, 4685. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Mei, T.; Liu, Y.; Kong, S.; Zhang, J.; Xie, M.; Ou, S.; Liang, M.; Wang, Q. Metabolites Identification of Chemical Constituents From the Eggplant (Solanum melongena L.) Calyx in Rats. by UPLC/ESI/qTOF-MS Analysis and Their Cytotoxic Activities. Front. Pharmacol. 2021, 12, 655008. [Google Scholar] [CrossRef]
- Yang, D.; Li, X.; Fu, Y.; Tao, X.; Zheng, F.; Yu, J.; Yue, H.; Dai, Y. Metabolic Study of Ginsenoside Rg3 and Glimepiride in Type 2 Diabetic Rats by Liquid Chromatography Coupled with Quadrupole-Orbitrap Mass Spectrometry. Rapid Commun. Mass Spectrom. 2021, 35, e9083. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.C.; Kim, S.-H.; Kim, M.J.; Yang, H.J.; Rhyu, M.-R.; Park, J.-H. Piperine, a Component of Black Pepper, Decreases Eugenol-Induced cAMP and Calcium Levels in Non-Chemosensory 3T3-L1 Cells. FEBS Open Bio 2015, 5, 20–25. [Google Scholar] [CrossRef]
- Ge, S.; Liu, J.; Liu, Y.; Song, J.; Wu, H.; Li, L.; Zhu, H.; Feng, B. Chemical Profiling, Quantitation, and Bioactivities of Ginseng Residue. Molecules 2023, 28, 7854. [Google Scholar] [CrossRef]
- Wu, H.; Zhong, S.; Peng, L.; Wu, W.; Li, Z.; Li, W. HPLC-ESI-MS/MS analysis of active component before and after honey-fried. J. Chin. Mass Spectrom. Soc. 2020, 637–647. [Google Scholar] [CrossRef]
- Miyazaki, A.; Eerdunbayaer; Shiokawa, T.; Tada, H.; Lian, Y.; Taniguchi, S.; Hatano, T. High-Performance Liquid Chromatographic Profile and 1H Quantitative Nuclear Magnetic Resonance Analyses for Quality Control of a Xinjiang Licorice Extract. Biosci. Biotechnol. Biochem. 2020, 84, 2128–2138. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, P.; Wen, W.; Li, P.; Yang, C.; Wang, P.; Xu, S. Sarsasapogenin, a Principal Active Component Absorbed into Blood of Total Saponins of Anemarrhena, Attenuates Proliferation and Invasion in Rheumatoid Arthritis Fibroblast-like Synoviocytes through Downregulating PKM2 Inhibited Pathological Glycolysis. Phytother. Res. 2023, 37, 1951–1967. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, P.-F.; Wang, X.-M.; Liu, Y.; Liu, X.-Q.; Chen, L.-M.; Gao, H.-M.; Wang, Z.-M.; Zhang, W. Structural identification of related substances in Breviscapine by UPLC-QTOF-MS. Zhongguo Zhong Yao Za Zhi 2018, 43, 2872–2877. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, D.; Li, Y.; Zhou, X.; Liu, T.; Shi, C.; Li, R.; Zhang, Y.; Zhang, J.; Yan, J.; et al. Untargeted Metabolomics Analysis of the Anti-Diabetic Effect of Red Ginseng Extract in Type 2 Diabetes Mellitus Rats Based on UHPLC-MS/MS. Biomed. Pharmacother. 2022, 146, 112495. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, Z.; Chen, J.; Zhang, Z.; Ma, Y. Chemical constituents from air-dride piper longum. China J. Chin. Mater. Med. 2009, 34, 1101–1103. [Google Scholar]
- Zhou, M.-N.; Liu, P.; Jing, S.-J.; Sun, M.; Li, X.; Zhang, W.; Liu, B. Chemical constituents of Scrophulariae Radix and their antitumor activities in vitro. Zhongguo Zhong Yao Za Zhi 2022, 47, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chen, G.; Yuan, M.; Zou, Y.; Zhang, H.; Xu, H. UPLC-QTOF-MS with a Chemical Profiling Approach for Holistic Quality Evaluation between a Material Reference of Wen Dan Decoction and Its Commercial Preparations. Chin. Med. 2023, 18, 63. [Google Scholar] [CrossRef]
- Nam, B.; Jang, H.-J.; Han, A.-R.; Kim, Y.-R.; Jin, C.-H.; Jung, C.-H.; Kang, K.-B.; Kim, S.-H.; Hong, M.-J.; Kim, J.-B.; et al. Chemical and Biological Profiles of Dendrobium in Two Different Species, Their Hybrid, and Gamma-Irradiated Mutant Lines of the Hybrid Based on LC-QToF MS and Cytotoxicity Analysis. Plants 2021, 10, 1376. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, M.; Ding, W.; Xiang, C.; Tian, Y.; Li, T.; Fu, S.; Zhang, J.; Wang, Q. Simultaneous Quantification of Six Constituents in Qing-Huo-Zhi-Mai Tablet by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. Sci. 2015, 53, 24–30. [Google Scholar] [CrossRef]
- Xu, S.; Xu, X.; Yuan, S.; Liu, H.; Liu, M.; Zhang, Y.; Zhang, H.; Gao, Y.; Lin, R.; Li, X. Identification and Analysis of Amygdalin, Neoamygdalin and Amygdalin Amide in Different Processed Bitter Almonds by HPLC-ESI-MS/MS and HPLC-DAD. Molecules 2017, 22, 1425. [Google Scholar] [CrossRef]
- Kite, G.C.; Porter, E.A.; Simmonds, M.S.J. Chromatographic behaviour of steroidal saponins studied by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A 2007, 5, 177–183. [Google Scholar] [CrossRef]
- Zhai, F.-H.; Chen, Y.-F.; Zhang, Y.; Zhao, W.-J.; Han, J.-R. Phenolic Compounds and Antioxidant Properties of Wheat Fermented with Agaricus brasiliensis and Agaricus bisporus. FEMS Microbiol. Lett. 2021, 368, fnaa213. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Xu, W.; Yang, X.-W. Chemical constituents of Chinese red ginseng. Zhongguo Zhong Yao Za Zhi 2016, 41, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Behl, T.; Singh, S.; Garg, M.; Tamboli, E.T.; Chigurupati, S.; Felemban, S.G.; Albarrati, A.; Albratty, M.; Meraya, A.M. Quantification of Luteolin, Apigenin and Chrysoeriol in Tecoma Stans by RP-HPLC Method. J. Chromatogr. Sci. 2023, 61, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Liu, S.-M.; Zheng, T. Chemotaxonomic Identification of Key Taste and Nutritional Components in “Shushanggan Apricot” Fruits by Widely Targeted Metabolomics. Molecules 2022, 27, 3870. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.; Fan, L.-L.; Chen, H.-L.; Zhu, G.-Y.; Suen, H.-M.; Tang, Y.-N.; Zhu, L.; Chu, C.; Zhao, Z.-Z.; Chen, H.-B. Comparative Analysis of Diosgenin in Dioscorea Species and Related Medicinal Plants by UPLC-DAD-MS. BMC Biochem 2014, 15, 19. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Liu, Y.; Wang, D. Analyzing Volatile Compound.s of Young and Mature Docynia Delavayi Fruit by HS-SPME-GC-MS and rOAV. Foods 2022, 12, 59. [Google Scholar] [CrossRef]
- Khan, A.; Pan, J.H.; Cho, S.; Lee, S.; Kim, Y.J.; Park, Y.H. Investigation of the Hepatoprotective Effect of Prunus Mume Sieb. et Zucc Extract in a Mouse Model of Alcoholic Liver Injury Through High-Resolution Metabolomics. J. Med. Food 2017, 20, 734–743. [Google Scholar] [CrossRef]
- Gercek, Y.C.; Celik, S.; Bayram, S. Screening of Plant Pollen Sources, Polyphenolic Compounds, Fatty Acids and Antioxidant/Antimicrobial Activity from Bee Pollen. Molecules 2021, 27, 117. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Li, Q.; Xue, T.; Qin, F.; Xiong, Z. Discovery of Bioactive-Chemical Q-Markers of Acanthopanax sessiliflorus Leaves: An Integrated Strategy of Plant Metabolomics, Fingerprint and Spectrum-Efficacy Relationship Research. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2024, 1233, 124009. [Google Scholar] [CrossRef]
- Nazzaro, F.; Polito, F.; Amato, G.; Caputo, L.; Francolino, R.; D’Acierno, A.; Fratianni, F.; Candido, V.; Coppola, R.; De Feo, V. Chemical Composition of Essential Oils of Bulbs and Aerial Parts of Two Cultivars of Allium sativum and Their Antibiofilm Activity against Food and Nosocomial Pathogens. Antibiotics 2022, 11, 724. [Google Scholar] [CrossRef]
- Sun, L.-R.; Li, X.; Wang, S.-X. Two New Alkaloids from the Rhizome of Polygonatum sibiricum. J. Asian Nat. Prod. Res. 2005, 7, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Bosco, R.; Daeseleire, E.; Van Pamel, E.; Scariot, V.; Leus, L. Development of an Ultrahigh-Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry Method for the Simultaneous Determination of Salicylic Acid, Jasmonic Acid, and Abscisic Acid in Rose Leaves. J. Agric. Food Chem. 2014, 62, 6278–6284. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.-H.; Li, C.; Ji, L.-N.; Yang, L.-X.; Rong, L.-X.; Chen, L.-M.; Yi, H.; Wang, Z.-M. Study on UPLC fingerprint of red ginseng based on good separation and good purity of chromatographic peaks. Zhongguo Zhong Yao Za Zhi 2016, 41, 3798–3804. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.; Mei, X.; Liu, Z.; Song, S.; Ma, T.; Lin, F.; Zhang, J. Characterization of chemical constituents in aqueous extracts and fermentation broth from Polygonati Rhizoma by UHPLC-LTQ-Orbitrap MS combined with solid phase extraction. Chin. Tradit. Herb. Drugs 2019, 3029–3036+3043. [Google Scholar] [CrossRef]
- Liu, X.-Q.; Yang, H.; Zhao, J.-Y.; Meng, C.-X.-N.; Li, C.; Zhang, D.; Chen, L.-M.; Yan, Y.; Guo, Z.-Y.; Wang, Z.-M.; et al. Determination of β-nicotinamide mononucleotide and nicotinamide adenine dinucleotide in Dendrobium officinale and congeneric species by UPLC-MS/MS. Zhongguo Zhong Yao Za Zhi 2021, 46, 4034–4039. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.-Q.; Shi, G.-R.; Yu, S.-S. Chemical compositions from roots of Erythrina corallodendron. Zhongguo Zhong Yao Za Zhi 2019, 44, 3064–3069. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Weng, L.; Wu, Y.; Chen, T. Study on chemical composition difference and analgesic effect of Paeonia lactiflora before and after being processed with wine. China Pharm. 2022, 33, 2738–2742. [Google Scholar] [CrossRef]
- Duan, H.; Wang, W.; Li, Y.; Jilany Khan, G.; Chen, Y.; Shen, T.; Bao, N.; Hua, J.; Xue, Z.; Zhai, K.; et al. Identification of Phytochemicals and Antioxidant Activity of Premna microphylla Turcz. Stem through UPLC-LTQ-Orbitrap-MS. Food Chem. 2022, 373, 131482. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Chen, H.; Yu, Y.; Wang, P.; Li, Y.; Chen, G.; Si, J.; Yang, H. Property and Quality of Japonica Rice Cake Prepared with Polygonatum cyrtonema Powder. Food Chem. X 2024, 22, 101370. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Huai, X.; Wei, Y.; Zhu, J.; Li, X.; Xu, P.; Ijabadeniyi, O.A. Development and Application of the New Integrated Equipment and Process of the Nine-Steam-Nine-Bask Method in the Processing of Polygonatum cyrtonema. Processes 2022, 10, 1044. [Google Scholar] [CrossRef]
Item | Scoring Rules | Points |
---|---|---|
Colour (25 cents) | Uniformly dark and of uniform colour, with a glossy finish | 18~25 |
Blackish brown, largely homogeneous in colour, slightly discoloured | 10~17 | |
Yellowish in colour, uneven and poorly coloured | 1~9 | |
Texture (20 cents) | Slightly harder and tougher, better texture | 16~20 |
Harder or softer, average texture | 10~15 | |
Very hard or very soft, poor texture | 1~9 | |
Odour (25 cents) | Flavourful and sweet PCH | 18~25 |
Slightly sweet flavour of PCH | 10~17 | |
No sweet smell of PCH | 1~9 | |
Taste (30 cents) | Sweet taste, not sticky to the teeth, good texture | 20~30 |
Sweeter flavour, more sticky to the teeth, average texture | 11~20 | |
Unsweet or bitter taste, poor taste | 1~10 |
No. | Sensor Name | Sensitive Substance |
---|---|---|
1 | W1C | Aromatic compounds |
2 | W5S | Nitrogen oxides |
3 | W3C | Ammonia, aromatic molecules |
4 | W6S | Hydrocarbons |
5 | W5C | Olefins, aromatic, polar molecules |
6 | W1S | Alkanes |
7 | W1W | Sulphur compounds |
8 | W2S | Alcohols, some aromatic compounds |
9 | W2W | Aromatic compounds, organic compounds of sulphur |
10 | W3S | Alkanes and aliphatics |
Sensor | Corresponding Taste | Taste Information | |
---|---|---|---|
Pre-Taste | Aftertaste | ||
C00 | Bitterness | Bitterness | Aftertaste-B |
AE1 | Astringency | Astringency | Aftertaste-A |
CA0 | Sourness | Sourness | - |
CT0 | Saltness | Saltness | - |
AAE | Umami | Umami | Richness |
GL1 | Sweetness | Sweetness | - |
Sample | Colour | Texture | Odour | Taste | Score |
---|---|---|---|---|---|
S0 | Yellowish White | Hard | No special odour | Bitter, astringent, tongue numbing | 41 |
S1 | Brown | Firm and hard | Slightly sweet | Slightly sweet | 48 |
S2 | Tan | Slightly hard and tough | Slightly sweet | Slightly sweet | 63 |
S3 | Tan | Slightly hard and tough | Sweet | Slightly sweet | 65 |
S4 | Black | Soft and sticky | Sweet | Sweet | 69 |
S5 | Ebony | Soft and sticky | Burnt flavour | Sweet | 72 |
S6 | Dark | Soft and sticky | Burnt flavour | Sweet | 73 |
S7 | Dark | Soft and sticky | Burnt flavour | Sweet | 74 |
S8 | Dark | Soft and sticky | Burnt flavour | Sweet | 70 |
S9 | Black | Soft and sticky | Burnt flavour | Slightly bitter, sour | 67 |
S10 | Black | Soft and sticky | Scorched flavour | Slightly bitter, sour | 65 |
S11 | Black | Soft and sticky | Scorched flavour | Slightly bitter, sour | 62 |
No. | RT (min) | Adduct Ions | ppm | Formula | Measured Value | Peak Intensity (m/z) | Chemical Compound | Source | References |
---|---|---|---|---|---|---|---|---|---|
1 | 0.4464 | [M + H]+ | 2.084 | C6H10S2 | 147.0286935 | 85.028; 147.028; 55.018; 57.033; 73.029 | Diallyl Disulfide | f | [22] |
2 | 0.5488 | [M + H]+ | 4.659 | C5H9NO2 | 116.070459 | 70.065; 56.049; 71.068; 44.049 | Proline | d | [23] |
3 | 0.5518 | [M − H]− | 0.608 | C6H8O7 | 191.020116 | 111.01; 85.03; 87.009; 57.035 | Citric acid | b | [24] |
4 | 0.5518 | [M − H]− | 3.853 | C12H22O11 | 341.108686 | 59.014; 89.025; 179.056; 101.024 | Sucrose | f | [25] |
5 | 0.5569 | [M + H]+ | 1.227 | C5H11NO2 | 118.086145 | 72.08; 119.049; 91.054; 59.073 | Valine | d | [26] |
6 | 0.5585 | [M + H]+ | 0.302 | C9H11NO3 | 182.081055 | 81.033; 136.075; 96.044; 165.054 | Tyrosine | d | [23,27] |
7 | 0.5586 | [M + H]+ | 0.108 | C9H11NO2 | 166.085982 | 167.088; 120.08; 148.076; 94.065 | Xizanglongchine | c | [28] |
8 | 0.6187 | [M + H]+ | 0.180 | C6H14N4O2 | 175.118968 | 70.065; 60.055; 116.071; 130.098 | Arginine | d | [23,27] |
9 | 0.6753 | [M + H]+ | 0.509 | C6H6O3 | 127.038935 | 109.029; 81.033; 53.038; 43.018 | 5-Hydroxymethylfurfural | f | [29] |
10 | 0.8191 | [M + H]+ | 1.679 | C8H8O4 | 169.049284 | 170.079; 111.044; 97.028; 125.059 | Vanillic acid | b | [30] |
11 | 0.9395 | [M + H]+ | 0.421 | C7H7NO2 | 138.054942 | 120.044; 139.038; 110.06; 137.108 | Glycine | d | [31] |
12 | 0.9642 | [M − H]− | 1.3977 | C6H7NO | 108.045849 | 108.046; 109.03; 67.03; 65.014; 60.017 | 2-Aminophenol | f | [32] |
13 | 0.9922 | [M + H]+ | 3.032 | C8H12N2 | 137.107416 | 138.055; 43.018; 120.045; 81.07 | Chuanxiongzine | c | [28] |
14 | 1.0482 | [M − H]− | 0.457 | C12H16O7 | 271.083124 | 69.035; 71.015; 123.057; 272.058 | Arbutin | b | [33] |
15 | 1.1491 | [M + H]+ | 0.253 | C9H10O4 | 183.065046 | 184.095; 137.059; 43.018; 123.044 | Eugenol | f | [34] |
16 | 1.3355 | [M − H] | 1.225 | C7H6O2 | 121.0298517 | 121.03; 122.024; 94.03; 120.023; 92.027 | 4-Hydroxybenzaldehyde | f | [35] |
17 | 1.5806 | [M − H]- | 3.25 | C8H8O2 | 135.045561 | 135.045; 44.998; 75.009; 93.035; 136.039 | Phenylacetic acid | f | [36] |
18 | 1.6133 | [M + H]+ | 1.29 | C8H8O3 | 153.0548033 | 153.055; 111.044; 125.06; 93.034; 65.039 | Vanillin | f | [37] |
19 | 2.0690 | [M + H]+ | 0.153 | C20H22O4 | 327.15505 | 168.065; 148.112; 281.15; 328.121 | Dehydrodiisoeugenol | f | [38] |
20 | 2.1524 | [M − H]− | 1.563 | C9H11NO2 | 164.072256 | 165.056; 149.048; 121.031; 120.045 | Phenylalanine | d | [23,27,39] |
21 | 2.3004 | [M + H]+ | 0.002 | C7H6O5 | 171.029 | 172.075; 153.055; 127.03; 67.055 | Gallic acid | b | [40] |
22 | 2.3578 | [M + H]+ | 2.850 | C12H14O5 | 239.091681 | 83.049; 111.044; 95.049; 139.04 | 3,4,5-Trimethoxycinnamic acid | f | [41] |
23 | 2.6248 | [M + H]+ | 0.296 | C18H19NO5 | 330.133902 | 312.12; 95.049; 193.051; 178.088 | N-Feruloyloctopamine | c | [42] |
24 | 2.6828 | [M + H]+ | 0.402 | C16H14O6 | 303.086878 | 151.038; 123.044; 81.034; 193.051 | 5,3′,5′-Trihydroxy-7-methoxyflavanone | a | [23,43] |
25 | 2.6998 | [M − H]− | 0.855 | C7H6O3 | 137.024883 | 93.035; 94.03; 138.02; 109.03 | Salicylic acid | b | [44] |
26 | 2.8531 | [M + HCOO]− | 0.304 | C56H92O29 | 1273.56039 | 1273.482; 228.732; 1272.5; 1227.563 | Digitonin | e | [45] |
27 | 3.0016 | [M + H]+ | 0.692 | C17H17NO3 | 284.128196 | 148.048; 149.05; 147.045; 122.068 | p-Coumaroyltyramine | c | [46] |
28 | 3.1143 | [M − H]− | 0.674 | C24H34N4O5S | 489.2135268 | 59.014; 489.274; 71.015; 61.988; 101.024 | Glimepiride | f | [47] |
29 | 3.4300 | [M + H]+ | 2.848 | C17H21NO3 | 288.159179 | 270.147; 72.08; 81.034; 289.07 | Piperine (chemistry) | c | [48] |
30 | 3.4712 | [M + H]+ | 2.854 | C15H10O6 | 287.055181 | 107.05; 181.087; 288.056; 153.018 | Kaempferol | a | [23] |
31 | 3.6526 | [M + H]+ | 1.000 | C8H8O2 | 137.0597644 | 137.06; 81.07; 138.055; 43.018; 109.065 | 2-Hydroxy-4-methylbenzaldehyde | f | [49] |
32 | 3.8455 | [M + H]+ | 0.753 | C5H7NO3 | 130.049902 | 86.096; 97.028; 84.043; 73.028 | Pyroglutamic acid | d | [27,50] |
33 | 3.9305 | [M + H]+ | 2.665 | C20H18O4 | 323.127139 | 291.104; 111.044; 81.034; 277.148 | Licorice flavonoid A | a | [51] |
34 | 3.9948 | [M + H]+ | 5.659 | C57H96O28 | 1229.60304 | 228.739; 414.313; 1230.374; 251.18 | Sarsasapogenin | e | [52] |
35 | 4.0237 | [M + H]+ | 0.670 | C16H12O5 | 285.075809 | 144.101; 81.069; 173.06; 183.114 | Scutellarin | a | [53] |
36 | 4.1517 | [M − H]− | 0.411 | C15H12O5 | 271.062111 | 151.005; 119.05; 107.014; 65.004 | Naringin | a | [20] |
37 | 4.2184 | [M + H]+ | 2.453 | C5H12N2O2 | 133.101327 | 97.028; 134.06; 105.069; 69.033 | D-Ornithine | d | [54] |
38 | 4.3322 | [M − H]− | 2.478 | C8H6O4 | 165.019591 | 121.03; 165.837; 93.035; 136.932 | Piperonylic acid | b | [55] |
39 | 4.4538 | [M + H]+ | 1.904 | C10H10O3 | 179.070341 | 133.065; 180.064; 161.059; 105.07 | Coniferaldehyde | f | [56] |
40 | 5.6975 | [M − H]− | 1.454 | C21H22O9 | 417.120393 | 227.059; 165.056; 66.114; 105.02 | Glycyrrhizin | a | [57] |
41 | 6.0376 | [M + H]+ | 1.1855 | C15H14O3 | 260.1276919 | 260.126; 81.034; 106.05; 214.086; 59.37 | Lusianthridin | f | [58] |
42 | 6.0896 | [M − H]− | 1.260 | C19H18O6 | 341.10357 | 279.199; 221.046; 59.014; 89.025 | Methyl maltoflavanone A | a | [59] |
43 | 6.2597 | [M − H]− | 0.918 | C20H27NO11 | 456.146581 | 64.149; 57.115; 70.966; 72.457 | Amygdalin | b | [60] |
44 | 6.3256 | [M + HCOO]− | 5.294 | C48H78O20 | 1019.5046 | 1019.473; 228.736; 116.93; 155.315 | Madecassoside | e | [61] |
45 | 6.4067 | [M + H] | 6.666 | C8H8O2 | 137.0590863 | 137.059; 81.069; 138.054; 109.064; 95.085 | Benzaldehyde | f | [62] |
46 | 6.9704 | [M + HCOO]− | 1.004 | C42H72O14 | 845.489849 | 845.518; 387.301; 228.736; 482.586 | Ginsenoside Rf | e | [63] |
47 | 7.5657 | [M − H]− | 1.799 | C15H10O5 | 269.045516 | 225.055; 59.014; 270.049; 78.496 | Apigenin | a | [64] |
48 | 7.9753 | [M + H]+ | 3.291 | C18H30O2 | 279.231081 | 69.07; 83.085; 95.085; 71.085; 81.069 | α-Linolenic acid | f | [65] |
49 | 8.4767 | [M + H]+ | 2.986 | C18H32O2 | 281.24716 | 263.144; 221.134; 235.147; 135.079 | Linoleic acid | f | [65] |
50 | 8.6366 | [M + H]+ | 1.706 | C27H42O3 | 415.320291 | 271.207; 149.096; 253.195; 72.044 | Diosgenin | e | [66] |
51 | 10.9008 | [M + H]+ | 2.867 | C10H12O2 | 165.0905267 | 121.065; 166.086; 93.07; 165.09; 91.054 | Phenethyl acetate | f | [67] |
52 | 10.8588 | [M − H]− | 0.113 | C18H32O2 | 279.233032 | 280.239; 59.013; 261.224; 134.895 | Linolenic acid | f | [65] |
53 | 11.1044 | [M − H]− | 6.410 | C48H78O17 | 925.504068 | 152.996; 925.481; 279.234; 255.235 | Saikosaponin BK1 | e | [68] |
54 | 11.5801 | [M − H]− | 2.366 | C16H32O2 | 255.233604 | 256.237; 219.846; 119.05; 69.793 | Palmitic acid | f | [69] |
55 | 11.9280 | [M + H]+ | 1.557 | C6H6O3 | 127.038802 | 109.029; 81.034; 43.018; 128.143 | Maltol | a | [70] |
56 | 11.9681 | [M + H]+ | 2.975 | C6H12S2 | 178.034224 | 149.024; 108.045; 167.054; 126.054; 169.034 | Allyl propyl disulfide | f | [71] |
57 | 12.5736 | [M + H]+ | 1.413 | C9H11NO2 | 166.085765 | 136.075; 120.08; 80.049; 167.088 | Polygonatine A | c | [72] |
58 | 12.5887 | [M − H]− | 3.468 | C12H18O3 | 209.118275 | 126.02; 210.077; 183.068; 124.041 | Jasmonic acid | f | [73] |
59 | 12.8387 | [M − H]− | 2.895 | C36H62O9 | 637.431155 | 71.015; 89.025; 279.233; 101.024 | Ginsenoside F1 | e | [74] |
60 | 12.9707 | [M + H]+ | 0.723 | C10H13N5O4 | 268.103806 | 136.061; 67.054; 81.069; 76.28 | Adenosine triphosphate | f | [75] |
61 | 12.9805 | [M + H]+ | 4.429 | C5H5N5 | 136.061397 | 137.083; 109.077; 81.069; 95.06 | Adenine | f | [76] |
62 | 13.4751 | [M + H]+ | 1.401 | C16H22O4 | 279.158609 | 149.024; 81.069; 67.054; 95.086 | Dibutyl phthalate | b | [77] |
63 | 13.7474 | [M + H]+ | 0.684 | C9H10O5 | 199.180136 | 74.097; 200.129; 100.076; 53.456 | Butyric acid | b | [78] |
64 | 15.6257 | [M + H]+ | 0.338 | C5H11NO2 | 118.08604 | 72.08; 59.073; 119.09; 58.065 | Betaine | c | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Hu, J.; Hai, X.; Cao, T.; Zhou, A.; Han, R.; Xing, L.; Yu, N. Quality Evaluation of Polygonatum cyrtonema Hua Based on UPLC-Q-Exactive Orbitrap MS and Electronic Sensory Techniques with Different Numbers of Steaming Cycles. Foods 2024, 13, 1586. https://doi.org/10.3390/foods13101586
Wang M, Hu J, Hai X, Cao T, Zhou A, Han R, Xing L, Yu N. Quality Evaluation of Polygonatum cyrtonema Hua Based on UPLC-Q-Exactive Orbitrap MS and Electronic Sensory Techniques with Different Numbers of Steaming Cycles. Foods. 2024; 13(10):1586. https://doi.org/10.3390/foods13101586
Chicago/Turabian StyleWang, Mengjin, Jiayi Hu, Xiaoya Hai, Tianzhuo Cao, An Zhou, Rongchun Han, Lihua Xing, and Nianjun Yu. 2024. "Quality Evaluation of Polygonatum cyrtonema Hua Based on UPLC-Q-Exactive Orbitrap MS and Electronic Sensory Techniques with Different Numbers of Steaming Cycles" Foods 13, no. 10: 1586. https://doi.org/10.3390/foods13101586
APA StyleWang, M., Hu, J., Hai, X., Cao, T., Zhou, A., Han, R., Xing, L., & Yu, N. (2024). Quality Evaluation of Polygonatum cyrtonema Hua Based on UPLC-Q-Exactive Orbitrap MS and Electronic Sensory Techniques with Different Numbers of Steaming Cycles. Foods, 13(10), 1586. https://doi.org/10.3390/foods13101586